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ABSTRACT The acoustic scattering is theoretically studied in this paper for three-dimensional
spherical cloak composed of unideal pentamode material, for which small shear rigidity is always
inevitable for a real designed microstructure. A theoretical formulation is developed to efficiently
evaluate the cloaking performance. The generic scattering feature of the cloak and the effects of
material imperfectness and inner cloak boundary constraints are systematically examined. The
preferable constraint type and the critical imperfectness parameter of the material are identified
for possible broadband invisibility. In addition, a very practical lining shell scheme is proposed
to tune the constraint strength on the inner boundary. By combining the theoretical model with
optimization algorithm, it is further proved that the cloak can be reduced by several piecewise-
uniform layers and optimized to achieve excellent invisibility in targeted frequency bands. The
study will provide valuable guidance for the future microstructural design of cloaks.

KEY WORDS Pentamode material, Spherical acoustic cloak, Scattering calculation, Boundary
effect, Optimization

1. Introduction
Since the advent of transformation method for electromagnetic (EM) wave and the metamaterial

technique [1–3], the envisioning cloaks and other devices aiming to freely manipulate the physical field
have been a continuously fascinating subject for the past years [4, 5]. For acoustic waves, the cloak was
firstly proposed by recognizing the analogy between the Helmholtz equation and the EM one [6, 7];
the cloak material needs to be kind of acoustic fluids with anisotropic density. A variety of meta-fluids
realizing anisotropic density have been suggested [8–10]. However, current meta-fluid schemes suffer
from either narrow frequency band, or quite limited achievable density anisotropy. The two principal
densities usually differ by five times for air sound [10], and only differ by two times for water sound
[11]. Therefore, only the carpet cloak [12] has been experimentally demonstrated so far because much
larger anisotropy is required for omnidirectional cloaks.

Besides the mentioned meta-fluids, there is, however, an alternative route for the acoustic cloak
making use of the solid-based pentamode material (PM). PM was originally defined by Milton and
Chaecheve in answering the question of whether an arbitrarily given positive definite symmetric elastic
tensor corresponds to a material realization [13]. PM is the degenerated solid material which has only
one nonzero eigenvalue among the six eigenvalues of its elastic tensor. Accordingly, like the acoustic
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fluid, PM can only sustain a single stress state, which is not necessarily the hydrostatic stress. Thus,
the material can also be regarded as a generalized fluid with anisotropy. In this sense, PM might be
responsible for the controlling of acoustic wave. Norris proposed that the transformed acoustic equation
has the same form as the wave equation of PM [14]. Through careful microstructural design to tune the
shear rigidity, PM can be approximated by solid materials. The greatest advantage of PM is that unlike
many other metamaterials, they are not resonance-based, and are theoretically with broadband. Other
advantages include sharper control benefitting from higher anisotropy and the solid nature of devices.
These merits stimulated intense research on PM, e.g. the PM transformation theory [15, 16], acoustic
wave controlling applications [17–22], and PM microstructure design [23–26]. A PM acoustic cloak
in cylindrical configuration with gradient microstructure was designed recently, and its manipulation
capability for underwater sound was experimentally verified [27, 28].

A specific issue pertaining to PM cloaks is that the practical solid-based PM cannot be ideal (i.e.
with zero shear resistance) in order to be stable. A real PM in fact falls into the category of orthotropic
solids. For the several fabricated examples, the ratios of shear modulus to bulk modulus are usually
about 1% for two-dimensional (2D) PM and 10/00 for three-dimensional (3D) PM, but not zero [25, 27].
The small shear rigidity of unideal PM induces extra shear modes in addition to the pseudo-pressure
mode in ideal PM [27]. It has been numerically shown for cylindrical PM cloak that unideal PM causes
shear resonance in cloak shell and peaks in scattering spectrum, thus the broadband effectivity will
be damaged to a certain extent. On the other hand, the constraint condition on the inner boundary
of the cloak can significantly influence the concealing effect since wave can penetrate the cloak due to
the imperfection. Unideal PM renders the choice of inner boundary condition subtler since the cloak
shell is actually solid. In previous studies of ideal PM cloak [15, 29, 30], the radially fixed inner surface
boundary is assumed to demonstrate the best invisibility. However, such a boundary constraint cannot
be easily applied to a real PM cloak, especially for water sound applications. As for elastic wave in the
PM cloak, ordinary solids easily couple with the PM and can hardly restrict the motion of the inner
surface. From a practical point of view, the easiest implementation is a free inner surface. As will be
shown, however, the free inner surface severely destroys the cloaking performance. Due to the much
complex wave propagation in gradient unideal PM, most analytical contributions consider the PM as
ideal ones with zero shear rigidity [17, 30], and very limited attention has been paid to the impact of
imperfectness of PM as well as the boundary effect on the acoustic cloak.

In this work, we develop an analytical state space formulation to analyse the scattering of unideal
PM cloak immersed in fluids under acoustic illumination. Based on the method, the effects of material
parameters and inner boundary conditions on the cloaking performance are systematically investigated.
We also propose a lining shell scheme to tune the constraint strength on the inner boundary, and it
turns out that there is optimized strength in an average sense. Further, upon the effectivity of the
scattering analysis, we are able to explore the optimization of cloak with a few piecewise layers in
order to achieve good concealing over a targeted frequency range. The paper is organized in five
parts including this introduction. In Sect. 2, the model of spherical acoustic cloak with unideal PM is
defined and the scattering analysis is developed. In Sect. 3, numerical examples are presented in order
to explain the generic scattering feature of the cloak and the influences of inner boundary and PM
imperfectness. Section 4 is concerned with the optimization of the parameters of layered cloak with
unideal PM. Finally, concluding remarks are given in Sect. 5.

2. Model of Spherical Acoustic Cloak with Imperfect PM
PM is characterized by an elastic tensor with a single nonzero eigenvalue; hence, the elastic tensor

can be expressed as [13, 14]

C = KS ⊗ S (1)

where S is a non-dimensional symmetric characteristic tensor of rank two, and K has the dimension
of a fluid bulk modulus. The material thus can only withstand one stress state proportional to the
characteristic tensor, σ = pS , with p being termed as pseudo-pressure [14]. In other words, for a
general strain ε, only the part projected onto S matters in the constitutive relation

p = K (S : ε) = K (S : ∇u) (2)
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Fig. 1. Transformation approach of spherical cloak: a XZ section of virtual space; b xz section of physical space; c oblique
view and coordinate frame, with k the incidental wave vector

and the remaining five zero-energy deformation modes orthogonal to S belong to zero-energy (easy)
modes, hence the name pentamode. Taking the equilibrium equation into account, the PM wave equa-
tion expressed in pseudo-pressure p can be obtained as

∂2p

∂t2
= KS : ∇ (

ρ−1S∇p
)

(3)

where ρ is the density. An additional requirement is that the tensor S of the PM has to be divergence-
free in order for the material to be at static equilibrium under uniform pseudo-pressure [14]. For the
trivial isotropic case of S = I , Eq. (3) reduces to the traditional acoustic wave equation. As for the
pentamode transformation acoustics, it has been proved that under a curvilinear coordinate mapping
x = x (X ), the wave equation in traditional fluid with bulk modulus K0 and density ρ0 is,

∂2p

∂t2
= K0∇

(
ρ−1
0 ∇p

)
(4)

which could be transformed into the same form as that of a PM, Eq. (3), provided any divergence-free
S field. The material properties of the PM are bridged to those of virtual space by the transformation
geometry as,

ρ−1 = ρ−1
0 J−1S−1FFTS−1, C = K0JS ⊗ S (5)

where F = ∂x/∂X is the deformation gradient, and J = det F . It should be noted from Eq. (5)
that the density is generalized to a tensor, which makes the functional PM realization deduced from
arbitrary transformation still an open question. However, for the irrotational transformation (i.e. F is
symmetric), we can choose S = J−1F , which is naturally divergence-free, and the resulting PM has
isotropic density:

ρ = ρI, C = KS ⊗ S, ρ = J−1ρ0, K = JK0 (6)

The spherical cloak considered in this paper falls in this case. As shown in Fig. 1, a radial symmetric
mapping in spherical coordinates, R = R(r), Θ = θ, Φ = φ, is assumed, and the deformation gradient
is then F = diag [1/R′, r/R, r/R] in the spherical coordinate system, where R′ = dR(r)/dr. By
using Eq. (6), the continuously varying elastic matrix in Voigt form and the density of a spherical
cloak with ideal PM can be explicitly given as
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ρ = ρI,C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Kr

√
KrK⊥

√
KrK⊥ 0 0 0

K⊥ K⊥ 0 0 0
K⊥ 0 0 0

0 0 0
sym 0 0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ = ρ0
R2R′

r2
,Kr = K0

R2

r2R′ ,K⊥ = K0R
′

(7)

where the symbol ⊥ stands for the θ or φ direction perpendicular to the radial one. Any choice of
continuous mapping function R(r) satisfying R(b) = b and R(a) = δ can be taken, where a and b are,
respectively, the inner and outer radii of the cloak shell (Fig. 1b), and a small radius in the virtual
space δ � a is introduced to avoid the material singularity. From the viewpoint of microstructure
realization, since a PM cloaking shell with constant density is easier to design [27], a mapping function
producing constant density is adopted here [15]:

R(r) = 3

√

b3 +
b3 − δ3

b3 − a3
(r3 − b3) (8)

There are several facts preventing a real cloak from being perfectly invisible over broadband frequency.
Such reasons can be that the cloak is not mapped out from an infinitesimal point in the virtual
space (i.e. δ �= 0), the smoothly gradient cloak material cannot be attained due to the finite size of
microstructure, etc. For a PM cloak, the man-made PM is always unideal and cannot be strictly of
the form of Eq. (7), leading to an additional imperfection. In Eq. (7), the zero shear modulus and
the dependence of off-diagonal items on the diagonal ones ensure the single nonzero eigenvalue of the
elastic matrix. However, for the real PM machined from solid materials, one can only expect the shear
resistance as small as possible, and the approximating PM is in fact the transversely isotropic solid
material with the symmetrical axis in the r-direction,

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Kr Kr⊥ Kr⊥ 0 0 0
K⊥ K⊥ − 2G⊥⊥ 0 0 0

K⊥ 0 0 0
Gr⊥ 0 0

sym Gr⊥ 0
G⊥⊥

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

To characterize the degree of imperfectness of the PM, three non-dimensional parameters are defined
as

ξ =
Kr⊥√
KrK⊥

, ζ =
Gr⊥√
KrK⊥

, η =
G⊥⊥√
KrK⊥

(10)

In order to approach an ideal PM, |ξ−1| � 1, ζ � 1 and η � 1 should be guaranteed. For the isotropic
case, requiring one of the inequalities is sufficient. For anisotropic materials, all of the imperfectness
parameters should be restricted in the microstructural design, and it turns out that the magnitudes of
each one may have different effects on the cloaking performance.

Next, we analyse the acoustic scattering of an immersed spherical cloak with imperfect PM, i.e.
essentially a shell of transversely isotropic solid of gradient density ρ(r) and modulus C (r) with the
material principal axis aligning with the spherical frame (Eq. (9)). Since it is not possible to give a
closed-form solution for such a problem, a semi-analytical state space approach traditionally used for
laminated orthotropic layers [31, 32] is adopted here.

Consider a plane wave with circular frequency ω incidents from the bottom along the +z direc-
tion, pin = exp(ik0z), where time dependence exp(−iωt) is adopted. The incident plane wave can be
decomposed into spherical harmonics

Pin =
∞∑

n=0

anjn(k0r)Pn(cos θ) (11)
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where jn and Pn are the spherical Bessel function and Legendre function of the nth order, respectively,
an = in(2n + 1), and k0 = ω/c0 is the wave number with c0 = (K0/ρ0)1/2 being wave speed of the
background fluid. Similarly, the scattered pressure in background fluid can be expressed as

Psc =
∞∑

n=0

bnh(1)
n (k0r)Pn(cos θ) (12)

where bn is the nth scattering coefficient to be determined, and h
(1)
n is the nth-order spherical Hankel

function of the first kind. To work out the scattering coefficient, the wave transmission in each PM
layer needs to be considered and joined at layer interfaces and the cloak’s inner boundary. Considering
the model symmetry, mode orthogonality of different orders and the continuity requirement at the
PM/fluid interface, the ansatz

ur =
∞∑

n=0

unr(r)Pn(cos θ), uθ =
∞∑

n=0

unθ(r)P ′
n(cos θ), uϕ = 0 (13)

for displacements and

σr =
∞∑

n=0

σnr(r)Pn(cos θ), σθ =
∞∑

n=0

σ1nθ(r)Pn(cos θ)+σ2nθ(r)(cot θ)P ′
n(cos θ)

σrθ =
∞∑

n=0

σnrθ(r)P ′
n(cos θ), σϕ =

∞∑

n=0

σ1nϕ(r)Pn(cos θ)+σ2nϕ(r)P ′′
n (cos θ)

σrϕ = σθϕ = 0

(14)

for stresses are adopted, where a prime in superscript means the derivative. Considering the decom-
position Eqs. (13) and (14) in conjunction with the constitutive equation and momentum equation
in spherical coordinates for the transversely isotropic cloak shell (detailed in “Appendix”), for each
scattering order, a group of ordinary differential equations with respect only to r can be obtained. In
particular, by defining the state vector Dn(r) = [unr, unθ, σnr, σnrθ]T for order n, we obtain

dDn(r)
dr

= P n(r)Dn(r) (15)

where

P n(r) =

⎛

⎜
⎜
⎜
⎜
⎝

−2B
r

n(n+1)B
r

1
Kr

0
− 1

r
1
r 0 1

Grθ

−4A
r2 − ρω2 2n(n+1)A

r2
2(B−1)

r
n(n+1)

r

2A
r2

−2Gθϕ−n(n+1)(BKrθ−Kθ)
r2 − ρω2 −B

r − 3
r

⎞

⎟
⎟
⎟
⎟
⎠

(16)

and A = (GθϕKr +K2
rθ −KrKθ)/Kr, B = Krθ/Kr. Equation (15) is difficult to be analytically solved

since Pn is a function of r. To proceed, the cloak shell is evenly divided into N piecewise-uniform
concentric layers labelled by 1 ∼ N from the inner most, with each layer being characterized by five
(transversely isotropic) elastic constants and densities, i.e. for the jth layer bounded by rj−1 < r < rj ,
ρj = ρ((rj−1 + rj)/2), Cj = C((rj−1 + rj)/2). The background domain outside the cloak is filled with
homogeneous fluid (ρ0, K0), and is defined as layer (N +1). If N is sufficiently large, Pn(r) in each very
thin layer j can be reasonably treated as a constant matrix, and denoted as Pjn = Pn ((rj−1 + rj)/2),
then Eq. (15) admits an exponential solution and the state vectors at the two edges of layer j are
related to

Dn(rj) = exp [(rj − rj−1)Pjn]Dn(rj−1) (17)

Because of continuity of the state vectors, the state vector Dn(rN ) and Dn(r0)at the outer most and
inner most surfaces of the cloak, respectively, are related to

Dn(rN ) = TnDn(r0), Tn =
N∏

j=1

exp [(rj − rj−1)Pjn] (18)
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Finally, the state variables of Dn(rN )have to match the background acoustic wave at the fluid–PM
interface:

unr(rN ) =
1

ρ0ω2

(
anj′

n(k0rN ) + bnh′(1)
n (k0rN )

)

σnr(rN ) = −
(
anjn(k0rN ) + bnh(1)

n (k0rN )
)

, σnrθ(rN ) = 0
(19)

At the cloak’s inner surface, various boundary conditions can be assumed and we will see that the
boundary will significantly affect the cloak behaviour. Typically, we have unr(r0) = unθ(r0) = 0 for
fixed, σnr(r0) = σnrθ(r0) = 0 for free, andunr(r0) = σnrθ(r0) = 0 for radially fixed inner boundaries,
respectively. With some algebraic manipulation, the scattering coefficient of each order can be solved
for fixed, free and radially fixed inner boundaries as

bn = −an
(Tn33Tn42 − Tn32Tn43)j′

n(k0rN ) − (Tn12Tn43 − Tn13Tn42)K0k
2
0jn(k0rN )

(Tn33Tn42 − Tn32Tn43)h
′(1)
n (k0rN ) − (Tn12Tn43 − Tn13Tn42)K0k2

0h
(1)
n (k0rN )

(20a)

bn = −an
(Tn32Tn41 − Tn31Tn42)j′

n(k0rN ) − (Tn11Tn42 − Tn12Tn41)K0k
2
0jn(k0rN )

(Tn32Tn41 − Tn31Tn42)h
′(1)
n (k0rN ) − (Tn11Tn42 − Tn12Tn41)K0k2

0h
(1)
n (k0rN )

(20b)

bn = −an
(Tn33Tn44 − Tn34Tn43)j′

n(k0rN ) − (Tn14Tn43 − Tn13Tn44)K0k
2
0jn(k0rN )

(Tn33Tn44 − Tn34Tn43)h
′(1)
n (k0rN ) − (Tn14Tn43 − Tn13Tn44)K0k2

0h
(1)
n (k0rN )

(20c)

respectively, where Tnij is the components of the transmittance matrix Tn.
In the following, we adopt the total scattering cross section (TSCS) which assesses the total scatter-

ing in all directions to quantify the cloaking performance. The TSCS is defined as the ratio between the
scattered and the incident energies onto the cloak. With the help of determined scattering coefficients,
the TSCS in this scenario can be written as

TSCS =
2

k2
0r

2
0

∞∑

n=0

2
2n + 1

|bn|2 (21)

With the asymptotic expansion of spherical Hankel function, the far-field scattered pressure of Eq. (12)
can be approximated as

psc ≈ 1
r
A(θ) exp(ik0r), A(θ) =

∞∑

n=0

bn
1
k0

exp
[
−i

(nπ

2
+

π

2

)]
Pn(cos θ) (22)

where A(θ) is the form function of the scattered pressure and parameter θ is the azimuth angle. A(0)
and A(π) stand for the forward and backward scattering coefficients, respectively.

3. Numerical Result for Cloak with Continuously Varying Parameters
3.1. Generic Scattering Spectrum

We first consider a spherical PM cloak defined from the above transformation method. The inner
and outer radii of the cloak shell are set as a and b = 2a, respectively, and the virtual space small
parameter is δ = a/5. Using the mapping function of Eq. (8), the cloak’s major material properties ρ,
Kr and K⊥ are determined from Eq. (7). To consider the imperfectness, ξ = 0.99, ζ = η = 0.01 are
introduced to bring the tiny shear resistance into the material, and this renders the cloak material to be
transversely isotropic solid defined by Eqs. (8)–(10). Other choices of δ and the mapping function will
not affect the main conclusion. The displacements on the inner surface of the cloak shell are assumed
to be fixed. The influences of other boundary constraints as well as the degree of imperfectness will be
examined in the following subsections.

Figure 2a displays the theoretically calculated TSCS spectrum in the black curve over ka/π =
0 ∼ 1.2. In the theoretical model, up to 21 orders of spherical harmonics are used for truncation
and the cloak shell is evenly discretized into 1200 layers to ensure sufficient approximation of the
continuous cloak and convergence. For verification, the TSCS spectrum is also swept for the same
cloak configuration by using the finite element software COMSOL Multiphysics, shown in the figure by
red dots. It is shown in Fig. 2a that the theoretical TSCS spectrum matches the FEM simulation very
well, which validates the effectivity and accuracy of the developed method. Since the FEM simulation
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Fig. 2. a Total scattering cross section for a rigid sphere and PM cloak with fixed inner boundary; b scattering coefficient
amplitudes of the first four orders; c far-field scattering pressure amplitude at ka = 1.1 π. (Color figure online)

is quite time-consuming and even overwhelming at higher frequencies, the sweeping resolution of the
spectrum (1000 points per ka/π) cannot be as fine as that in the analytical formulation (10000 points
per ka/π), hence some very narrow peaks are not checked out by the numerical method. However, the
exact matching on the shown part of curves and peaks sufficiently validates the developed analytical
model. In comparison with the case of a rigid sphere of radius a without cloak (the blue curve), the
PM cloak significantly lowers scattering for most frequencies; however, the TSCS spectrum contains
regularly placed sharp peaks which obviously relate to some resonances.

Besides the efficiency, the proposed method can give more insights into the mechanism of the
scattering spectrum by isolating the scattering coefficient of each order, as shown in Fig. 2b, where
|b0| ∼ |b3| are plotted. Figure 2 shows that there is one-to-one correspondence for each peak in the
TSCS spectrum and a certain order of scattering coefficient. It is remarkable that no resonance peaks
are observed for the zeroth-order scattering |b0|, which suggests that the peaks are due to the shear
wave in unideal PM since the zeroth-order mode is breathe-like and does not interplay with the shear
mode. In practice, since there always exists material or environmental damping in a real system, the
very sharp peaks are hopefully erased, thus for the fixed inner boundary, the harmful wide peaks are
mainly contributed by the first-order scattering (the red curves in Fig. 2b). Figure 2c gives the polar
plot of the far-field scattering radiation at ka = 1.1π where no peak is there. It is seen that the far-field
pressure is reduced by the cloak compared to the bare rigid sphere.

To further confirm the shear-related origin of the peak forest in the scattering spectrum, it is
reasonable to check out the curl field of the displacement in cloak material. Since uϕ = 0 and ur and
uθ are independent of ϕ, the curl is taken in axisymmetric section by (curl u)ϕ = ∂θur −∂ruθ. Figure 3
shows (curl u)ϕ and its phase arg[(curl u)ϕ] at three selected frequencies lying on peaks as highlighted
by A∼C in Fig. 2. A case without peak at frequency ka = 0.50π is also added for comparison.
Note that peaks A, B and C come, respectively, from the 1st-, 2nd- and 3rd-order scattering. It is
observed that at the TSCS peaks, the displacement curl is much pronounced, and the phase shows a
standing wave pattern matching exactly the scattering order. For odd-order resonances (peaks A and
C), the phase field is dominated by ±π and 0, while for even-order resonance (peak B), the phase
pattern is dominated by ±π/2, and these clearly implies the presence of shear standing waves. It is
remarkable that the resonant scattering peaks found here are essentially different from those caused
by whispering-gallery waves, which are also present for isotropic elastic spherical scatter immersed
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Fig. 3. Displacement curl and the corresponding phase fields in the cloak shell

in fluids [33, 34]. The whispering-gallery wave occurs at a high frequency when the circumference of
the scatter is nearly an integer multiple of the wavelength and transports along the circumferential
direction at the fluid/solid interface. On the other hand, the resonances here in the PM cloak happen
when the shear wave travelling back and forth along the radial direction experiences a phase change
by an integer multiply of 2π. This explains why the peaks in each order of scattering coefficient
are repeated and almost equally spaced. The peak spacing in each scattering order can be roughly
estimated as Δka/π = cT/c0, in which cT is the shear wave speed in cloak material. In the present
example, Δka/π ≈ √

ζρ0/ρ = 0.0936, which agrees quite well with Fig. 2b. Another difference of the
shear resonance compared with the whispering-gallery wave is that it can occur at very low frequency.

3.2. PM Imperfectness and Inner Boundary Condition

We have shown that expected broadband invisibility is punctured by the resonance scattering peaks
caused by the unideal PM. To be instructive for the PM design, it is valuable to know how perfect a
PM should be realized to obtain the demanded cloaking.

When the characteristic parameters ξ and η remain unchanged, and ζ is set to a smaller value of
0.001, as shown in Fig. 4a, the shear resonances tend to be extremely narrow and the resonance peaks
become much denser. This can be understood as a smaller ζ dictating a smaller Grθ responsible for
the shear mode in the current axisymmetric model as mentioned in the previous subsection. Since the
shear wave speed along the radial direction decreases, the peak spacing will decrease. Although there
are more peaks within a given band, they are narrow and easy to be eliminated by damping. When ζ
is enlarged to 0.1 and the cloak material is far away from the PM, as shown in Fig. 4b, the spacing and
width of peaks are enlarged and the broadband concealing deteriorates. When keeping ζ unchanged
and varying η or ξ, it is found that the resonance peaks translate along the horizontal axis as a whole,
while the peak spacing and width are almost unchanged, as shown in Fig. 4c, d with different values
of η. Thus in microstructural design of PM cloak, besides the main parameters (ρ, Kr, K⊥), the
imperfectness parameter ζ is more critical for getting expected invisibility within targeted frequency
bands. When all the three imperfectness parameters approach the ideal values simultaneously, the
resonance peaks will be squeezed and a cloak with ideal PM will be recovered.

Figure 5a, b show the TSCS curve and the corresponding scattering coefficient amplitude of order
0∼3 for free inner boundary. All other parameters are the same as those in the previous subsection. It
is found that compared with Fig. 2 for the fixed inner boundary, a very wide peak occurs within the
ka/π = 0 ∼0.5 band which cannot be suppressed by damping, which thereby destroys the broadband
invisibility. The wide peak originates from the 0th-order scattering and can be explained as the cavity
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Fig. 4. TSCS spectrum with fixed inner boundary under various imperfectness parameters

Fig. 5. TSCS spectrum for the case of free inner boundary

resonance, while the narrow ones of higher orders are related to shear resonance. Cavity resonance is
attributed to the longitudinal mode, and therefore, is independent of the shear rigidity. Such cavity
resonant scattering is also observed in the acoustic cloak with anisotropic density [35].

We have also calculated the scattering spectrum with radially fixed inner boundary. It is revealed
that the resulting peaks are further narrower than those of the totally fixed boundary, thus producing
the best choice for broadband concealing. However, from the viewpoint of implementation, radially
fixed boundary is difficult to apply, while the simplest free inner boundary is not acceptable as shown
due to the cavity resonance. To solve this problem, we propose to support the cloak’s inner boundary by
a homogeneous lining shell. The cloak and shell are perfectly bonded and the inner surface of the shell is
left free. By altering the thickness of the lining shell, we can continuously tune the constraint strength
on the cloak’s inner surface. The proposed scheme not only provides a feasible inner boundary but
also offers further insight into the boundary effect of the cloak. For demonstration, steel with density
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Fig. 6. a Averaged TSCS as a function of the thickness of the lining shell; b TSCS spectra for cloaks with and without
lining shell; pressure fields for cloaks c without and d with shell, ka/π = 0.3

ρsteel = 7800 kg/m3, Young’s modulus Esteel = 220 GPa and Poisson’s ratio υsteel = 0.28 is chosen as
the lining shell material.

Figure 6a plots the TSCS as function of the lining shell thickness d normalized by thickness aof the
cloak. The TSCS is estimated in an average sense over the frequency band ka/π = 0 ∼ 0.5. In order
to erase the very narrow resonance peaks, viscous damping of 0.5% is assumed for the PM, i.e. the
moduli are multiplied by 1+0.005i. Average scattering of the three typical inner boundary conditions
are marked in the figure as well. As expected, when the cloak is supported by thinner lining shell, the
averaged TSCS (the blue curve) is close to the case of free inner boundary. There is an intermediate
range of thickness for which the cloak achieves desirable concealing effect for the considered frequency
band. In particular, when d/a = 0.0005 ∼ 0.002, it mimics the radially fixed boundary. Further,
increasing the lining thickness will increase the constraint strength and eventually the scattering goes
to the result of totally fixed case.

To show the advantage of the lining shell, we plot the TSCS spectra for the cloaks without and with
shell (of thickness d/a = 0.001) in Fig. 6b. It is seen that for the cloak with lining, the scattering peaks
are very thin and are successfully erased with the help of material damping, thus excellent broadband
cloaking is achieved. The snapshots of acoustic pressure fields for the two cases at ka/π = 0.3 are
visualized in Fig. 6c, d.

4. Optimization of Layered Cloak Over Targeted Frequency Range
In the forgoing analysis, the cloak material parameters are assumed to be continuously varying. Note

that although in the evaluation of scattering, the cloak is discretized in layers, the layer number N is
very large to approximate continuous parameters. Actually, to ease the microstructural implementation,
it is preferable for the cloak to have several layers with piecewise constant properties, considering the
practical limitation of producing smoothly gradient PM unit cells [28]. Theoretically, reduction in a
continuous cloak to layered version would degenerate the concealing overall, and the resonance peaks
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Fig. 7. Optimized TSCS spectra of four-layer cloaks for frequency bands a ka/π = 0.2 − 0.5 and b ka/π = 0.5 − 0.8,

respectively

resulting from the unideal PM will complicate the situation. By combining the developed theoretical
model with an optimization algorithm, we explore in this section the possibility of achieving effective
invisibility within targeted frequency band for unideal PM cloak containing a limited number of layers.

The following optimization procedure is adopted. First, determine the cloak configuration including
cloak thickness and inner boundary type, the desired optimization frequency band and the number of
layers. Assign initial materials properties (ρ,Kr, K⊥) by using the transformation method (Eqs. (7)–
(9)) in which −r takes the middle location of each layer. Imperfectness parameters are also assigned as
well. The developed theoretical approach is naturally suitable for scattering evaluation of layered cloak,
it is however noted that sufficient discretization in each constant layer here is still necessary to ensure
the accuracy of the state space formulation. The optimization objective function is taken as the average
TSCS evaluated by sampling evenly spaced points in the desired frequency band. Then, the built-in
MATLAB unconstrained multivariable optimization function fminsearch is used to further improve the
parameters (ρ,Kr, K⊥) for each layer under reasonable limitations until convergent result is found.

As a demonstrating example, optimization of a four-layer spherical cloak with inner radius a, outer
radius 2a and fixed inner boundary is conducted. Imperfectness parameters ξ = 0.99, ζ = η = 0.01
are assumed. In order to avoid unrealistic optimization results, allowable range of magnitudes and
anisotropy of the PM density and moduli must be bounded. In consideration of common PM design
technique, parameter variation of each PM layer is constrained by 0.5 < ρ/ρ0 < 2, 0.05 < Kr/K0 <
1 and 1 < K⊥/K0 < 4. The cloak is evenly divided into four layers with thickness a/4. In the
optimization process, 100 frequency points per 0.1ka/π are sampled in the band to evaluate average
TSCS, termination error of the objective function optimization variables is 0.001 and the maximum
number of iterations is 1000. We assume 0.3% viscous damping in PM material to eliminate the sharp
peaks and let the optimization algorithm tackle the unwanted wide ones.

Figure 7a, b show the comparison of TSCS spectra of cloak raw and optimized layer parameters
for two different targeted frequency bands ka/π = 0.2 − 0.5 and ka/π = 0.5 − 0.8 indicated by grey
shades, respectively. It is seen that by breaking the continuous cloak in four constant layers and before
the optimization, the concealing effect maintains in low-frequency zone (ka/π < 0.4) and deteriorates
rapidly as the frequency goes up (the black curve), comparing with Fig. 2a. In Fig. 7a, after the
optimization, the scattering is almost zero consistently in ka/π = 0.2−0.5 range. In particular, several
peaks are removed from the shading area, showing excellent cloaking performance. For the targeted
band in high-frequency section, more pronounced gain from the optimization is observed from Fig. 7b
since the original TSCS is very high with giant peaks; however, it is hard to get a plainly low TSCS curve
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Table 1. Material parameters in optimization of cloak of thickness a upon targeted frequency bands ka/π = 0.2 − 0.5 and
ka/π = 0.5 − 0.8

Layer Initial ka/π = 0.2 − 0.5 ka/π = 0.5 − 0.8

ρ/ρ0 Kr/K0 K⊥/K0 ρ/ρ0 Kr/K0 K⊥/K0 ρ/ ρ0 Kr/K0 K⊥/K0

1 1.1417 0.2123 2.3189 1.0567 0.0991 1.8084 0.8077 0.1487 2.3703
2 1.1417 0.5502 1.4405 0.9930 0.4591 1.9365 0.5000 0.7735 1.2814
3 1.1417 0.7358 1.2456 1.2112 0.8541 1.7699 1.9828 0.3757 1.9165
4 1.1417 0.8407 1.1654 1.2854 0.6953 1.0584 1.1439 0.7402 1.3481

Fig. 8. Optimization results for the cloak a with a thinner thickness and b with more layers, respectively. (Color figure
online)

as in low frequency band. Generally, as the optimization improves the performance in the interested
frequency, the cloaking effect will be correspondingly worsened out of that band. Initial and optimized
layer parameters are listed in Table 1.

It can be anticipated that if the layer number is fixed, say, for a four-layer cloak, thinner thickness
of the cloak will be more preferable owing to not only the smaller overall cloak size but also the
better performance resulting from more compact layer stepping. However, meanwhile the required
material properties will be more stringent. To show this, we consider again the previous four-layer
cloak with the thickness reduced from a to a/2, and conduct an optimization under a wider frequency
range ka/π = 0.2 − 0.7. The results are shown in Fig. 8a, where the TSCS spectra before and after
optimization are shown by black and blue curves, respectively. The optimized result for case of cloak
of thickness a is also shown in the figure in red as well. It is seen that very good broadband invisibility
is achieved for the cloak of a/2 thickness, and the quite wide resonance peaks in the band are removed
by the optimization, while degraded performance is observed for the cloak of larger thickness. The
initial and optimized layer parameters are listed in Table 2, showing steeper PM properties compared
with Table 1. In this regard, it is advantageous to select thinner thickness for layered cloak whenever
possible, as long as the material properties are available from PM design. Of course, better performance
should also be obtained by increasing the layer number. Figure 8b displays the optimized result for
six-layer cloak with thickness a upon ka/π = 0.2−0.7 band. With the layer number increased, the shear
resonance peaks turn narrower and denser originally, but can be more effectively removed within the
wanted band by optimization procedure compare with the four-layer result shown in the figure as well.

5. Conclusion
In this paper, a theoretical formulation for acoustic scattering is developed using the state space

approach for spherical cloak composed of unideal PM with small shear rigidity. With the developed
method, the general scattering nature and influence of PM imperfectness and inner boundary condition
on the cloaking effect are systematically investigated. It is found that the shear rigidity of unideal
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Table 2. Material parameters in optimization of cloak of thickness a/2 upon targeted frequency band ka/π = 0.2 − 0.7

layer initial ka/π = 0.2 − 0.7

ρ/ρ0 Kr/K0 K⊥/K0 ρ/ρ0 Kr/K0 K⊥/K0

1 1.4177 0.1066 3.6464 1.1436 0.0500 3.9985
2 1.4177 0.3379 2.0482 1.1967 0.1728 2.4521
3 1.4177 0.5188 1.6531 1.5737 0.4172 2.5855
4 1.4177 0.6524 1.4741 1.9569 0.5153 1.7793

PM creates standing shear wave mode in cloak material, which results in regularly scattering peaks
spreading in full spectrum, and the cloak’s broadband effectiveness is damaged. Although the scattering
peaks are unavoidable, sharp peaks are in general more preferable because they might hopefully be
erased from the spectrum by inherent material damping. In this regard, it is found that the radially fixed
inner boundary constraint is better, while the imperfectness parameter ζ is more responsible for getting
removable peaks. To overcome the difficulty in realization of the appropriate inner boundary, we propose
a lining shell scheme to flexibly tune the constraint strength for best scattering spectrum. Finally,
with the help of efficient theoretical model and optimization algorithm, we are able to simplify the
continuous cloak to a few piecewise constant layers which will greatly ease its realization, and achieve
excellent invisibility in targeted frequency bands. The work is valuable towards further microstructural
implementations of 3D spherical PM cloaks.
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Appendix
The momentum equilibrium, geometric and constitutive equations in cloak’s spherical coordinates are
listed here,
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substituting into which the displacement and stress decomposition Eqs. (13) and (14), the r-dependent
state vector and Eq. (15) can be concluded.
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