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Abstract

CrossMark

One dimensional active metamaterials with broadband controllable bending stiffness are studied
in this paper. The key unit of the active metamaterials is composed of a host beam and
piezoelectric patches bonded on the beam surfaces. These patches serve as sensors or actuators.
An appropriate feedback control law is proposed in order to change the bending stiffness of the
active unit. The input of the control law is the voltage on the sensors, the output is the voltage
applied on the actuators. Due to the control, bending stiffness of the active unit is (1 + «) times
of that of the bare host beam, a being a design parameter in the control law. The bending
stiffness can be tuned to desired value by changing «. The performances of the controlled
bending stiffness are analytically and numerically studied, the stability issues are also discussed.
The active units are first used in a spatial periodic waveguide to have tunable band gaps, then

they are integrated in a spatiotemporal periodic waveguide to realize non-reciprocal wave
propagation. Performances of the two waveguides are numerically studied.

Keywords: metamaterials, piezoelectric materials, feedback control, vibration, non-reciprocal

wave propagation

(Some figures may appear in colour only in the online journal)

1. Introduction

Metamaterials are artificially engineered structures with
unconventional effective properties. They are composed of
unit cells (also called meta-atoms [1]), whose sizes are smaller
than the wavelengths at interested frequency ranges. Typi-
cally through a periodic arrangement (but not necessary [2])
of these unit cells, band gaps at low frequencies can be cre-
ated for sound and vibration mitigation [3, 4]. Since the
effective properties of metamaterials can be delicately cus-
tomized and tailored through the design of unit cells, meta-
materials have also been widely used to control acoustic and
elastic waves. A plenty of unconventional wave propagation
effects have been realized using metamaterials, such as
negative refraction [5], cloaking [6], topologically protected
wave propagation [7], etc. Although metamaterials have
helped to broaden the frontiers of acoustic and mechanical

0964-1726/19,/065025+13$33.00 1

techniques in the past decades, efforts have mostly been
dedicated to passive and static unit cells, which are difficult to
be altered after being manufactured. This limitation conflicts
with the demands of more intelligent and adaptive structures.

Mainly motivated by the aforementioned reason, there
has been a growing effort to study active metamaterials
[8-10]. The key distinguished features of these advanced
metamaterials are their controllable properties. The control is
mostly realized by using smart materials in the unit cell. For
example, including piezoelectric patches shunted with reso-
nant circuits into a unit cell can obtain tunable equivalent
dynamic stiffness [11, 12]. Negative capacitances have the
ability to change the equivalent static Young’s modulus of
piezoelectric materials in a large frequency band. Therefore,
they are more widely used to design controllable unit cell.
The negative capacitance presents an unstable zone which
must be avoided in practical applications [13, 14]. Active

© 2019 IOP Publishing Ltd  Printed in the UK


https://orcid.org/0000-0003-2215-5479
https://orcid.org/0000-0003-2215-5479
mailto:kaijun.yi@femto-st.fr
https://doi.org/10.1088/1361-665X/ab19dc
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab19dc&domain=pdf&date_stamp=2019-05-10
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab19dc&domain=pdf&date_stamp=2019-05-10

Smart Mater. Struct. 28 (2019) 065025

K Yi et al

control is an alternative way to tune the structural properties.
Parameters of some smart materials can be tuned through an
external field, for example, magnetoelastic materials show a
varying Young’s modulus when they are placed in a changing
magnetic field. Therefore, these materials have been used to
actively modulate system properties [15, 16]. Actively tuning
the effective parameters using feedback control loops has also
been proposed. A part of the efforts has been dedicated to
design digital circuits [17, 18]. The digital circuit measures
the voltage on a piezoelectric transducer and feedbacks cur-
rent into the same transducer according to a designed control
law therefore to mimic the behaviors of analog electrical
elements or any behavior of interest [19]. For example, the
digital circuit could be programmed to mimic a negative
capacitance to control the effective Young’s modulus. Direct
feedback control is another active way to tune the structural
properties, which has already been used to realize effective
negative mass [20], or add a positive active stiffness into the
system [21].

Active metamaterials have been proposed for many
applications. For example, periodic arrays of piezoelectric
patches shunted with resonant circuits or negative capaci-
tances are bonded on the surfaces of beams or plates to obtain
tunable band gaps [11, 13, 22, 23]. A self-adaptive metama-
terial beam with digital circuit controlled mechanical reso-
nators for broadband wave attenuation at sub-wavelength
scales is proposed in [24]. Active metamaterials are also
explored to manipulate wave propagation. Piezoelectric pat-
ches with shunts are used to steer waves for effects like wave
focusing [25], wave redirecting [26]. A programmable
metasurface with sensing and actuating units is proposed to
manipulate the amplitude and phase of transmitted and
reflected waves in real-time [27]. The metasurface particularly
shows potential applications in one-way blocking of waves
and cloaking. An active metamaterial consisting of symme-
trical double Helmholtz resonators is proposed in [28] to
realize cloak effect in fluid.

The progress of active metamaterials encourages studies
on time-dependent structures. These types of structures pos-
sess parameters being modulated in time or in time and space
simultaneously. It is shown that modulation of parameters of
periodic waveguides in time domain significantly alters the
transmission properties at frequencies near and within the
band gap [29]. Piezoelectric patches shunted with time-
varying resistance-inductance circuits have shown to provide
broadband vibration control effect [30]. Recently, media with
parameters modulated in both time and space in a traveling
wave form have drawn lots of attention since the wave pro-
pagation in them is non-reciprocal. Dispersion curves of
waves in these spatiotemporal periodic structures are no
longer symmetrical [31]. Band gaps for waves propagating in
opposite directions are at different frequency ranges. Within
these band gaps, several unusual wave propagation behaviors
have been observed, such as one-way wave transmission
[31-33], frequency conversion [34] and frequency split-
ting [35].

Although several strategies have been proposed to design
active metamaterials as introduced above, efficiently changing
the structural parameters still remains an open challenge. The
equivalent stiffness obtained using piezoelectric patches
shunted with resonant circuits strongly depends on frequency
and is only available in a narrow band near the resonant fre-
quency of the circuit [11, 12]. Negative capacitances are able to
tune structural properties in a wide frequency band. Never-
theless, the controlled equivalent Young’s modulus only varies
dramatically at the vicinity of the unstable zone [13, 14], which
means that to obtain significantly modulated system para-
meters, the system has to work very close to the unstable zone,
a small variation of the applied negative capacitance value may
make the system unstable or deviate the controlled parameters
from the desired values. Direct active feedback control is an
emerging technique to design controllable metamaterials. It has
been proposed to control wave propagation and vibration
properties of 1D periodic waveguides [21, 36]. However, its
ability to control structural parameters has not been satisfac-
torily explored yet.

This paper proposes new kinds of metamaterials with
broadband controllable stiffness based on direct active feed-
back control. The designed basic active unit is composed of a
host beam and piezoelectric patches bonded on the beam
surfaces. Some of the patches serve as sensors to measure the
input signal for the controller; the rest are used as actuators, a
feedback voltage generated by the controller is applied on
them. The bending stiffness of the active unit is controlled,
the geometry and control law are introduced in section 2.
Performance and stability issues of the designed active unit
are discussed in section 3. The active units are used to form a
1D spatial periodic waveguide and a 1D spatiotemporal per-
iodic waveguide, properties of the two waveguides are stu-
died in sections 4.1 and 4.2, respectively. Finally, conclusions
are drawn in section 5.

2. The designed unit and control law

Figure 1 shows the designed active unit. There are four sen-
sors and two actuators in the cell all made of piezoelectric
materials. The polarization of these patches is along the z axis.
Electrodes of the patches are on the surfaces perpendicular to
the z axis. The target is to control the bending stiffness
associated with the flexural waves traveling along the x axis in
beam-like structures. Therefore, the four sensors are con-
nected in a way shown in the figure to filter the voltages
generated by longitudinal and zero-order torsion waves. The
measured voltage by the sensors is Vi. The two actuators are
also connected together, the applied voltage on them is V,,. In
practice, the two sensors and one actuator on the upper sur-
face, also those on the lower surface, may be realized using a
single complete patch by dividing the electrode into three
segments [37].

Under bending movement, according to the Euler—
Bernoulli beam theory, the normal strain on the cross section
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Figure 1. The designed active unit.
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Hereafter, ¢” is used to represent the normal strain on the host
beam cross section and €7 is used to represent that on the
patch cross section.

The constitutive equations of the piezoelectric patches are

of
el == + dyEs,

p

D3 = d310'§ + EgE:;,
\%

Ey=——, ()
hP

in which, Y, is the in-plane Young’s modulus of the patch, ds; is
the piezoelectric constant under constant stress, and €3 repre-
sents the dielectric permittivity. o? is the normal stress on the
cross section of the patch, D3 and E5 are the electric displace-
ment and electric field, respectively. V denotes the voltage on
the electrode, for the actuator it is V,, and for the sensor it is V..
Directions 1, 2 and 3 correspond to x, y and z axis, respectively.

The normal stresses on the cross section of the actuators
are obtained according to equation (2):

V.
O'f; = Yp(ff + d31h—). (3)
14

The normal stress on the host beam cross section is
b b
o, = Y€y, 4)

in which, Y,, is the Young’s modulus of the beam.

According to the Euler—Bernoulli beam theory and using
the expressions in equations (1), (3) and (4), the bending
moment of the active unit is obtained as

M:fhb fb z0,dydz
2

_ Ybh Pw [ YobalGu + 2hy) = 1 0w
12 0x? 12 Ox?

- YpdSIba(hb + hp)va} (5)

On the right side of equation (5), the first term corre-
sponds to the contribution of the host beam, and the rest terms
are contributions from the actuators. Note that, the contribu-
tions of the sensors are ignored since the width of them is
much smaller than that of the actuators.

It is more meaningful to consider the behavior of the
whole unit rather than a single section of it since the patches
act on the whole unit. Therefore, equation (5) is integrated
from the left end (x;) of the active unit to the right end (xg):

Ybhi, {Ypbaﬁhb + 20,)% — By
A

XR _
f Mdx = B

XL

On

- Ypd31bul(hb + hp)Vu}’
(6)
ow

2 ow . . .
in which, 6, = f WO = Srlys it is the differ-
XL

ﬁ - alxR

ence of the rotation angles at the left and right ends.
According to equation (6), it can be seen that, the
bending moment can be changed by controlling the voltage
V,. Therefore, if the voltage is controlled according to the

following law

aYybhi — Y,b,[(hy + 2h,) — k]
12Y,d31b,1 (hy, + hy)

Vo= On, (N

in which, « is an input parameter to determine the bending
stiffness of the unit after control as will be seen below, the
integration of the bending moment accordingly turns into

Y 3
bbhb QA’
12

fRMh:—U+m (8)
XL
which means that the bending stiffness of the active unit after
control is

Y,bh;

Dp(a) = (1 + o) 7 ©))

From equation (9), it can be seen that the bending stiff-
ness of the controlled unit is (1 + «) times of that of the bare
host beam.

The sensors are open-circuited, the difference between
the rotation angles 6, in the control law in equation (7) is
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Table 1. Geometrical parameters of the clamped-free active unit.

Length Width Height
Host beam [ =0.05m b =0.05m h, = 0.005 m
Actuator [ =0.05m b, = 0.044 m, h, = 0.000 5 m
and sensor by, = 0.0025 m
measured according to
20(e§ — Y, di
6, — (€3 pd31) V. (10)

hy(hy + hy)dsY,

More details related to equation (10) can be found in
appendix A.
Using equations (7) and (10), the final control law is
obtained as
{aYybhi — Y,b,[(hy + 21,)° — W1} (€5 — Y,d%)

Vo= V.
6Y7 byhy(hy + hy)2d5,

(1)

In summary, applying the law in equation (11), it is
possible to change the bending stiffness of the active unit in a
manner expressed in equation (9). One can increase the
bending stiffness by using a positive « or decrease it by using
a negative o compared with that of the host beam.

3. Control effects and stability issues

In this section, the control effects and stability issues of the
active unit are discussed based on theoretical and numerical
studies on a clamped-free unit (namely, a cantilever). In the
simulations, the host beam is made of aluminum and the
piezoelectric patches are made of PIC 151. Parameters of
these materials are listed in appendix B. The geometrical
parameters of the active unit are given in table 1.

The first bending mode of the clamped-free unit is stu-
died to reveal the control performances. Assume that the
damping is low therefore can be ignored, then the resonant
frequency of the first bending mode of the clamped-free unit
is analytically obtained

3.516 Dy(o)
f;’ll = 2 >
2\ pybhy + 2p,bhy

in which, p,, and p, are the density of the host beam and that
of the piezoelectric patches, respectively. From equation (12)
it can be seen that the bending stiffness D, is positively
correlated to the resonant frequency, therefore the latter can
be used as an indicator of the former.

The first bending mode of the clamped-free unit is also
numerically studied using the finite element method (FEM).
The simulations are done in the COMSOL Multiphysics
software. 3D quadratic Lagrange elements are used in the
FEM model, as shown in figure 2. The control law in
equation (11) is applied on the actuators as electric boundary
condition. Figure 3 shows the variation of the resonant

12)

Figure 2. Mesh of the FE model.
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Figure 3. Theoretical and numerical resonant frequencies of the first
bending mode as well as the ratios V,,/V; obtained using

equation (11) for different o values. The mode shape at @ = 3
obtained using the FEM is also shown in the figure in YZ view. The
horizontal dashed line indicates the resonant frequency of the

host beam.
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Figure 4. Variation of the pole related to the first mode of the
clamped-free active unit when « decreases from 4 to —1 obtained
using the FEM. The crosses represent the poles for different o
values.

frequency of the first bending mode when « changes. Both
the theoretical and numerical results are illustrated in the
figure. Figure 3 also shows the ratios between controlled and
measured voltages (V,/V,) for different « obtained using
equation (11). From the numerical results, it can be seen that
the applied control strategy is able to reduce the bending
stiffness to be close to zero or increase it to some extent
compared with that of the host beam. The theoretical and
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Figure 5. A spatial periodic waveguides containing 20 active units.

Table 2. Geometrical parameters for cells in the spatial periodic
waveguide.

Length Width Height
Host beam l; = 0.08 m, b=0.05m hy, = 0.005 m
I, =0.02m
Actuator [, = 0.04m b, = 0.044 m, h, = 0.0005 m
and sensor by, = 0.0025 m

numerical results match well with each other when « satisfies
—0.7 < a < 2.6, the relative difference between them is less
than 10%. Obvious discrepancies between the theoretical and
numerical results are observed when o < —0.7 or a > 2.6.
This difference is mainly caused by the actuators. The
actuators are designed to bend the unit along the length
direction (x axis). However, an unwanted bending along the
width direction (y axis) is also caused since the patches are
transversely isotropic. The importance of this unwanted
bending increases as the absolute value of the ratio V,/V;
increases. Consequently, when o < —0.7 or a > 2.6, the
unwanted bending becomes non-negligible (for instance, see
the mode shape at a = 3 in figure 3), the beam theory no
longer holds very well in the unit’s behaviors.

With respect to the stability, according to equation (9), it
can be seen that a positive a will cause no stability problem
since the bending stiffness is increased. On the contrary, a
negative « decreases the bending stiffness, more larger the
absolute value of the negative a is, more the stiffness is
reduced. Therefore, after a certain critical value the static
bending stiffness becomes negative, the system is unstable.
Theoretically, the active unit becomes unstable when
a < —1. However, as revealed in figure 3, the active unit
behaves differently from the theoretical prediction when « is
close to —1, which means that the critical point of the stable
zone could differ from the theoretical one. Therefore, for
systems composed of the designed active units, if negative «
values are used in the control law, the stability issue must be
checked first.

The stability can be checked by only studying the pole
related to the first resonant mode (the term ‘resonant’ indi-
cates that all rigid body modes are excluded since they are not
controlled). According to the control theory, a linear system is
stable when no pole of it is located in the right half part of the
complex plane in the Laplace domain [38]. There are usually
thousands of poles for a system. However, for the active
systems presented here, there is no need to study all the poles,
because as the bending stiffness decreases, the first resonant
mode becomes unstable before others since it has the mini-
mum resonant frequency. Therefore, only the pole related to
the first resonant mode needs to be considered. For example,
figure 4 shows the variation of the pole related to the first
mode of the clamped-free active unit when « decreases from
4 to —1. These results are obtained using the FEM. It can be
seen that the clamped-free unit becomes unstable when
a < —0.8726, before the theoretical critical point.

4. Applications

4.1. Spatial periodic waveguide with tunable band gaps

First, the proposed active units are used to form a 1D spatial
periodic waveguide. Band gaps in periodic structures are
useful for vibration and noise control. Realizing band gaps
nowadays is not a big challenge, however wider and even
tunable band gaps in real time are still not easy to be obtained.
It will be demonstrated that periodic waveguides composed of
the proposed active units can have broad and con-
trollable gaps.

Figure 5 shows the designed spatial periodic waveguide.
It is obtained by alternating active units with passive beams.
The waveguide can be divided into 20 identical cells. A zoom
in on one of these cells is shown in figure 5. It should be
clarified that, the term ‘active unit(s)’ always only denotes the
part composed of the patches and the host beam covered by
the patches, as illustrated in figure 1, and the term ‘cell(s)’
refers to the repetitive basic part composing a periodic
waveguide. For instance, in figure 5, the cell contains an
active unit and passive beams. The applied « values for all the
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Figure 6. The dispersion curves of flexural waves (A0 mode) in the active waveguide corresponding to different o values. Color blocks
indicate the band gaps. k represents the wavenumber and [, is the length of the cell. In (a)—(d) « values smaller than or equal to 0 are used to
soften the waveguide; in (e)—(h) « values larger than 0 are used to stiffen the waveguide.
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Figure 7. Left Y axis: widths of band gaps versus a. Right Y axis: ratios of the wavelengths at the upper frequencies of the second band gaps

to the length of the patch.

active parts are the same. Geometrical parameters of the cells
are listed in table 2.

The dispersion curves of flexural waves (A0 mode)
corresponding to different « values are studied and the results
are illustrated in figure 6. In the figure, k represents the
wavenumber and /; is the length of the cell. The simulations
are done in COMSOL. Only a single cell illustrated in figure 5
is used in the simulation, Floquet periodic conditions are

applied on the left and right boundaries of the cell to obtain
the dispersion curves.

In figures 6(a)—(d),  equal to or smaller than O are used
to soften the waveguide. Note that, the system is stable in all
these studied cases. When o = 0 is used, the waveguide is
very close to a homogeneous beam, therefore the band gaps in
this case are quite narrow. As the absolute value of the
negative « increases, the lower boundaries of the first and
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Figure 8. Frequency response properties of the displacement at the studied location when different « values are used to (a) soften the structure

or (b) stiffen the structure.

second band gaps decrease, the upper boundaries remain
nearly unchanged. Consequently, the widths of the gaps are
significantly broadened. In figures 6(e)-(h), o with values
larger than 0O are used to stiffen the waveguide. In these cases,
as the « increases, the upper boundaries of the gaps move to
higher frequencies and the lower boundaries remain almost at
the original location, leading to wider gaps.

Figure 7 more clearly illustrates how the applied « value
will influence the widths of the first and second band gaps. In
the figure are also shown the ratios of the wavelengths at the
upper frequencies of the second band gaps to the length of
the patch. It can be seen that the control law works well until

the wavelength is close to 1.7 times of the patch’s length.
Below this ratio, increasing « leads to less enlargement of the
second band gap.

The vibrational properties of the finite waveguide are
studied using the FEM in frequency domain. A transverse
harmonic force is applied on the left end of the whole
waveguide, and the displacement of a corner on the right end
is studied (see figure 5). The structural loss factor for the
aluminum and patches is set as 1 x 10~*. Figure 8 shows the
frequency response curves of the displacement at the studied
location when different « values are applied. The frequency
bands where the vibration level is low correspond to the band
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Figure 9. A spatiotemporal periodic waveguide containing 100 active units. A passive beam is connected to the active waveguide on each
side, a pair of piezoelectric patches denoted by ‘L’ or ‘R’ is placed on each side of the waveguide.

0 A 2\
m m
X

Figure 10. The applied modulation wave. v,, = 2xf,, /k,, is the
velocity and ), represents the wavelength.

gaps. A solo peak inside a band gap observed in some cases
are caused by localized modes [23]. One can see that results
in figure 8 further verify the tunable band gaps of the pro-
posed active waveguide. One can use a negative « to broaden
the gaps and make them cover low frequency ranges. This
feature could be very useful for low frequency vibration and
noise control, which is still a challenge in many situations.
One can also use a positive « to make the gaps cover wider
and higher frequency ranges for the purpose of vibration and
noise reduction at interested frequencies.

4.2. Spatiotemporal periodic waveguide for non-reciprocal
wave propagation

In this section the active units are used to form a spatio-
temporal periodic waveguide to realize non-reciprocal wave
propagation. Spatiotemporal periodic waveguides possess
properties being modulated in both space and time. The non-
reciprocal wave propagation effects inside them have been
studied by many authors, as introduced in section 1. How-
ever, very few propositions can be found on realization of
such structures especially for guided elastic waves.

Table 3. Geometrical parameters for cells in the spatiotemporal
periodic waveguide.

Length Width Height
Host beam l; = 0.042 m, b=0.0lm h, = 0.005 m
I, = 0.0005 m
Actuator and [, =0.008 m b, =0.008 m, h, = 0.0005m
sensor by, = 0.0005 m

The designed waveguide has 20 cells with identical
geometrical parameters, as shown in figure 9. Each cell
contains 5 of these active units proposed in figure 1. There-
fore, in total there are 100 active units. The reason to design
such a compact cell is motivated by the thought that in
practice such cell may be realized by using only one complete
patch with divided electrode segments on each surface of the
host beam. The designed geometrical parameters of the cells
are illustrated in table 3.

The local bending stiffnesses of the waveguide are
modulated by changing the « values applied on the active
units according to

axi, 1) = ar + (v — a)H [cos2nf,, t — kmXi)],

i=1,2, ..., 100, (13)

in which, x; is the central coordinate of the ith active unit, H(-)
represents the Heaviside function, f,, and k,, are the frequency
and wavenumber of the modulation wave, respectively. The
wavenumber k,, is determined by the wavelength ),
according to k,, = 27w/ \,,. In the simulations, 10 active units
per wavelength are used to realize the modulation wave in a
piecewise form. Therefore, the wavelength ), is equal to two
times of the cell’s length, as illustrated in figure 9. The
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Figure 11. (a) The tone-burst voltage used for excitation, the central frequency is 1500 Hz. (b) Transient voltage measured on the patches ‘R’.
(c) Transfer function of the waveguide when oy = 0, ap = 2 and f;, = 0.

function in equation (13) approximates a rectangular wave as
illustrated in figure 10, the « alternates between oy and .
Consequently, the bending stiffness of the ith active unit
alternates between K, (a;) = (1 4 o) Y,bhj /12 and Ky (az) =
(1 4 ap)Y,bh; /12.

The transfer functions from left to right and from right to
left of the waveguide are studied using the FEM. One pair of
piezoelectric patches is placed on each side of the waveguide,
as shown in figure 9. To obtain the transfer function from left
to right, the patches ‘L’ are excited by a tone-burst voltage
signal v;(f), the transient voltage responses vg(f) of the pat-
ches ‘R’ are measured. The left to right transfer function is
therefore obtained using FFT (vg(t))/FFT (v (t)), FFT(-)
means Fast Fourier Transform. Similarly, the right to left
transfer function is obtained by exciting the patches ‘R’ and
measure the response of patches ‘L’. In the time domain
simulations, the time step is 1 x 1073 s, which is sufficient
since as will be shown the interested frequencies are below
3000 Hz. The damping is included by using the Rayleigh
damping model, the coefficient for the mass matrix is 0.005,
and the one for the stiffness matrix is 3.18 x 1075,

As examples, a; = 0 and a, = 2 are used in the simu-
lations for demonstration. First, the modulation frequency is
set to be zero, namely f,, = 0 in equation (13). In this case,
the designed waveguide only has periodicity in space, the
band gaps of it for left- and right-going waves are the same.
To estimate the location of the first band gap, the one cycle
tone-burst voltage with the central frequency equal to
1500 Hz shown in figure 11(a) is applied on the patches ‘L’.
The voltage responses of the patches ‘R’ are measured, as
shown in figure 11(b). Note that, in the simulations the left
and right passive beams are chosen to be long enough
therefore the measured signals do not include the reflected

waves from the two free ends of the whole waveguide. Using
the measured voltage and the excitation voltage, the transfer
function curve is obtained, as shown in figure 11(c). It can be
observed that there is a band gap from around 1250 to
2000 Hz.

When the modulation frequency is no longer zero, for
example, if it is a positive value, the band gaps for left-going
waves are moved to lower frequency bands, on the contrary,
the gaps for right-going waves are moved to higher frequency
bands. The shifted frequency value for the first gap of the
flexural wave can be estimated using equation (14) when a
harmonic modulation wave is used [31]. In our cases, a rec-
tangular modulation wave is used. The major component of
the Fourier series of a rectangular wave is the fundamental
harmonic. Therefore, equation (14) could also be used in our
cases to approximately estimate the shifted frequency bands.

4\ k2:Yhy 2

According to equation (14), to totally separate the left-
going waves’ band gap and the right-going waves’ band gap,
namely to obtain complete unidirectional gaps, the modula-
tion frequency needs to be equal to or larger than the width of
the gap. The width of the band gap of the waveguide with
a; =0 and a, =2 is revealed in figure 11(c), which is
750 Hz. Therefore, to have completely separated unidirec-
tional band gaps, the modulation frequency must satisfy
j;i ;3‘75()I{Z.

In figure 12, the left panel illustrates the corresponding
left to right and right to left transfer functions when the
modulation frequency is not zero, the right panel shows the
measured voltage on patches ‘R’ and ‘L’ due to the excitation
on patches ‘L’ and ‘R’. The transmission coefficients (namely

Fanipr = (14)
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Figure 12. Left panel: left to right and right to left transfer functions of the waveguide. Right panel: measured voltage on patches ‘R’ and ‘L’
due to the excitation on patches ‘L’ and ‘R’. The modulation parameters are o; = 0, ap = 2, and (a) f,, = 400 Hz, (b) f,, = 800 Hz.

the transfer functions here) are recommended tools to study
the reciprocity [39, 40]. In figure 12(a), the modulation fre-
quency is 400 Hz. From the left panel it can be observed that
for the left-going waves, a gap from 1444 to 2221 Hz is
created; on the other hand, for the right-going waves, the gap
is from 1055 to 1832 Hz. Comparing these two gaps with the
one obtained when f,, = 0, it can be seen that the frequency
shift caused by the moving modulation is close to the esti-
mated value by using equation (14), which to some extend
backs the accuracy of the simulations. The two gaps in
figure 12(a) are not totally separated since the applied mod-
ulation frequency is smaller than the critical value. Therefore,
in other simulations, the modulation frequency is chosen as
800 Hz, larger than the critical value. In these cases, two
totally separated unidirectional gaps are obtained, as shown in
figure 12(b). Regarding the recorded voltages, from the right
panel of figure 12 it can be seen that due to the non-reci-
procity the recoded voltages on opposite sides are different.
Figure 13 shows the control signals of the 1st, 20th, 60th
and 100th active units for f,, = 400 Hz and f,, = 800 Hz. The
excitation is applied on the patches ‘L’. The 1st active unit is
the left-most one and the 100th is the right-most one in the
waveguide. The control is local for each active unit, therefore
the control acts only when the waves reach the corresponding
active unit. The excitation voltage has a maximum amplitude
equal to 0.65V, as shown in figure 11(a). Under this exci-
tation, the control signal of the 1st active unit has the max-
imum amplitude among all the active units, around 0.06 V for
both simulations. These results demonstrate that the required
control voltages are totally within the reasonable range.

10

The duration of the incident wave is short in the simula-
tions. Therefore, the phase difference between the incident wave
and the modulation wave has some influences on the transmis-
sion properties of the waveguide. To study these influences, a
initial phase ¢ is introduced into the modulation wave, as
shown in equation (15), while the initial phase of the incident
wave keeps zero.

a(xi, t) = oy + (ap — a)H[cos2rf,, t — knxi + ©g)],
i=1,2, ..., 100.
(15)

8 different ¢ values evenly chosen between 0 and 27 have been
studied, the corresponding transfer functions are illustrated in
figure 14. The excitation is applied on the left in each simulation.
It can be observed that the phase changes the depth of the gap.
Increasing the cycle number of the incident wave can reduce the
influences of phase, since it has been demonstrated that the
phase has no influence on the transmission properties in fre-
quency domain [33].

5. Conclusions

An active unit with controllable bending stiffness is proposed.
The active unit is composed of a host beam and piezoelectric
patches bonded on the beam surfaces. Some patches are used as
sensors to measure the difference between the rotation angles at
the two ends of the active unit. The other patches are used as
actuators. A feedback control loop is used between the sensors
and actuators. An appropriate control law is applied to control
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on the transfer function. The excitation is applied on the left in each
simulation.

the bending stiffness. Due to the control, the bending stiffness is
(1 4+ ) times of that of the bare host beam. By choosing dif-
ferent o values, it is possible to obtain different stiffnesses for
the active unit. A positive « stiffens the unit and a negative one
softens it. Systems containing the designed active units are stable
if « is larger than a certain critical value, which is negative and
depends on the studied system. A simple method to check the
stability is studying the pole related to the first resonant mode of
the system. The pole must not be located in the right half part of
the complex domain to guarantee a stable system.

The active units are included in a 1D spatial period
waveguide to obtain tunable band gaps. Numerical results
show that, by softening or stiffening the waveguide, the band
gaps are broadened. Particularly, when the waveguide is
softened, the first gap extends to low frequency ranges, which
is very desired since controlling low frequency vibration and
noise is not an easy task in many situations.

The active units are also used to realize a 1D spatio-
temporal periodic waveguide for non-reciprocal wave propa-
gation. The moving modulation of the local bending stiffnesses
is realized by alternating the applied « for each active unit
between two designed values according to a rectangular wave
function. The non-reciprocal transmission through the wave-
guide is numerically verified. By choosing an appropriate
modulation frequency, complete unidirectional band gaps are
demonstrated. It is also demonstrated that the required control
voltages are totally within a reasonable range.
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Appendix A. Relationship between the voltage on
the sensors and the difference of the rotation angles

Constitutive equations of the sensors under open-circuited
condition are
P
o
= — + d3 k3,
Y,
0= d310'§ + €gE3.

14

€x

(A1)

According to equation (A.1), the strain can be expressed as

€5 — Y,d3
eh=-2 g, (A2)
dsY,
. . *w .
Using the expression ¢? = —z? and equation (A.2),
X
one can obtain
0? €3 — Y,di
ror =2 P3lg, (A3)
Ox d31Y],

Integrating the above equation along the thickness of the
sensors leading to

2 2(e§ — Y,dj
Bv; _ 25— Ydyy) V. (Ad)
Ox hy(hy + hy)ds1Y,
in which, V; = — f Esdz. Note that there are sensors on lower

and upper surfaces, the integration must be performed from
(—=hy/2—h,,) to —hy,/2 and from hy,/2 to (hy/2 + hy).

Further integrating equation (A.4) from x; to xz, one can
have the final relationship between the sensed voltage and the
difference of the rotation angles

21(e5 — Ypd3y)
hy(hy + hp)ds 1Y,

® 9w
QA = j;L ﬁdx =

Appendix B. Materials parameters

V.. (A.5)

The Young’s modulus and density of aluminum are 70 GPa
and 2700 kg m >, respectively. The parameters of the PIC
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Table B1. Material parameters of PIC 151.

Symbol Value

Property

E _ QE E
Sll - S22’ S33
E QE _ QE
Sl2’ S13 - S23
E _ ¢E (E
S44 - S557 Sﬁb

1.683 x 107", 1.9 x 107'" (Pa™h)
—5.656 x 10712, —7.107 x 1072 (Pa™})
5.096 x 107, 4.497 x 107" (Pa™)

Compliance matrix under constant electric field

dy) = ds —2.14 x 107" (CN Piezoelectric matrix

ds 423 x 107" (CNH

doy = ds 6.1 x 107" (CN™h

P 7760 (kg m™>) Density dielectric permittivity under constant stress
el = €3, €5 1936¢0, 2109¢,

151 are listed in table B1. The in-plane Young’s modulus of
piezoelectric patches made by PIC 151 is ¥, = 1 / Sk
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