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Dirac degeneracy and elastic topological valley modes induced by local resonant states
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In elastic systems, the current technique to produce Dirac degeneracy is based on Bragg scattering eigenstates,
which, however, suffers from operating only at relatively high frequency determined by lattice constant. Here,
an elastic metamaterial plate that presents an analog to the quantum valley Hall effect (QVHE) is proposed to
achieve Dirac degeneracy with local resonant states, enabling us to tune the operating frequency without altering
the lattice. By introducing resonator pair into a hexagonal lattice, a local resonance states-induced Dirac cone is
produced right below the local resonant band gap caused by the resonator pair. After gapping the Dirac cone with
unequal masses of the resonator pair, a new local resonant band gap supporting topological edge modes immune
to backscattering appears. This band gap is formed by mixing effective negative mass effect and Bragg scattering
effect due to large virtual mass. These ideas are demonstrated by numerical simulation, as well as validated by
the experiment on flexural wave in a textured plate. The proposed design provides a new degree of freedom to
control elastic topological mode and paves the way to explore subwavelength elastic topological interface states.
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I. INTRODUCTION

The recent advent of topological phases has attracted re-
searchers to explore novel topological states in condensed
matter physics [1]. One of the most impressive features is
that the domain wall between two materials with distinct
topological indices supports edge waves immune to defects
and sharp corners. Originally discovered in quantum physics,
these topological phases are quickly extended to other clas-
sical fields such as photonics [2–4], acoustics [5–8], and
mechanics [9,10].

In a solid-state elastic system, three commonly used ways
have been achieved to realize topological protections. The
early designs were based on the mimic of quantum Hall effect
(QHE), which requires external field interacting with the wave
medium to break time-reversal symmetry (TRS). The most
commonly used method to break TRS was by exploiting
spinning rotors [11,12]. The second and third ways only used
passive components, which were developed by analogy with
quantum spin Hall effect (QSHE) [13–18] and quantum valley
Hall effect (QVHE) [19–23], respectively. Recently, a single
platform supporting multiple classes of topological modes
was also reported [24]. Generally, Dirac degeneracy plays a
key role in these designs to achieve topological protections. It
is shown that the material with C3v lattice symmetry has deter-
ministic Dirac-like degeneracies at the high-symmetry points
in the Brillouin zone [15]. However, these Dirac degenera-
cies are constructed by the Bragg scattering eigenstates, and
their frequencies are determined by the lattice constant. This
means lowering the operating frequency generally demands
large lattice size due to the Bragg condition. To circumvent
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this limitation, degenerated eigenstates independent of lattice
constant are required.

By introducing resonators, the subwavelength topologi-
cal edge states could be achieved for photonics [25] and
airborne acoustics [26–29]. For a solid-state elastic system,
Chaunsali et al. [30] reported subwavelength Dirac cone
and corresponding edge states in a thin plate attached with
resonators. The similar structure was also studied by Torrent
et al. [31] and Pal et al. [32]. In these works, the stiffness
of the resonator is comparable to that of the substrate, which
results in Dirac eigenstates still dominated by Bragg scat-
tering states. Chaunsali et al. [33] also proposed a design
of bolted plate to realize topological flexural wave guiding,
where the local resonance of the bolts was exploited to elim-
inate unwanted in-plane plate modes rather than to construct
Dirac degeneracies. Wang et al. [34] presented a symmetric
double-sided pillared phononic crystal which can emulate
both QVHE and QSHE. In this study, the locally resonant
mode of the pillar was exploited to enhance the edge state
since it became evanescent in the deep subwavelength scale.
Although resonators have been used in these designs, when
the Dirac cone is lifted, the formed topological band gap still
belongs to Bragg band gap instead of local resonant band gap.
Whether topological edge states can emerge in local resonant
band gap with effective negative mass density is still an open
question.

In the present study, we propose an elastic metamaterial
plate that presents an analog to the QVHE, enabling to achieve
degenerated eigenstates independent of the lattice constant
for elastic waves. A deterministic Dirac cone is demonstrated
to form near the nature frequency of local resonators. After
gapping the Dirac cone, both the numerical simulations and
experiments demonstrate that elastic topological edge modes
exist in the newly formed local resonant band gap with
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FIG. 1. The principle scheme of local resonance states induced Dirac degeneracy. (a) The traditional elastic valley Hall insulator. (b) A
resonator pair is introduced into the classic valley Hall insulator. (c) The obtained local resonant valley Hall insulator.

singular effective mass density, which hasn’t been reported by
previous researches.

II. RESULTS

A. Demonstration of the existence of local resonant Dirac cone
based on hexagonal spring-mass lattice

Considering a typical hexagonal lattice [Fig. 1(a)], a K-
point Dirac cone at relatively high frequency determined by
the lattice constant is observed since the Brillouin zone (BZ)
corner points possess C3v symmetry. To construct a new Dirac
cone at lower frequency, a resonator pair is introduced into
the system without changing the lattice constant [Fig. 1(b)].
Consequently, a new Dirac cone appears right below the local
resonant band gap (BG); see Fig. 1(c). The local resonant
Dirac mode is radically different from the traditional Bragg
Dirac mode [Fig. 1(b)] and depends mainly on the introduced
local resonator. Therefore, we can tune the position of the
Dirac cone by adjusting local resonator without modifying the
lattice constant.

We first demonstrate the existence of a deterministic Dirac
cone and corresponding valley Hall edge state nearby the
natural frequency of the resonators. The studied discrete
hexagonal lattice is illustrated in Fig. 2(a). The representative
unit is highlighted by a grey diamond, and the lattice constant
L is assumed to be 1. Each unit cell has two sites respectively
denoted as p and q with equal mass M. Besides, there is a
local resonator inside of each site block, and the resonators in
p and q are represented by r and s respectively. The masses of
the resonator r and s are denoted by mr and ms, respectively.
Here we only consider the out-of-plane polarized wave mode,
thus the masses move only in the out-of-plane direction. All
the nearest neighboring sites are linked by a linear spring with
stiffness Kt while the stiffness for all the resonators is k. The
first BZ of the mass-spring lattice is depicted in Fig. 2(b).

Here we define α = k/Kt , β1 = mr/M, β2 = ms/M, and
ωs = √

Kt/M. The band structure for α = 0.6 and β1 =

β2 = 1.0 is shown as the dotted lines in Fig. 2(c) in terms
of the dimensionless parameter � = ω/ωs. It can be seen
that there are two Dirac cones at K point. The one located
at higher frequency is consistent with the Dirac cone in a
traditional hexagonal phononic lattice without resonators (the
red solid lines). The other Dirac cone located right below the
local resonant band gap, is the interesting one in the following
study. The Eigen frequencies at the BZ corners (K and K ′

FIG. 2. Theoretical analysis based on discrete hexagonal lattice.
(a) Discrete hexagonal mass-spring lattice with local resonators. (b)
The first Brillouin zone (BZ). (c) The dispersion diagram for the
case where the two resonators are the same (dotted lines) and that
for the traditional hexagonal phononic lattice without resonators
(red solid lines). (d) The dispersion diagram for the case where
the masses of the two resonators are slightly different from each
other. (e) The Berry curvatures for the first and second branches
shown in (d).
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points) are derived analytically:

ω2
1 = (α + (3 + α)β1) −

√
−12αβ1 + (α + (3 + α)β1)2

2β1
ω2

s ,

ω2
2 =

(
α + (3 + α)β2) −

√
−12αβ2 + (α + (3 + α)β2)2

2β2
ω2

s ,

ω2
3 = (α + (3 + α)β1) +

√
−12αβ1 + (α + (3 + α)β1)2

2β1
ω2

s ,

ω2
4 = (α + (3 + α)β2) +

√
−12αβ2 + (α + (3 + α)β2)2

2β2
ω2

s .

(1)

When β1 = β2 = β (β = (mr + ms)/2/M ), two pairs of de-
generated frequencies, i.e., ω1 = ω2 and ω3 = ω4 can be
observed, which are directly associated with the two Dirac
cones in Fig. 2(c). It is easy to prove that ω1 = ω2 = ω0 <√

k/m0 (where m0 = (mr + ms)/2), indicating that the first
Dirac cone must be located below the nature frequency of
the local resonator. Therefore, we can control the position of
this Dirac cone as needed by only tuning the local resonator.
When the masses (mr and ms) of the resonator pair are
slightly different from each other, namely, 0 < |β1 − β2| �
β, the degeneracy is lifted to form a band gap [Fig. 2(d)].
Next, the k · p perturbation method [8] will be employed to
illustrate the existence of valley Hall edge state in the newly
formed band gap.

The eigenstate around the valleys can be approximated by a
linear combination of the degenerated eigenstates. According
to the method introduced in Ref. [17], the effective model for
our proposed lattice is expressed as

�Hψ = �ωψ,

�H = mσz + ν(τ�kyσx − �kxσy),

m = β1 − β2

B
ω0, ν =

√
3S2

Bα2
ω0, (2)

where B = 4β + 4[1 − (ω2
0β )/(ω2

s α)]2 and S = βω0/ωs −
αωs/ω0; τ = −1(+1) denotes the K (K ′) valley; σx, σy, and
σz are the Pauli matrices; �H is the effective Hamiltonian;
and ψ is the eigenvector composed of the coefficients for
linear combination. The blue lines in Figs. 2(c) and 2(d) are
the local dispersion curves obtained by the effective model,
which show good agreements with the theoretical results. To
demonstrate the existence of valley Hall edge state in the band
gap formed from lifting the Dirac degeneracy, we calculate
the valley Chern number which is the integral of the Berry
curvature over half the BZ [19]. According to the eigenvector
obtained in Eq. (2), the Berry curvatures for the first and sec-
ond branches can be obtained [Fig. 2(e)]. The resulting valley
Chern number of the first branch is −1/2 (+1/2) at K (K ′)
valley while that of the second branch is +1/2 (−1/2) at
K (K ′) valley. The difference �C(K,K ′ )

v = C(K,K ′ )
v,upper − C(K,K ′ )

v,lower =
±1 suggests the existence of valley Hall edge states in the
band gap.

FIG. 3. (a) The designed continuous hexagonal elastic lattice.
(b) The dispersion structure for the case the two resonators are the
same. (c) The dispersion structure for the case the two resonators are
slightly different from each other. (d) The out-of-plane effective mass
density.

B. Numerical studies on the topological valley modes in
continuous hexagonal lattice with local resonators

On the basis of the discrete model, a continuous hexagonal
elastic lattice is designed [Fig. 3(a)]. Each unit cell has two
sites, where the Aluminum (Eal = 70 GPa, ρal = 2700 kg/m3

and υal = 0.33) substrate is hollowed to form a resonator
consisting of three thin beams separating each with an angle
of 120 degrees and a lead (El = 17 GPa, ρl = 11300 kg/m3,
and υl = 0.33) cylinder. The lattice constant is L = 3 cm; the
thickness of the substrate plate is h = 2 mm; the thickness
and width of the thin beams are tb = 0.5 mm and hb = 1 mm,
respectively; the radius of the hole is R = 7.5 mm and that
of the lead cylinder is r = 3.5 mm. The heights of the two
lead cylinders in each unit cell are denoted as h1 and h2,
respectively.

The band structure for h1 = h2 = 2.0 mm is shown in
Fig. 3(b), where the color scale represents the degree of
polarization. Here, we focus on the out-of-plane polarized
mode, i.e., the branches in blue color. In the observed fre-
quency range, two Dirac degeneracies appear at K point. The
Dirac degeneracy located at relatively high frequency is the
classical one in the substrate hexagonal lattice with circular
holes. We can see that although Dirac degeneracy at K point
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FIG. 4. The dispersion curves for (a) h1 = h2 = 2.0 mm and (b)
h1 = h2 = 4.05 mm.

definitely appears in the substrate hexagonal lattice possessing
C6v symmetry; however, no full band gap appears in this case
when the degeneracy is lifted by breaking inversion symmetry.
In comparison, the other Dirac degeneracy located right below
the resonant frequency can avoid this problem. This Dirac
degeneracy is produced by the double local resonant effect
on the basis that the substrate lattice satisfies C6v symmetry,
see the inserted mode shapes [Fig. 3(b)]. Its frequency is
mainly determined by the nature frequency of the resonators.
Therefore, we can easily tune Dirac frequency by changing
the natural frequency of the resonators without altering the
lattice constant. As demonstrated in Fig. 4, when the resonant
frequency of the resonators is altered through increasing the
height of the lead cylinders, the local resonant Dirac cone
shifts correspondingly, meanwhile the Bragg scattering Dirac
cone almost remains unchanged since the lattice constant has
not been modified. In addition to single Dirac cone, fourfold
degenerated double Dirac cone induced by local resonant
states can also be achieved by employing band folding tech-
nique [35]; see Appendix A for details.

When the resonant frequencies of the two resonators are
slightly different from each other, the frequencies correspond-
ing to the local resonant states shown in Fig. 3(b) become
different. Therefore, the Dirac degeneracy is lifted, giving
rise to a complete band gap corresponding to the out-of-plane
polarized mode. This mechanism is illustrated in Fig. 3(c),
which shows the band structure for the case h1 = 2.3 mm
and h2 = 1.7 mm. In addition, we calculate the out-of-plane
effective mass density for this case [Fig. 3(d)]. The two
straight lines correspond to the natural frequencies of the two
resonators, respectively. The frequency range corresponding
to the band gap formed from lifting Dirac degeneracy is
highlighted in blue. It’s found that this band gap is related to
the local resonance of the resonator, which results in mixing
effective negative mass effect and Bragg scattering effect due
to large virtual mass.

Next, to demonstrate the existence of interface edge modes
in the topological local resonant band gap, the band diagram
of a strip supercell [Fig. 5(a)] with an interface composed of
8 unit cells with different topological valley phase at either
side is illustrated in Fig. 5(b). Here we only focus on the blue
branches corresponding to the out-of-plane polarized modes.

FIG. 5. Numerical analysis of the local resonant topological
interface state. (a) The FE model of the strip supercell. (b) Band
structure of the strip, where the green solid line represents the
interface branch. (c) Eigenvector corresponding to the interface mode
evaluated at f = 2500 Hz. (d–f) The displacement fields at f =
2500 Hz for the bulk state, straight-line interface state and Z-shape
interface state, respectively. (g) Simulated displacement amplitude
profile of a cutline shown in (e), where position “0” corresponds to
the resonators closest to the interface. (h) Calculated transmission
spectra of the three states under study.

Among these modes, an interface mode is observed shown in
green solid line. For instance, one eigenvector corresponding
to the interface mode is illustrated in Fig. 5(c), where the
displacement field localizes at the interface and decays rapidly
away from it. Moreover, the interface mode shows strong
localized vibration on the resonator while the substrate is
almost at rest.

To further characterize the propagation behavior of the
topological valley edge modes, full-field frequency domain
simulations with low-reflecting boundary condition are con-
ducted. An out-of-plane harmonic excitation at 2500 Hz,
which is located in the topological band gap, is applied
at the position shown with red wavy arrow. Figure 5(d)
shows the displacement field for the bulk state, which indi-
cates that the bulk lattice plate is insulating due to the presence
of band gap therein. In comparison, for both the straight-line
[Fig. 5(e)] and Z-shape [Fig. 5(f)] interface configurations,
the induced flexural waves propagate along the interface.
Figure 5(g) illustrates the displacement amplitude profile of
a cutline shown in Fig. 5(e). The full width at half maximum
(FWHM) of the peak in Fig. 5(g) is about 1.16L, where L
is the lattice constant. This indicates that vibrations strongly
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FIG. 6. Experimental demonstration of the local resonant topo-
logical interface state. (a) The fabricated lattice sample and the
experimental setup. (b) The measured frequency-response functions
(FRF) of the displacements at points A and B. (c–e) The measured
root mean squared distributions of the velocity field at 1500, 2045,
and 2500 Hz, respectively.

localize at the interface. Besides, the transmission spectra for
the above three lattice structures are calculated [Fig. 5(h)].
Over the frequency range supporting topological protected
edge states (blue shaded area), wave propagations along both
the straight-line interface and the Z-shape interface have high
transmission as compared to the bulk state. Quantitatively,
the average amplitude ratio between the output and input
displacements over 2430–2560 Hz for the Z-shape interface
path is 96%, while that for the straight-line interface path is
99%. This indicates that the valley interface state introduced
by the local resonance is marginally affected by the bends.
In comparison, for frequencies located in the trivial local
resonant band gap (grey shaded area), all those three structures
have very low transmission except for several peaks.

C. Experimental observation of topologically protected
interface waves

Furthermore, a lattice sample with the same microstructure
parameters as the numerical model is fabricated, together
with the experimental setup shown in Fig. 6(a). Out-of-plane
excitation is applied at the position shown with black point.
A Z-shaped interface path is highlighted with the red line.
Figure 6(b) shows the measured frequency-response functions
(FRF) of the displacements at points A (lies on the interface
path) and B (located in the bulk). Two low transmittance areas

are marked with the blue and grey rectangles, respectively.
In the grey area, low transmittances are observed for both
points A and B. However, a transmission enhancement of
approximately 20 dB for point A as compared to point B
is found in the blue area, which demonstrates the existence
of interface propagating state. Therefore, the blue low trans-
mittance area is related to the topological local resonant BG
while the grey low transmittance area is related to the trivial
one of the designed lattice. To verify it, the experimental
root mean squared distributions of the velocity field at 2045
Hz, which is located in the topological local resonant BG,
is shown in Fig. 6(d). The induced out-of-plane wave travels
along the interface and decays rapidly in the direction perpen-
dicular to the interface. In contrast, for frequency located in
the trivial local resonant BG, the excited wave is prohibited
to propagate in the whole plate [Fig. 6(e)]. For reference,
the measured velocity field for the frequency located in the
pass band is shown in Fig. 6(c). It should be noted that the
resonators and the substrate are fabricated separately, and then
bonded together with glue. Therefore, the stiffness of the mi-
crostructure is reduced, resulting in the decrease of frequency
of the BGs as compared to the numerical results. When
using the real parameters retrieved from the experimental
results, the calculations coincide with the experiments (see
the Appendix B for details). In addition, the measured wave
field shows visible decay along the interface [Fig. 6(d)], this
is mainly due to the damping effect introduced by the glue
used to bond the microstructure beams (see the Appendix C
for details).

III. CONCLUSIONS

In summary, we report Dirac degeneracies induced by the
local resonant states, whose frequency is determined by the
nature frequency of resonators rather than the lattice constant.
After gapping the Dirac cone, topological edge modes exist
in the newly formed local resonant band gap, as observed by
both numerical simulations and experimental measurements.
Our study provides an effective approach of producing robust
elastic topological interface states over desired frequency
ranges and demonstrates the propagation behavior of the
topological interface modes in local resonant band gap.
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APPENDIX A: FOURFOLD DEGENERATED DOUBLE
DIRAC CONE INDUCED BY LOCAL RESONANT STATES

In addition to single Dirac cone, fourfold degenerated
double Dirac cone located at any desired frequency can also be
achieved by employing band folding method. To realize band
folding, an enlarged unit cell (supercell) is chosen, as shown
in Fig. 7(a). The first BZs corresponding to the original unit
cell and the supercell are plotted in Fig. 7(b) for comparison,
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FIG. 7. Realization of double Dirac cone at desired frequency
based on local resonant effect. (a) Schematic of the lattice with local
resonators. (b) The first BZs of the original unit cell and the supercell.
The calculated dispersion diagrams for (c) discrete lattice model and
(d) solid continuous lattice model.

which indicates that the first BZ of the supercell is obtained
through folding that of the original unit cell along the dotted
lines. Correspondingly, the band structure of the supercell can
be obtained by folding the band structure shown in Fig. 2(c),
which is the band structure of the original unit cell. The
detailed band folding mechanism can be seen in Ref. [35].
Figure 7(c) represents the resulting dispersion relation of the
supercell. Two double Dirac cones can be observed at s (k =
0). The one located at relatively low frequency is right below
the local resonant band gap induced by the resonators. This
means that we can produce double Dirac cone and corre-
sponding spin Hall edge states at any desired frequency by
controlling the nature frequency of the embedded resonators.
The dispersion analysis based on the solid continuous lattice
model [as depicted in Fig. 3(a)] also confirms this conclusion,
as shown in Fig. 7(d).

APPENDIX B: CALCULATIONS USING THE REAL
PARAMETERS RETRIEVED FROM THE EXPERIMENTAL

RESULTS

In the experiments, the resonators and the substrate are
fabricated separately and then bonded together with glue.
Therefore, the stiffness of the microstructure is reduced, re-
sulting in the decrease of frequency of the BGs as compared
to the numerical results. To verify this assertion, we retrieve
the real stiffness of the microstructure beam from the exper-
imental results and calculate the band structure of the strip
supercell again. In the simulation, the thickness of the thin

FIG. 8. (left) The measured frequency-response functions.
(right) Band structure of the strip supercell calculated by using
the real stiffness of the microstructure beam retrieved from the
experimental results. Good agreements between the calculations and
experiments are observed.

beams is retrieved to be tb = 0.42 mm. As shown in Fig. 8,
good agreements between the calculations and experiments
are observed. In this case, space-inversion symmetry (SIS)
breaking is strong, since the stiffness of the resonators is
reduced while the mass difference between the two resonators
remains the same. As a result, the bandwidth of the valley
interface state (the green line in Fig. 8) becomes smaller.

APPENDIX C: CALCULATED DISPLACEMENT FIELDS
WITH THE EFFECT OF MATERIAL DAMPING

To demonstrate that the decay along the interface route is
due to the material damping, we calculate the displacement
fields with the effect of material damping of the local res-
onators, as shown in Fig. 9. Obvious decay along the interface
route can be observed when the damping coefficient of the
microstructure beam is assumed to be 1%.

FIG. 9. The calculated displacement fields with effect of material
damping for Z-shape interface route at f = 2500 Hz.
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