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a b s t r a c t

Pentamode materials are elastic solids with vanishing shear modulus, and can be used to
cloak underwater sound with solid state and broadband advantages. However, pentamode
materials produced with microstructures have inevitable small shear modulus. This paper
systematically studies the effects of the shear rigidity and inner constraints on an acoustic
cloak composing unideal pentamode materials. The shear rigidity introduces a new type of
resonance in the radial direction, which is different from the traditional whispering-gallery
resonance along the circumference. Totally fixed, radially fixed and free constraints on the
inner surface are found to show significant differences in the cloaking function. To realize a
broadband cloak with a suitable inner constraint in practice, we propose to attach a thin
elastic shell on the inner surface to virtually tune the inner constraint. The strategy is
validated with microstructure cloak simulation. This study will provide valuable guidance
to facilitate practical applications of pentamode acoustic cloaks.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Invisibility cloak is the ultimate example of controlling wave propagation through material distributions, for which the
transformation approach provides a general tool for identifying the requiredmaterial parameters [1,2]. As for acoustics cloaks,
meta-fluids with anisotropic densities were initially proposed following the same line as the transformation optics [3,4],
namely the inertial cloak [5]. Various meta-fluids have been proposed with anisotropic densities such as alternating fluid
layers [6], perforated plates [7] and resonant schemes [8,9]. However, these techniques require using fluids as the working
media or they are limited to a narrow frequency band, and thus their engineering applications are limited. Furthermore, the
achievable density anisotropy is quite small. The two principal densities can differ by five times for air sound [10], but only by
two times for water sound [11]. Therefore, only the carpet cloaks [12,13] have been experimentally demonstrated since much
higher anisotropy is required for omnidirectional cloaks.

Pentamode materials (PM) were proposed by Milton and Cherkaev in 1995 [14], as degenerate elastic solids with zero
shear rigidity and achievable anisotropy in their moduli. These materials cannot resist shear deformation and they acous-
tically resemble ordinary fluids, although their moduli can be anisotropic. In 2008, Norris proved that PMs are also capable of
controlling acoustic waves via the transformation method [5]. PMs can be approximated by solid materials after careful
microstructural design to tune the shear rigidity. In contrast to many other metamaterials, the greatest advantages of PM are
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that, they are not resonance based and they are intrinsically broadband. Other advantages include sharper control due to their
higher anisotropy and the solid nature of the controlling devices. These advantages have stimulated intensive recent re-
searches into PMs, such as PM transformation theory [15,16], acoustic wave controlling applications [17e27], and PM
microstructure design [28e34]. A cylindrical PM acoustic cloak with concrete microstructures was designed and numerically
verified by Chen et al. [19], and was further experimentally tested in a two-dimensional (2D) waveguide to demonstrate its
capability for manipulating underwater sound [26,35].

Several issues prevent a real cloak from being perfectly invisible over a broadband frequency range, e.g., the cloak is not
mapped out from an infinitesimal point in the virtual space, the smooth gradient parameter of the cloak is discretized by
piecewise layers, and the homogenization of the metamaterial is not accurate. For PM cloaks, an additional problem is that a
practical solid-based PM cannot be ideal, i.e., with zero shear resistance, in order to be statically stable. In fact, a real PM
belongs to the category of orthotropic solids. For example, the ratio of the shear relative to the bulk modulus is usually about
1% for a 2D PM [19], or about 1‰ for a three-dimensional PM [36], but not zero. The imperfectness of a PM is a particular issue
because it induces a shear wave mode compared with a single longitudinal mode in an ideal PM. Numerical studies have
shown that a real PM cloak exhibits discrete shear resonance instead of being broadband, as expected for an ideal PM [19].
Smith and Verrier [37] studied an acoustic cloak composing solids with anisotropic density and an isotropicmodulus, and also
found similar shear resonances. However, their investigations differed from the present study because we considered a PM
with anisotropic modulus. The resonance can be suppressed by material damping but the cloak inner surface constraint is
another important factor that influences the cloaking effect. In many previous studies [15,23,24], a radially fixed inner surface
boundarywas generally assumed to obtain the best invisibility. However, it should be noticed that, a radially fixed boundary is
only reasonable for air sound because conventional solids such as a plastic or metal can be used as an acoustic rigid material.
In terms of the elastic waves in PM cloaks, ordinary solids easily couple with the PMs and they barely fix the motion of the
inner surface. From a practical perspective, the most realistic boundary for implementing underwater acoustic cloaks is the
free inner surface. However, the free inner surface significantly influences the cloaking performance, as shown in this study,
and a practical solution is still required to obtain invisibility. Due to the highly complex wave propagation in the gradient
unideal PMs, most previous analyses treated PMs as ideal ones with zero shear rigidity [22,23], whereas few studies have
considered the effects of the imperfectness of PMs and the inner constraint on acoustic cloaking.

In the present study, we derive a semi-analytical model of an acoustic cloak with unideal PMs and then systematically
investigated the effects of the material parameters and inner constraint on the cloaking performance. The paper is organized
as follows. In Section 2, we describe the PM and cylindrical cloak, and two parameters are introduced to quantify the
imperfectness of an unideal PM. In Section 3, we derive an acoustic scattering solution for an acoustic cloak with unideal PMs.
In Section 4, the impact of material parameters and inner constraints on the cloaking performance are investigated thor-
oughly. A practically feasible inner constraint is proposed to achieve broadband cloaking performance, which is verified based
on microstructure cloak simulations. The concluding remarks are given in Section 5.

2. Characterization of pentamode materials and model of cylindrical cloaks

A PM is defined as an elastic material with five eigenvalues of its elasticity matrix being zero. Its elasticity tensor is simply
written as C¼ KS5S, where S is the characteristic tensor. The stress in PMs is always proportional to the characteristic tensor
s¼ pS, where p is termed as the pseudo pressure. Ordinary fluids can be treated as PMswith isotropic characteristic tensors S
¼ I. For a practically designed 2D PM, the elasticity matrix in the principal coordinates system is as follows [19],

C ¼

0
BB@

Kx Kxy 0
Kxy Ky 0
0 0 Gxy

1
CCA (1)
Two parameters for characterizing the degree of imperfectness can be defined as,

n¼
��Kxy

��ffiffiffiffiffiffiffiffiffiffiffi
KxKy

p m ¼ Gxyffiffiffiffiffiffiffiffiffiffiffi
KxKy

p (2)
To approximate a perfect PM, the conditions jn e 1j≪ 1 and m≪ 1 should both be satisfied. For the isotropic case, a single
condition that n ≪ 1 is sufficient since n¼ 1 � 2m. For anisotropic materials, both n and m should be restricted.

The material parameters for a PM cloak can be derived from transformation theory as shown in Fig. 1 [5]. First, we suppose
that a virtual space U & Uout is occupied by a homogenous fluid with density r0 and modulus K0. Secondly, by coordinate
mapping x¼ f�1(X), we can map the acoustic equation for ordinary fluids in U onto the acoustic equation in u for PMs. Then,
the acoustic wave propagating along a straight trajectory in the virtual space will propagate along a curved trajectory and the
central region in the physical space becomes undetectable. The PM parameters required for the cloak are [5],



Fig. 1. Illustration of the transformation approach for a pentamode cloak; (a) Virtual space with region Uout and U; (b) Physical space with background region uout

and cloak region u, where U and u have the same outer boundary.
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r0 ¼ r0I; C ¼

0
BB@

Kr
ffiffiffiffiffiffiffiffiffiffi
KrKq

p
0ffiffiffiffiffiffiffiffiffiffi

KrKq

p
Kq 0

0 0 0

1
CCA (3)

0 f ðrÞf 0ðrÞ f ðrÞ rf 0ðrÞ

r ¼ r0 r

; Kr ¼ K0rf 0ðrÞ; Kq ¼ K0 f ðrÞ (4)
where Kr and Kq are the principal moduli along the radial and circumferential directions, respectively. Different functions f(r)
can be used to simplify the material parameters provided that f(b)¼ b and f(a)¼ d. A small radius d ≪ 1 is employed in the
present study in order to avoid material singularity near the inner boundary. The commonly used functions f(r) that leads to a
uniform density or modulus can be unified as follows,

f ðrÞ ¼
�
bn � dn

bn � an
rn � an � dn

bn � an
bn
�1=n

(5)
The linear mapping, uniform density mapping and uniformmodulus mapping can be obtained by taking n to be 1, 2 and þ
∞, respectively.

3. Scattering of an acoustic cloak with imperfect pentamode materials

In this section, we consider the scattering of a cylindrical cloak with imperfect PMs, i.e., essentially an orthotropic solid
shell with gradient density r(r) and modulus C(r), where the principal axis is aligned with the polar frame. A closed form
solution for the acoustic scattering of a cylindrical orthotropic solid shell is very tedious to obtain, if not impossible. Thus, we
employ the state space approach, which is traditionally used for laminated orthotropic plates [38,39]. The continuous cloak is
first discretized into N layers (Fig. 2), where each layer is sufficiently thin because of the reasons explained in the following.
The jth pentamode layer enclosed by radius rj�1 and rj is treated as homogenous with density rj¼ rj((rj�1þ rj)/2) andmodulus
Cj¼ C j((rj�1 þ rj)/2). The domain outside the cloak is filled with a homogeneous fluid (r0, K0), and it is denoted as the (Nþ 1)th

layer.
We consider a plane wave with frequency u incidents from the left, pin¼ exp(ik0x), and the incident plane wave can be

decomposed as,

pin ¼
X∞
n¼0

anJnðk0rÞcos nq (6)
where the time dependence term exp(�iut) is omitted as convention, k0¼u/c0 is thewave number, c0¼ (K0/r0)1/2 is thewave
speed and Jn(k0r) is the nth order Bessel function. The incident coefficient is an ¼ (2� d0n)in (n> 0), where d represents the
Kronecker delta. The scattered pressure psc in the background fluid is governed by V2psc þ (k0)2psc¼ 0, and it follows the
decompositions,



Fig. 2. Scattering model of a pentamode cloak; (a) A cloak with smoothly varying pentamode materials is discretized into (b) a cloak with N layers of homo-
geneous material.
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psc ¼
X∞
n¼0

bnH
ð1Þ
n ðk0rÞcos nq (7)

where b is the unknown nth order scattering coefficient and Hð1Þðk rÞ is the nth order Hankel function of the first kind.Wave
n n 0
propagation in the PMs should be considered to solve the scattering coefficient. For the jth layer, the constitutive, geometry
and momentum equations can be expressed in the polar coordinates as,0

BB@
sjr
sjq
sjrq

1
CCA ¼

0
BB@

Kjr Kjrq 0
Kjrq Kjq 0
0 0 Gjrq

1
CCA
0
BB@

εjr
εjq
2εjrq

1
CCA (8)

vujr 1 vujq ujr 1
�
vujq 1 vujr ujq

�

εjr ¼ vr

; εjq ¼ r vq
þ

r
; εjrq ¼ 2 vr

þ
r vq

�
r

(9)

vsjr 1 vsjrq sjr � sjq 2 vsjrq 1 vsjq 2sjrq 2

vr

þ
r vq

þ
r

¼ �rju ujr ; vr
þ

r vq
þ

r
¼ �rju ujq (10)

where Kjr, Kjq and Gjrq are themoduli of the jth layer, εjr, εj and εjrq are the strains, and sjr, sjq and sjrq are the stresses. Considering

the orthogonality of the different scattering modes and the continuity at the fluidePM interface, the following ansatz are
employed for the displacements and stresses,

ujr ¼
X∞
n¼0

ujnrðrÞcos nq; ujq ¼
X∞
n¼0

ujnqðrÞsin nq (11)

X∞ X∞ X∞

sjr ¼

n¼0

sjnrðrÞcos nq; sjrq ¼
n¼0

sjnrqðrÞsin nq; sjq ¼
n¼0

sjnqðrÞcos nq (12)

where (ujnr, ujnq) and (sjnr, sjnrq, sjnq) are denoted as the nth order displacement and stress of the jth layer in polar coordinates,

respectively. To consider the continuity at the interface between adjacent pentamode layers, the nth order state space vector
is defined as follows,

DjnðrÞ ¼
n
ujnrðrÞ;ujnqðrÞ; sjnrðrÞ; sjnrqðrÞgT (13)
By substituting the mode expansions in Eq. (11) and Eq. (12) into Eq. (10), we can derive an ordinary differential equation
for the nth order state space vector of the jth layer

d
dr

DjnðrÞ ¼ PjnðrÞDjnðrÞ (14)

where the matrix Pjn(r) is,
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PjnðrÞ ¼

0
BBBBBBBBBBBBBBBBBB@

�1
r
Kjrq

Kjr
�n
r
Kjrq

Kjr

1
Kjr

0

n
r

1
r

0
1

Gjrq

1

r2
xj � rju

2 n

r2
xj

1
r

 
Kjrq

Kjr
� 1

!
�n
r

n

r2
xj

n

r2
xj � rju

2 n
r
Kjrq

Kjr
�2
r

1
CCCCCCCCCCCCCCCCCCA

(15)

and xj ¼ (KjrKjq� (Kjrq)2)/Kjr. Based on the operation given above, the original second order partial differential equation is

transformed into a more readily handled ordinary differential equation. The jth PM layer is homogeneous but Eq. (14) cannot
be solved explicitly since Pjn(r) varies according to position r. Thus, we discretize the cloak into sufficiently thin layers such
that Pjn(r) can be regarded as a constant matrix evaluated at the midpoint. As a consequence, Eq. (14) admits an exponential
solution, and the state space vectors at the front and back surface of the jth PM layer are related as follows,

Djn
�
rj
� ¼ exp

��
rj � rj�1

�
Pjn

�
rj�1 þ rj

2

��
Djn
�
rj�1

�
(16)
Due to the continuity of the state space vector at the interface between adjacent PM layers, i.e., Djn(rje1)¼D(je1)n(rje1), the
state space vector at the outer surface of cloak, DNn(rN), depend on that of the innermost surface, D1n(r0), according to the
following transmittance relationship,

DNnðrNÞ¼TnD1nðr0Þ; Tn ¼
Yj¼N

j¼1

exp
��

rj � rj�1
�
Pjn

�
rj�1 þ rj

2

��
(17)
To solve the scattering coefficient bn and the state space vectors D1n and DNn, Eq. (17) must be complemented with a set of
continuity conditions at the fluidePM interface,

uNnrðrNÞ ¼
1

r0u
2

�
anJ0nðk0rNÞ þ bnH

0ð1Þ
n ðk0rNÞ

	
(18)

s ðr Þ¼ �
�
a J ðk r Þ þ b Hð1Þðk r Þ

	
; s ðr Þ ¼ 0 (19)
Nnr N n n 0 N n n 0 N Nnrq N

and the constraint on the cloak's inner surface. Three common constraints can be applied, as follows.
u1nrðr0Þ¼0; u1nqðr0Þ ¼ 0 for totally fixed case (20)

u1nrðr0Þ¼0; s1nrqðr0Þ ¼ 0 for radially fixed case (21)
s1nrðr0Þ¼0; s1nrqðr0Þ ¼ 0 for free case (22)
After some algebra, the scattering coefficient can be expressed in compact form as,

bn ¼ � an
J0nðk0rNÞ � r0u

2Jnðk0rNÞc
H0ð1Þ
n ðk0rNÞ � r0u

2Hð1Þ
n ðk0rNÞc

(23)

where the factor c is,
c ¼ Tn13Tn44 � Tn14Tn43
Tn34Tn43 � Tn33Tn44

for totally fixed case (24)

Tn12Tn43 � Tn13Tn42
c ¼
Tn33Tn42 � Tn32Tn43

for radially fixed case and (25)

Tn11Tn42 � Tn12Tn41
c ¼
Tn32Tn41 � Tn31Tn42

for free case (26)
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In the equations above, Tnij (i, j¼ 1e4) represent the elements of the transmittance matrix Tn. Using the asymptotic
expansion of the Hankel function, the scattered pressure in the far field can be approximated as,

psc zAðqÞr�1=2 expðik0rÞ; AðqÞ ¼
X∞
n¼0

bn

ffiffiffiffiffiffiffiffi
2

pk0

s
exp

�
� i
�np
2

þp

4

		
cos nq (27)

where A(q) is the form function of the scattered pressure, and the parameter q is the azimuth angle, and A(0) and A(p) are the

forward and backward scattering coefficients, respectively. In order to quantitatively assess the cloaking performance, we use
the total scattering cross section (TSCS), which accounts for the scattering in all directions [19,40]. The TSCS is defined as the
ratio between the scattered energy and incident energy on the cloak inner cross-section, which can be expressed in terms of
the scattering coefficients,

stot ¼ Esc
Ein

¼ 1
k0r0

X∞
n¼0

ð1þ d0nÞ
���bnj2 (28)
It should be noticed that the scattering coefficient of each order contributes to the TSCS and the cloak is perfectly invisible
only if the entire scattering coefficient vanishes.

4. Results and discussions

4.1. Shear resonance and its effects in the TSCS spectrum

We consider a pentamode cloak with the parameters derived from the transformation method given above. The cloak's
inner and outer radii are treated as a and b¼ 2a, and the small parameter is set as d¼ a/5. The density r, and moduli Kr and Kq

in the cloak are obtained from Eq. (4) using the uniform density mapping, and Krq and Grq are deduced from the PM char-
acteristic parameters, i.e., Krq¼ n(KrKq)1/2 and Grq¼ m(KrKq)1/2. The imperfectness of PM is assumed to be n¼ 0.99 and m¼ 0.01.
Other choices for d and the mapping functionwill not affect the main conclusion. The inner surface of the cloak is assumed to
be totally fixed, and the effects of different constraints are addressed next. In total, 21 orders of Bessel functions are included
in the theoretical calculation.

The theoretically calculated TSCS and first four orders of the scattering amplitudes jbnj are shown in Fig. 3(a) (b). Compared
with a bare rigid scatter, the TSCS for the cloaked case decreases significantly at most frequencies. However, sharp peaks are
also observed in the TSCS, and they are attributed to shear resonance due to the nontrivial shear modulus [19]. It should be
noted that these shear resonances are quite different from the whispering-gallery resonances in cylinder objects, which are
coupled longitudinal and shear modes, and they occur at rather high frequencies [41,42].These resonances occur when the
circumference is almost an integer multiple of the wavelength. Fig. 3(f) depicts the resonance displacements in a steel cyl-
inder immersed in water, which shows that the displacements are nearly periodic along the q-direction and concentrated at
the outer boundary. By contrast, the shear resonances in the PM cloak exhibited shear waves along the radial direction
Fig. 3. (a) TSCS for a rigid scatter and PM cloak with a totally fixed inner surface; (b) Scattering coefficient amplitude corresponding to the first four orders; (c)
Resonance in the PM cloak formed by shear waves along the radial direction; (d) Resonant displacements in the PM cloak. (e) Resonance in ordinary solids formed
by whispering-gallery wave along the circumferential direction; (f) Resonant displacements in a steel shell.
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(Fig. 3(c)), and the displacement dominated over the whole cloak (Fig. 3(d)). The resonances occurred when the shear waves
travelling back and forth along the radial direction change phase by an integer multiple of 2p. In addition, different inner
constraints change the resonance frequencies. Due to the resonance mechanism above, adjacent resonance frequencies of the
same order differ by D(ka/p)¼ cT/c0, where cT is the shear wave speed in the PM. The resonance spacing is approximately
D(ka/p)z 0.0867, which agrees fairly well with the numerical results. Another difference in the shear resonances compared
with the conventional whispering-gallery resonance is that it can occur at an extremely low frequency. For instance, at the
first resonance frequency (Fig. 3(a)), thewavelength in the background fluid is much larger than the cloak dimension lz 81a.
The low frequency resonance is determined by the small shear modulus.

It is also interesting that although the resonance peaks of the scattering coefficients are very sharp, they are always
bounded jbnj< janj � (2� d0n). From a physical perspective, wavemodes of different orders are not coupled due to the circular
shape of the cloak, and thus each scattering amplitude jbnj is bounded by the incident amplitude janj of the same order,
otherwise, the scattering amplitude can be much higher than the incident amplitude if the cloak has an irregular inner or
outer boundary. The bounded scattering amplitude can also be explained theoretically as follows. At the outer surface r¼ rN of
the PM cloak, we define the nth order effective surface acoustic impedance,

Znðk0Þ ¼
pnrðrNÞ
vnrðrNÞ

(29)

where vnr(rN) and pnr(rN) denote the nth order velocity and pressure, respectively, of the background fluid at r¼ rN. Due to the

continuity condition at the outer surface of the cloak, the effective surface impedance Zn(k0) can be determined from the
transmittance matrix Eq. (17). For instance, with a radially fixed boundary, Zn(k0) can be written as,

Znðk0Þ¼
i
u

1
c1

¼ � i
u

Tn32Tn43 � Tn33Tn42
Tn12Tn43 � Tn13Tn42

(30)
The transmittance matrix is always real valued and the effective impedance is imaginary valued. By substituting the
pressure and velocity of the background fluid into Eq. (29), we can obtain the scattering coefficient,

bn ¼ � an
k0Jnðk0rNÞ � xðk0ÞJ0nðk0rNÞ

k0H
ð1Þ
n ðk0rNÞ � xðk0ÞH0ð1Þ

n ðk0rNÞ
; xnðk0Þ ¼

Znðk0Þ
ir0c0

(31)

where, the impedance ratio xn(k0) is real valued. The solution given above can recover the classical result for rigid or soft

scatter. For a rigid scatter, the surface impedance is infinitely large x(k0)¼∞ since the surface velocity is zero, whereas a soft
scatter implies a zero impedance x(k0)¼ 0 because the surface pressure is enforced to be zero. Given the identity Jn(kr)
Y'n(kr)� J'n(kr) Yn(kr)¼ 2/(pr), where Yn(x) represents the Bessel function of the second kind, then the denominator in Eq. (31)
cannot be exactly zero. Thus we can conclude that the scattering coefficients are always bounded

��bn��¼ ��� an
������� k0Jnðk0rNÞ � xðk0ÞJ0nðk0rNÞ�

k0Jnðk0rNÞ � xðk0ÞJ0nðk0rNÞ
�þ i

�
k0Ynðk0rNÞ � xðk0ÞY 0

nðk0rNÞ
�
����� � ��an�� (32)
Equation (32) is not only valid for PM cloaks, and the derivation implies that for any cylindrical object, the acoustic
scattering amplitude jbnj cannot exceed the incident amplitude janj of the same order. According to Eq. (31), the nth order
resonance occurs when the imaginary part of the denominator is almost zero or very small,

k0Ynðk0rNÞ� xðk0ÞY 0
nðk0rNÞz0 (33)
Similarly, the minimal scattering amplitude bnz 0 for the nth order is obtained when the numerator in Eq. (31) is nearly
zero k0Jn(kr) �x(k0)J'n(kr)z 0. The extremely small scattering can be understood as an anti-resonance phenomenon, which
may be exploited to enhance the cloaking effect for a specific incident order.

4.2. Effects of material damping and inner constraint

Next, we investigate the impacts of material damping and the inner constraints on the cloaking performance. In order to
suppress the resonance, it is natural to introduce material damping, which can be implemented in practice by filling the PM
structures with absorbing materials or by using lossy base materials. For illustrative purposes, the PMmaterial is assumed to
be lossy. In particular, themoduli of the cloakmaterial aremultiplied by 1þ0.005i. The TSCS for the damped cloak is shown in
Fig. 4(a), which demonstrates that the narrow peaks are significantly suppressed, except for the wide peaks corresponding to
the first order resonances. Fig. 4(b) and (c) also show the results obtained for the radially fixed inner boundary and free inner
boundary. Among the three inner constraints, the radially fixed inner boundary obtains the most favorable concealing effect
(Fig. 4(b)), where all of the resonant peaks are narrow and they can be suppressed well by damping. For the free inner
boundary (Fig. 4(c)), a very wide resonance extends through the entire frequency range and significantly degrades the



Fig. 4. TSCS for a damped cloak (damping ratio 0.5%) with (a) totally fixed inner surface, (b) radially fixed inner surface, and (c) free inner surface.
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cloaking effect. This resonance is induced by the zeroth order wave and it is independent of the shear modulus. This type of
resonance has also been observed in an acoustic cloak with anisotropic density meta-fluids [43].
4.3. Practical inner constraint imposed by a liner solid shell

In practice, the most convenient inner constraint for the PM cloak is the free one. However, its cloaking effect is the worst
due to the strong zeroth order scattering. Thus, we propose to support the PM cloak with a solid shell on its inner surface
(Fig. 5(a)). The cloak and shell are assumed to be perfectly bonded and the inner surface of the shell is assumed to be free. As a
consequence, the constraint strength on the inner side of the PM cloak can be tuned continuously by varying the supporting
shell thickness, thereby providing a highly practical inner constraint and giving further insights into the boundary constraint.

The cloak parameters and material damping are considered to be the same as those used above, where the shell has a
thickness of d and it is made of steel (density rsteel¼ 7800 kg/m3, Young's modulus Esteel¼ 220 GPa and Poisson's ratio
vsteel¼ 0.28). Fig. 5(b) shows the averaged TSCS versus the shell thickness. The averaged TSCS is estimated over the frequency
range of ka/p¼ 0e0.5. For the cloak supported by a very thin shell, the averaged TSCS is close to that for a cloak with a free
inner boundary. After increasing the shell thickness, excellent cloaking performance is observed for the range of d/
a¼ 0.005e0.01 in a similar manner to a radially fixed inner surface. Further increasing the shell thickness increases the
constraint strength and the TSCS approaches that for a cloak with a totally fixed inner surface. The TSCS for a PM cloak
without/with a shell is also plotted in Fig. 5(c). For the cloak supported with an appropriate shell, all of the resonances are
suppressed well by the material damping, as one expect.

It should be noted that for the free inner boundary, we assume that the shell cavity is a voidwith no pressure radiation into
the cavity. In practical applications, it is more natural to assume that the inner cavity is filled by air. Owing to the very large
impedance mismatch (104 orders of magnitude) between air and the PM, we anticipate that the pressure radiation into the
air-filled cavity will be negligible, and thus the result will not be affected greatly in the low frequency range. To support our
assumption, we theoretically and numerically investigated the case where the shell cavity is filled with air (density
rair¼ 1.29 kg/m3, and sound velocity cair¼ 343m/s). The TSCS for a cloak where the shell cavity is filled with air overlaps with
the case of a stress-free shell (Fig. 5(c)), and the results indicate a small impact of the inner radiation. Fig. 6 shows the
simulated pressure fields for the three cases. As expected, the acoustic pressure intensity inside the cavity (Fig. 6(c)) is
negligible, and the scattering has been significantly reduced by the shell (Fig. 6(b) (c)) compared with the cloak without a
shell (Fig. 6(a)).

We verify this strategy for virtually tuning the inner constraint on the microstructures PM acoustic cloak. We improve our
previously designed microstructure cloak by attaching a supporting steel shell to its inner surface (Fig. 7(a)). The PM cloak is
constructed completely from PM unit cells (Fig. 7(b)) by optimizing the geometry parameters to match the required PM
properties. The density and bulkmodulus (Fig. 7(c)) are good approximations to the required continuousmaterial parameters.
The design procedure is described in detail in our previous study [19]. The shell thickness andmaterial damping are the same
as those employed above. Fig. 7(d) shows the simulated TSCS for the cloak with/without a shell, which demonstrates that
excellent broadband cloaking performance is achieved with the supporting shell. Similar to the case described above, the
radiation into the cavity is negligible (Fig. 7(f)) when the shell cavity is filled with air, and the cloaking effect is still preserved.

In addition to the inner constraint considered above, another important factor that affects practical applications is how to
reduce the cloak's size. The cloak considered in this study has a thickness equal to its inner radius, which is clearly unac-
ceptable for cloaking large targets. To address this issue, PMs can be designed with steeper moduli and anisotropy, or by



Fig. 5. Cloak supported by a traction-free inner shell; (a) Schematic configuration; (b) Averaged TSCS versus the shell thickness; (c) TSCS for a cloak without/with a shell.

Y.Chen
et

al./
Journal

of
Sound

and
V
ibration

458
(2019)

62
e
73

70



Fig. 6. Simulated cloaking performance corresponding to ka/p¼ 0.25. (a) Cloak without a shell; (b) Cloak with a stress-free shell; (c) Cloak with a shell cavity filled with air.
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Fig. 7. Verification of the proposed boundary scheme with a microstructure PM cloak; (a) Microstructure PM cloak with an inner shell; (b) PM unit cell; (c)
Distribution of material parameters; (d) TSCS for the cloak without/with a shell; Simulated cloaking performance corresponding to ka/p¼ 0.25 for (e) a cloak with
a stress-free shell and (f) a cloak where the shell is filled with air.

Y. Chen et al. / Journal of Sound and Vibration 458 (2019) 62e7372
optimizing the cloak parameters instead of directly using the transformation method. For instance, we have experimentally
reported an optimized cloak with a thickness that is 0.4 times of its inner radius [26], where a good cloaking effect is still
achieved for the targeted frequency band. We consider that the cloak's relative size can be reduced further by applying
innovative techniques for PM design and cloak parameter optimization.

5. Conclusions

In this paper, a theoretical model is developed to study the scattering of a cylindrical acoustic cloak composing pentamode
materials with shear rigidity, and the effects of the material parameters, damping and inner boundary constraint are sys-
tematically investigated. It is found that, shear rigidity of the pentamode materials introduces intense resonances in the low
frequency range and reduces the broadband effectiveness. These resonances are explained as shear wave resonances in the
radial direction, and they are essentially different from the conventional whispering-gallery resonances along the circum-
ference. Three constraints on the cloak inner surface are examined, i.e. radially fixed, totally fixed and free inner boundary
constraints. In general, the best broadband cloaking effect is achieved with the radially fixed inner constraint. For the totally
fixed inner constraint, the first order resonances have large resonance widths, whereas fairly obvious zeroth order scattering
is observedwith the free inner constraint. To overcome the difficulty implementing a radially constrained inner boundary, we
propose to attach a solid shell to the inner surface of the cloak. It is interesting to find that, the constraint strength on the cloak
inner surface can be tuned continuously over the range of the three constraints by varying the shell thickness. This constraint
scheme is also numerically verified with a microstructure pentamode cloak. Our findings may facilitate the implementation
of pentamode cloaks by considering the pentamode imperfection, inner constraints, and broadband cloaking effectiveness.
Acknowledgements

We are grateful to A.N. Norris for discussion on resonance. This work was supported by the National Natural Science
Foundation of China (Nos. 11372035, 11472044, 11632003, 11802017), Postdoctoral Innovation Talents Support Program (No.
BX20180040), and the 111 Project (No. B16003).



Y. Chen et al. / Journal of Sound and Vibration 458 (2019) 62e73 73
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jsv.2019.06.005.

References

[1] J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780e1782.
[2] U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777e1780.
[3] H.Y. Chen, C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91 (2007) 183518.
[4] S.A. Cummer, D. Schurig, One path to acoustic cloaking, New J. Phys. 9 (2007) 45.
[5] A.N. Norris, Acoustic cloaking theory, Proc. Math. Phys. Eng. Sci. 464 (2008) 2411e2434.
[6] Y. Cheng, F. Yang, J.Y. Xu, X.J. Liu, A multilayer structured acoustic cloak with homogeneous isotropic materials, Appl. Phys. Lett. 92 (2008) 151913.
[7] J. Christensen, F.J.G. de Abajo, Anisotropic metamaterials for full control of acoustic waves, Phys. Rev. Lett. 108 (2012) 124301.
[8] A.P. Liu, R. Zhu, X.N. Liu, G.K. Hu, G.L. Huang, Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials, Wave

Motion 49 (2012) 411e426.
[9] G.W. Milton, J.R. Willis, On modifications of Newton's second law and linear continuum elastodynamics, Proc. Math. Phys. Eng. Sci. 463 (2007)

855e880.
[10] D. Torrent, J. Sanchez-Dehesa, Anisotropic mass density by radially periodic fluid structures, Phys. Rev. Lett. 105 (2010) 174301.
[11] B.I. Popa, W. Wang, A. Konneker, S.A. Cummer, C.A. Rohde, Anisotropic acoustic metafluid for underwater operation, J. Acoust. Soc. Am. 139 (2016)

3325e3331.
[12] B. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air, Phys. Rev. Lett. 106 (2011) 253901.
[13] L. Zigoneanu, B. Popa, S.A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater. 13 (2014) 352e355.
[14] G.W. Milton, A.V. Cherkaev, Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117 (1995) 483e493.
[15] N.H. Gokhale, J.L. Cipolla, A.N. Norris, Special transformations for pentamode acoustic cloaking, J. Acoust. Soc. Am. 132 (2012) 2932e2941.
[16] Y. Chen, X. Liu, G. Hu, Design of arbitrary shaped pentamode acoustic cloak based on quasi-symmetric mapping gradient algorithm, J. Acoust. Soc. Am.

140 (2016) L405eL409.
[17] A. Zhao, Z. Zhao, X. Zhang, X. Cai, L. Wang, T. Wu, H. Chen, Design and experimental verification of a water-like pentamode material, Appl. Phys. Lett.

110 (2017) 11907.
[18] X. Cai, L. Wang, Z. Zhao, A. Zhao, X. Zhang, T. Wu, H. Chen, The mechanical and acoustic properties of two-dimensional pentamode metamaterials with

different structural parameters, Appl. Phys. Lett. 109 (2016) 131904.
[19] Y. Chen, X.N. Liu, G.K. Hu, Latticed pentamode acoustic cloak, Sci Rep-Uk 5 (2015) 15745.
[20] Y. Tian, Q. Wei, Y. Cheng, Z. Xu, X.J. Liu, Broadband manipulation of acoustic wavefronts by pentamode metasurface, Appl. Phys. Lett. 107 (2015)

221906.
[21] C.N. Layman, C.J. Naify, T.P. Martin, D.C. Calvo, G.J. Orris, Highly anisotropic elements for acoustic pentamode applications, Phys. Rev. Lett. 111 (2013)

24302.
[22] J. Cipolla, N. Gokhale, A. Norris, A. Nagy, Design of inhomogeneous pentamode metamaterials for minimization of scattering, J. Acoust. Soc. Am. 130

(2011) 2332.
[23] C.L. Scandrett, J.E. Boisvert, T.R. Howarth, Broadband optimization of a pentamode-layered spherical acoustic waveguide, Wave Motion 48 (2011)

505e514.
[24] C.L. Scandrett, J.E. Boisvert, T.R. Howarth, Acoustic cloaking using layered pentamode materials, J. Acoust. Soc. Am. 127 (2010) 2856e2864.
[25] A.C. Hladky-Hennion, J.O. Vasseur, G. Haw, C. Croenne, L. Haumesser, A.N. Norris, Negative refraction of acoustic waves using a foam-like metallic

structure, Appl. Phys. Lett. 102 (2013) 144103.
[26] Y. Chen, M. Zheng, X. Liu, Y. Bi, Z. Sun, P. Xiang, J. Yang, G. Hu, Broadband solid cloak for underwater acoustics, Phys. Rev. B 95 (2017).
[27] Z. Sun, H. Jia, Y. Chen, Z. Wang, J. Yang, Design of an underwater acoustic bend by pentamode metafluid, J. Acoust. Soc. Am. 3 (2018) 1029e1034.
[28] A. Martin, M. Kadic, R. Schittny, T. Bückmann, M. Wegener, Phonon band structures of three-dimensional pentamode metamaterials, Phys. Rev. B 86

(2012) 155116.
[29] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, M. Wegener, On the practicability of pentamode mechanical metamaterials, Appl. Phys. Lett. 100 (2012)

191901.
[30] M. Kadic, T. Bückmann, R. Schittny, M. Wegener, On anisotropic versions of three-dimensional pentamode metamaterials, New J. Phys. 15 (2013).
[31] M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, M. Wegener, Pentamode metamaterials with independently tailored bulk modulus and mass density,

Phys Rev Appl 2 (2014) 54007.
[32] Y. Huang, X.G. Lu, G.Y. Liang, Z. Xu, Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes,

Phys. Lett. 380 (2016) 1334e1338.
[33] A. Amendola, G. Benzoni, F. Fraternali, Non-linear elastic response of layered structures, alternating pentamode lattices and confinement plates,

Composites Part B 115 (2017) 117e123.
[34] F. Fraternali, A. Amendola, Mechanical modeling of innovative metamaterials alternating pentamode lattices and confinement plates, J. Mech. Phys.

Solids 99 (2017) 259e271.
[35] M. Zheng, Y. Chen, X. Liu, G. Hu, Two-dimensional water acoustic waveguide based on pressure compensation method, Rev. Sci. Instrum. 89 (2018)

24902.
[36] R. Schittny, T. Bückmann, M. Kadic, M. Wegener, Elastic measurements on macroscopic three-dimensional pentamode metamaterials, Appl. Phys. Lett.

103 (2013) 231905.
[37] J.D. Smith, P.E. Verrier, The effect of shear on acoustic cloaking, P Roy Soc a-Math Phy 467 (2011) 2291e2309.
[38] W.Q. Chen, Z.G. Bian, H.J. Ding, Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells, Int. J. Mech. Sci. 46 (2004)

159e171.
[39] S.M. Hasheminejad, M. Rajabi, Acoustic resonance scattering from a submerged functionally graded cylindrical shell, J. Sound Vib. 302 (2007)

208e228.
[40] A.S. Titovich, A.N. Norris, Tunable cylindrical shell as an element in acoustic metamaterial, J. Acoust. Soc. Am. 136 (2014) 1601e1609.
[41] A.N. Norris, Resonant acoustic scattering from solid targets, J. Acoust. Soc. Am. 88 (1990) 505e514.
[42] L. Flax, L.R. Dragonette, H. Überall, Theory of elastic resonance excitation by sound scattering, J. Acoust. Soc. Am. 63 (1978) 723e731.
[43] Y. Cheng, X.J. Liu, Resonance effects in broadband acoustic cloak with multilayered homogeneous isotropic materials, Appl. Phys. Lett. 93 (2008) 71903.

https://doi.org/10.1016/j.jsv.2019.06.005
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref1
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref1
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref2
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref2
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref3
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref4
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref5
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref5
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref6
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref7
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref8
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref8
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref8
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref9
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref9
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref9
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref10
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref11
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref11
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref11
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref12
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref13
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref13
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref14
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref14
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref15
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref15
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref16
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref16
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref16
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref17
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref17
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref18
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref18
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref19
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref20
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref20
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref21
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref21
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref22
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref22
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref23
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref23
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref23
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref24
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref24
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref25
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref25
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref26
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref27
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref27
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref28
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref28
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref29
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref29
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref30
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref31
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref31
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref32
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref32
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref32
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref33
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref33
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref33
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref34
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref34
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref34
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref35
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref35
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref36
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref36
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref37
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref37
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref38
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref38
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref38
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref39
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref39
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref39
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref40
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref40
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref41
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref41
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref42
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref42
http://refhub.elsevier.com/S0022-460X(19)30336-0/sref43

	Influences of imperfectness and inner constraints on an acoustic cloak with unideal pentamode materials
	1. Introduction
	2. Characterization of pentamode materials and model of cylindrical cloaks
	3. Scattering of an acoustic cloak with imperfect pentamode materials
	4. Results and discussions
	4.1. Shear resonance and its effects in the TSCS spectrum
	4.2. Effects of material damping and inner constraint
	4.3. Practical inner constraint imposed by a liner solid shell

	5. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


