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Non-Reciprocal Metamaterials
With Simultaneously Time-
Varying Stiffness and Mass
A modulated metamaterial that exhibits both time-periodic stiffness and mass simulta-
neously is presented. The metamaterial element includes a primary body that undergoes
infinitesimal motion, and is connected to a dynamic-mechanism structure, involving a rota-
tional body, and spring with a large-scale motion, which is designed to produce a time-mod-
ulated linear momentum and elastic constraint for the primary body. The non-reciprocal
wave propagation is then investigated in a space–time lattice metamaterial that is con-
structed by coupling doubly time-modulated elements with linear springs of constant stiff-
ness. The dispersion property shows the frequency degeneracy occurring at the center or
edge of the Brillouin zone, and the unidirectional bandgap at certain frequencies. This phe-
nomenon represents a unique property of the doubly modulated metamaterials compared to
the singly modulated ones, thus may provide more promising applications to the design of
non-reciprocal devices. [DOI: 10.1115/1.4046844]
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1 Introduction
Metamaterials are artificial composite materials engineered to

achieve unusual physical properties [1–4]. Metamaterials are
usually designed by the periodic arrangement of scattering elements
in spatial dimensions, thus maintaining the material properties
unchanged with time. In the space-only modulated media, the
intrinsic time-reversal symmetry limits the wave propagation to
be reciprocal, that is, the response at a receiver from an oscillating
source is unchanged regardless of an interchange of their positions.
However, the breaking of wave reciprocity [5–14] is highly desir-
able in scenarios wherein a directive energy transfer in the
seismic wave protection, noise insulation, and energy harvesting
is required. One of the promising approaches for achieving the non-
reciprocity is tailoring the mechanical properties of materials (typ-
ically inertial mass and/or stiffness) in both space and time dimen-
sions, as suggested in some of the recent studies [15–29]. When
material properties are weakly modulated in space and time
domains in a wave-like manner, the spatiotemporal modulation
acts like a biasing load that breaks the time-reversal symmetry.
The non-reciprocity is manifested by asymmetric bandgaps in the
dispersion diagram, which can be calculated using the multiple
time scales perturbation theory [30], the Bloch theorem along
with the harmonic balance methodology [31], coupled-mode
theory [32], theory of field patterns [33], and the generalized
plane wave expansion method [34].
The realization of the time-modulated mechanical properties is

challenging; usually, external control fields should be introduced
to achieve high modulation speed that is comparable to the wave
propagation velocity. Recently, the experimental realization of
time-periodic stiffness has been reported in a dynamic phononic
crystal consisting of permanent magnets modulated by the exter-
nally driven coils [35,36], in an elastic waveguide consisting of
an array of piezoelectric patches shunted through the negative-
capacitance circuits [37], or in an elastic metamaterial beam with

the dynamically varied angular orientation of local resonators
[38]. Other possible methods for the stiffness modulation include
the means of shock waves in soft materials [39], magneto-rheolog-
ical elastomers [40], and the photo-elastic effect [41]. Still, the
above solutions are not well suited for realizing a time-periodic
inertial mass. Therefore, a new design approach relying on artificial
metamaterials with dynamic-mechanism microstructures was pro-
posed to implement the time modulation of mass [42]. This study
demonstrated that the dynamic-mechanism metamaterial could
denote a feasible solution for the realization of the mechanical time-
varying properties.
The simultaneous space–time modulation of stiffness and mass

provides higher freedoms in manipulating the non-reciprocal
wave propagation. However, the design of the doubly modulated
medium still remains unknown. In this work, we report the design
of a structural model of the doubly modulated medium by using
the dynamic-mechanism metamaterial. Control of non-reciprocal
wave propagation in metamaterials with the simultaneous space–
time modulation of stiffness and mass will be studied.
The rest of the paper is organized as follows: in Sec. 2, a doubly

modulated metamaterial made of dynamic-mechanism microstruc-
tures is presented. In Sec. 3, the spatiotemporal periodic lattice
metamaterials with simultaneously modulated mass and stiffness
are introduced, and the method for dispersion estimation of the
doubly modulated lattice is explained. In Sec. 4, the non-reciprocal
wave phenomena induced by the spatiotemporal modulation of
mass and stiffness are discussed. Lastly, concluding remarks are
outlined in Sec. 5.

2 Metamaterial Elements with Simultaneously
Time-Varying Mass and Stiffness
2.1 Model Design. The doubly time-varying metamaterial

element is presented in Fig. 1. This element contains a primary
body of weight m0 moving along a motionless slide track and two
dynamic mechanisms that are characterized by the rotational struc-
ture with a constant angular frequency ωr, which are arranged on the
top and bottom of the m0-body, respectively. The mechanism posi-
tioned on the top of the primary body involves two rotational elastic
springs of the rest length l0 with a tension stiffness K and a shearing
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one G, and is used to produce the time-periodic elastic constraint to
the primary body. The bottom mechanism consists of two rigid
bodies of the same weight m1 residing on a rotational guide track
at the equal distance r0 to the spin center, and is used for creating
the periodically time-varying mass in a similar way as presented
in Ref. [42]. Two m1-bodies are pin connected to the m0-body by
rigid and massless bars of length l. A ground spring of a tension
stiffness K1 is added between them1-body and spin center for reduc-
ing the instability caused by the centrifugal force of rotational
bodies, which needs to be taken into account in the high-speed rota-
tion mode. At an initial time, the top and bottom structures form
an angle ϕ0 relative to the motionless track, and this angle
becomes ωrt+ϕ0 at a later time t due to the rotation of angular fre-
quency ωr, as schematically shown in Fig. 1.
The effective dynamic mass and stiffness of the metamaterial

element are defined using the homogenization scheme that relies
on the responded displacementU0 of them0-body subject to an arbi-
trary force F, as illustrated in Fig. 1(b). Without considering the
gravity of all the bodies, the equilibrium equation of the m0-body
is expressed as

F − FT − FB = m0Ü0 (1)

where FT and FB denote the forces exerted from the rotational
springs and bodies, respectively. By establishing the dynamic equi-
librium equation for the spinning structure, as given in Appendix A,
forces FT and FB can be expressed explicitly in terms of the macro-
scopic fields F and U0 under an assumption that the amplitude of
displacement U0 is infinitely small compared to the characteristic
lengths, e.g., r0 and l0. Finally, the relationship between F and U0

is given by

F − Keff (t)U0 =
d
dt

meff (t)
dU0

dt

[ ]
(2)

where meff(t) and Keff(t) denote the time-dependent functions,
which are respectively expressed as

meff (t) = m0 + 2m1 cos
2(ωrt + ϕ0) (3)

Keff (t) = 2G + 2(K − G + K1−2m1ω
2
r ) cos

2(ωrt + ϕ0) (4)

According to Eq. (2), the metamaterial element can be equivalently
represented by a single body having the time-periodic mass meff(t)
and a connection to the ground spring whose stiffness Keff(t) varies
periodically with time. Notice that the term −4m1ω2

r cos
2(ωrt + ϕ0)

in Keff(t) arises from a centrifugal force that may cause instability of

the m0-body. Since its resultant effect is equivalent to the ground
spring constraint, this term would only bring about the change of
effective modulation stiffness. For analytical simplicity, the condi-
tion K1 = 2m1ω2

r is set in our model, but it would not limit the tun-
ability of the dynamic mechanism. Equations (3) and (4) can be
further represented in the form of a sum of a constant term and a
modulation parameter, so they become

meff (t) =M0 +Mm cos(ωmt +Φ0) (5)

Keff (t) = K0 + Km cos(ωmt +Φ0) (6)

where M0 = m0+m1, Mm = m1, K0 = K+G, Km = K−G, ωm=
2ωr, and Φ0= 2ϕ0.

2.2 Energy Inputted Into System. A boundary condition that
the spinning structure is forced to rotate with a constant angular fre-
quency has been assumed for the model. This boundary condition
implies that an external moment of force is needed to balance its
internal moment caused by the rotational spring and mass so
that the total moment acting on the spinning structure is equal to
zero. Here, we analyze the input work done by this external
moment of force to measure the energy that needs to be input to
the system to achieve the time-varying properties. Suppose that the
m0-body undergoes a harmonic oscillation of displacement
U0(t) = Û0 sin(ωt), where Û0 denotes the oscillation amplitude and
ω denotes the oscillation frequency. Then, the external moment of
force that maintains constant rotation of both top and bottom struc-
tures, denoted as MT and MB respectively, can be calculated as
given in Appendix B. The total instantaneous power input is calcu-
lated as Ptotal=PF+PM, where PF and PM denote the rate of work
done by force F acting on the m0-body and the external moment of
force on the spinning structure, respectively. The internal energy
Etotal of the metamaterial element consists of the kinetic energy of
rigid bodies, Ek, and the potential energy of springs, Ep, which can
be computed by the procedures provided in Appendix B.
Considering the structural parameters m0= 1 kg, m1= 0.5 kg, d=

12 cm, l= 20 cm, l0= r0= 16 cm, K= 400N/m,G= 100N/m, ϕ0= 0,
ωr= 4π rad/s, and ω= 40π rad/s, the time-domain power input Ptotal

and the time rate of change in the internal energy d(Etotal)/dt in
a rotation period are presented in Fig. 2(a). Thus, the energy con-
servation characterized by Ptotal= d(Etotal)/dt can be verified. The
external energy input denoted as PM represents only a small
portion of the total energy. Furthermore, the net energy inputWM =�t
0PM dt indicates that the energy first flows into the system and then
is extracted, as shown in Fig. 2(b). Therefore, for the ideal system
with no friction, no damping, no non-conservative forces, zero
energy input is required to maintain the constant rotation of

Fig. 2 (a) The total instantaneous power input Ptotal and external
energy input PM, as well as the time rate of change in the internal
energy d(Etotal)/dt, and (b) the net energy input WM=

�t
0PMdt

during one rotation period

Fig. 1 Schematic diagram of the doubly time-modulated meta-
material element. The elementary cell consists of a rigid body
of weight m0 that is constrained to move along a motionless
slide track and two spinning structures, respectively, placed at
the top and bottom of the m0-body. (a) At an initial time, the top
and bottom structures form an angleϕ0 relative to themotionless
track, and (b) at a later time t, this angle becomes ωrt+ϕ0 due to
the rotation of angular frequency ωr, and them0-body undergoes
a displacement U0 when being subject to a force F.

071003-2 / Vol. 87, JULY 2020 Transactions of the ASME



dynamic mechanisms. It is worth to point out that this energy-
conserved effect has been also recently observed in gyric metama-
terials with the angular momentum modulation [43], enabling the
system to exhibit a stable response irrespective of the driven
frequency.

3 Spatiotemporal Periodic Lattice Metamaterials With
Simultaneously Modulated Mass and Stiffness
An infinite periodic lattice metamaterial can be constructed by

coupling doubly time-varying elements with linear interactions
through springs of constant stiffness. Such a lattice metamaterial
is proposed to achieve the spatiotemporal modulation over mass
and stiffness simultaneously. In this work, a Bloch-based method
is adopted to obtain dispersion diagrams, and to identify the non-
reciprocal wave behavior in the numerical examples presented in
Sec. 4.
Figure 3(a) shows the schematic diagram of the group of doubly

time-varying elements, where the m0-bodies in adjacent elements
are connected by springs that have a constant stiffness Kc with a
separation distance a. A supercell contains R elements with differ-
ent initial biasing angles ϕ0 that produce a spatial modulation with
periodicity λm=Ra. According to the effective-medium representa-
tion, a dynamic structure can be regarded as a single body with a
time-modulated mass and a ground spring, as illustrated in
Fig. 3(b). Based on Eqs. (5) and (6), the modulated mass and stiff-
ness of the r-th (r= 1, 2,…, R) element in a supercell are expressed
as

m(r)(t) =M0[1 + αm cos(ωmt +Φ(r)
0 )] (7)

K(r)(t) = K0[1 + βm cos(ωmt +Φ(r)
0 )] (8)

The generalized motion equation of the n-th supercell is
expressed as

Ṁ(t)u̇n(t) +M(t)ün(t) +K(t)un(t) +K(n−1)un−1(t) +K(n)un(t)

+K(n+1)un+1(t) = 0

(9)

where un = [u(1)n , u(2)n , . . . , u(R)n ]T is a displacement associated with
each element in a supercell; M(t) and K(t) denote the time-
dependent matrices associated with the time-driven mass and
ground spring, respectively; K(n) denotes a constant stiffness
matrix that describes the coupling between the neighboring cells.
The dispersion relation of the doubly modulated metamaterial can
be estimated by finding a plane wave solution [31,42], which is

expressed as

un(t) = a(t)ei(ωt−nkλm) (10)

where k denotes the wavenumber of the Bloch wave, a(t) represents
the modulated amplitude satisfying the periodic condition
a(t) = a(t + Tm), where Tm= 2π/ωm. By expanding a(t) to the
Fourier series, we get

a(t) =
∑∞
p=−∞

apeipωmt (11)

From Eq. (10), it can be deduced that

un−1(t) = eiμun(t), un+1(t) = e−iμun(t) (12)

where μ= kλm is defined as a normalized wavenumber. Further-
more, substituting Eq. (12) into (9), we get

M(t)ün(t) + Ṁ(t)u̇n(t) +K(t)un(t) +Kc(μ)un(t) = 0 (13)

where

Kc(μ) =K(n−1)eiμ +K(n) +K(n+1)e−iμ (14)

Considering that mass matrix M(t) and stiffness matrix K(t) are
periodic functions of time, they can be expanded as Fourier series
as follows:

M(t) =
∑∞
q=−∞

M̂qe
iqωmt , K(t) =

∑∞
q=−∞

K̂qe
iqωmt (15)

where M̂q and K̂q denote the Fourier coefficients, which are given
by

M̂q =
1
Tm

∫Tm/2
−Tm/2

M(t)e−iqωmt dt,

K̂q =
1
Tm

∫Tm/2
−Tm/2

K(t)e−iqωmt dt

(16)

By substituting Eqs. (10), (11), (15), and (16) into (13), and per-
foming the harmonic balancing, we finally get that

∑∞
q=−∞

−(ω + pωm)[ω + ( p−q)ωm]M̂qa p−q

+
∑∞
q=−∞

K̂qa p−q +Kc(μ)ap = 0

(17)

A truncation order P needs to be assigned to p such that ap = 0 when
|p| >P [31]. Eventually, Eq. (17) can be expressed in the form of a
quadratic eigenvalue equation as follows:

[ω2L2(μ) + ωL1(μ) + L0(μ)]atotal = 0 (18)

where atotal denote eigenvectors. Matrices L0(μ), L1(μ), and L2(μ)
are all related to wavenumber μ. The dispersion relation of the
doubly modulated metamaterial is obtained by solving eigenvalue
equation (18) for eigenfrequency ω in a given wavenumber μ.
The eigenvalue problem in Eq. (18) will yield R × (2P+1) eigenval-
ues. Here, the focus is placed on the fundamental dispersion mode
(p= 0) as it normally contains a large portion of the spectral energy.
The procedure to retrieve the fundamental dispersion band is illus-
trated below. By substitution of Eq. (11) into (10), the displacement
of the nth supercell is expressed as un(t) =

∑∞
p=−∞ apei[(ω+pωm)t−nμ].

The fundamental dispersion band is characterized by an amplitude
that is relevant to the leading term of p= 0. It can be determined by
weighting the magnitude of a0 for each branch and setting up a fil-
tering value to avoid plotting of the dispersion bands with little
spectral energy.

Fig. 3 (a) Schematic diagram of the spatiotemporal periodic
lattice metamaterial constructed by coupling the doubly time-
modulated elements with springs of a constant stiffness Kc.
(b) The equivalent mass–spring chain model where the time
modulation is imposed on the masses and ground springs.
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4 Non-reciprocal Wave Phenomena in Doubly
Modulated Metamaterials
4.1 Unidirectional Bandgaps and Degeneracy Phenomena.

Consider parameters ωm= 0.3ω0, αm= 0.2, Φ(r)
0 = 2πr/3, and η=

K0/Kc= 1 of a lattice metamaterial having three elements in a super-
cell, i.e., R= 3, and the corresponding theoretical formulation for
the dispersion computation is presented in the Supplementary
Material. The analysis of the dispersion diagram of the time-
modulated lattice is conducted with reference to the time-invariant
case for different modulating amplitudes βm= 0.2, 0.4, and 0.8, as
displayed in Fig. 4. Note that the dimensionless frequency is
defined as Ω=ω/ω0, where ω0 =

��������
Kc/M0

√
. In all three cases, the

non-modulated lattices exhibit a bandgap from zero to the cutoff
frequency because of the Drude dispersion behavior that is caused
by the ground boundary condition [44]. Except for this bandgap,
the non-modulated lattice with βm= 0.2 possesses two additional
bandgaps, as shown in Fig. 4(a), where the upper and lower gaps
open at the center (μ= 0) and edge (μ= ± π) of the first Brillouin
zone (BZ), respectively. When the temporal modulation is intro-
duced, each gap splits into two unidirectional bandgaps while the
gap bandwidth stays unchanged, as shown in Fig. 4(d ). The differ-
ence in the central frequency between the two split gaps is equal to
the modulation frequency, ωm/ω0= 0.3. Notice that the band struc-
ture in the first BZ would repeat itself in other regions beyond the
first BZ. This means that the same bandgap frequency shift
appears between the bandgaps of different BZs. The similar non-
reciprocal phenomenon can be also observed in lattice systems
with a single modulation, either mass or stiffness modulation
[31,42]. In this work, particular attention is paid to the non-
modulated lattices at βm= 0.4 or βm= 0.8, which show the fre-
quency degeneracy at the BZ edge or BZ center, as illustrated in
Figs. 4(b) and 4(c), respectively. The degeneracy phenomenon can
also be observed in the modulated lattices, as shown in Figs. 4(e)
and 4( f ), because the time modulation causes only the frequency
shifting of bandgaps without altering the bandwidth. As a result,

the frequency degeneracy at the BZ edge (center) leads to the disap-
pearance of the lower (upper) unidirectional bandgap, so the non-
reciprocity appears only in the upper (lower) bandgaps.
In order to verify the analytical dispersion results, the dispersion

diagram is reconstructed from the time-dependent simulation for the
doubly modulated lattices presented in Figs. 4(d )–4( f ). In the simu-
lation, the periodic lattice structure is excited with a displacement
load characterized by the Gaussian-modulated sinusoidal broad-
band signal as shown in Fig. 5(a). Here, the signal bandwidth is
wide enough to cover the frequency range of the dispersion
diagram. Figures 5(b)–5(d ) show the band diagram obtained by
the normalized amplitude of the Fourier transformed displacement
fields in the (μ, Ω) space. The excellent agreement between analyt-
ical prediction and time-dependent simulation results can be
observed, which validates the analytical Bloch-based method.
The doubly modulated metamaterial with the degeneracy effect

may provide more promising applications in design of non-
reciprocal devices. One of the perspective applications may be the
non-reciprocal bandpass filtering for wave and vibration. For
further explanation, Figs. 6(a) and 6(b) show displacement response
spectra in opposite directions for modulated metamaterials without
and with the degeneracy effect, which correspond to the models
concerned in Figs. 4(d ) and 4(e), respectively. The modulated
lattice without the degeneracy effect exhibits asymmetric wave
transmission in multiple frequency bands [Fig. 6(a)]. By contrast,
due to the degeneracy effect, the non-reciprocal wave behavior
for the transmission of either the right-travelling or left-travelling
wave appears in only one frequency band. This single-band
feature may benefit to the design of non-reciprocal bandpass
filters, in which the doubly modulated lattice with the degeneracy
effect allows waves and vibrations within a selected frequency
band and direction to be transmitted while preventing waves at
opposite directions from passing on.
In the following, the degeneracy condition is derived by using the

dispersion equation of the non-modulated lattice. The equation of
motion given by Eq. (13) for the non-modulated lattice at R= 3 is

Fig. 4 The dispersion curves of the non-modulated lattice at modulating amplitudes of (a) βm=0.2, (b) βm=
0.4, and (c) βm=0.8. The fundamental dispersion branches at ωm=0.3ω0 of the modulated lattice correspond-
ing to the modulating amplitudes of (d ) βm=0.2, (e) βm=0.4, and (f ) βm=0.8.
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expressed as Bun(t) = 0, and the matrix B follows from

B = Kc[(η−Ω2)I + (ηβm−Ω2αm) diag(−1/2, −1/2, 1)] +Kc(μ)

(19)

where I denotes the identity matrix and the symbol “diag” refers to a
diagonal matrix in which all off-diagonal components are zero. The
stiffness matrix Kc(μ) is expressed as

Kc(μ) = Kc

2 −1 −eiμ
−1 2 −1

−e−iμ −1 2

⎡
⎣

⎤
⎦ (20)

To obtain the degeneracy condition such that det B = 0 has
repeated eigenfrequency roots in a given wavenumber μ, we

consider the relation

ηβm−Ω
2αm = 0 (21)

In this case, the matrix B reduces to B0, which is given by

B0 = Kc(η−Ω2)I +Kc(μ) (22)

To obtain the degeneracy condition at the BZ center, μ= 0 is set
in Eq. (22), then det B0 = 0 leads to

(2 + η−Ω2)3−3(2 + η−Ω2)−2 = 0 (23)

Equation (23) has a pair of degenerate (repeated) roots, denoted by
Ωdeg =

������
3 + η

√
. The combination of the solution Ω = Ωdeg and

Eq. (21) yield the following condition:

ηβm = (3 + η)αm (24)

We note that Eq. (24) refers to the condition for the frequency
degeneracy appearing at the BZ center. For verification, substituting
the condition (24) into the expression (19) leads to a reduced form
of the matrix B, here denoted by B′ as given below

B′ = Kc[(η−Ω2)I + αm(3 + η−Ω2) diag(−1/2, −1/2, 1)] +Kc(μ)

(25)

Now, let us sweep the frequency to find out Ω that satisfies
det B′ = 0. When Ω is equal to

������
3 + η

√
, the term with αm(3+ η−

Ω2) in Eq. (25) vanishes. At this case, B′ reduces to B0of the
form (22). At the BZ center (μ= 0), the equation det B0 = 0, or
equivalently Eq. (23), has a pair of degenerate roots Ω = Ωdeg,
which is same to the sweeping frequency Ω =

������
3 + η

√
. The result

means that the condition (24) ensures the presence of degenerate
roots Ω = Ωdeg. Hence, it expresses the degenerate condition of
the BZ center (μ= 0). Similarly, considering Eq. (21), the eigen-
value equation at the edge of first BZ (μ= ± π) can be expressed as

(2 + η−Ω2)3−3(2 + η−Ω2) + 2 = 0 (26)

The degenerate root of Eq. (26) is found to be Ω =
������
1 + η

√
. Com-

bining this root with Eq. (21) we can obtain the degeneracy condi-
tion of the BZ edge as follows:

ηβm = (1 + η)αm (27)

Based on the fact that the dynamic modulation would not induce
the change of the gap bandwidth, Eqs. (24) and (27) also refer to the
degeneracy conditions for the modulated lattice.

4.2 Gap Bandwidth Under Frequency Degeneracy. A wide
frequency bandwidth of the non-reciprocal bandgap is desirable in
device applications. In this section, we study how to widen the
bandgap on the condition that the degeneracies are happening. A
theoretical estimation of the gap bandwidth is conducted based on
the non-modulated lattice. We first examine the bandwidth of the
lower-only bandgap that is created by making a degeneracy at the
BZ center. By substituting the degeneracy condition (24) into
Eq. (19), we get the eigenvalue equation at the BZ edge, which is
given by

x−
1
2
αm(x + 1)−1

[ ]
x−

1
2
αm(x + 1) + 1

[ ]
[x + αm(x + 1)]−2

{ }
= 0

(28)

where x(Ω)= 2+ η−Ω2. Solving Eq. (28) for the start and end fre-
quencies of the lower bandgap, we obtain

Ωgap,π
1 =

���������
1 + η−A

√
, Ωgap,π

2 =
���������
3 + η−B

√
(29)

where A= 2αm/(2−αm) and B = 1 +
���������������������
3(5αm + 6)/(2−αm)

√[ ]
/

2(αm + 1)[ ]. To evaluate the bandwidth of the upper-only

Fig. 5 (a) The displacement excitation spectrum in the time and
frequency domain and (b–d ) comparison between the dispersion
diagram obtained by the analytic Bloch-based method and
reconstruction from the time-dependent simulation for the
doubly modulated lattices presented in Figs. 4(d )–4( f )

Fig. 6 The displacement response spectra in opposite direc-
tions for modulated metamaterials (a) without and (b) with the
degeneracy effect, which correspond to the models concerned
in Figs. 4(d ) and 4(e), respectively
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bandgap, we substitute the degeneracy condition (27) into Eq. (19)
to obtain the eigenvalue equation at the BZ center, which is
expressed as

x−
1
2
αm(x−1) + 1

[ ]
x−

1
2
αm(x−1)−1

[ ]
[x + αm(x−1)]−2

{ }
= 0

(30)

The start and end frequencies of the upper bandgap, denoted as
Ωgap,0

1 andΩgap,0
2 , can be obtained by Eq. (30), and they are given by

Ωgap,0
1 =

�����������
1 + η + B

√
, Ωgap,0

2 =
�����������
3 + η + A

√
(31)

The gap edge frequencies of the non-modulated lattice at various
modulating amplitude αm but at constant stiffness ratio of η= 1 are
presented in Figs. 7(a) and 7(c). It should be noted that βm can be
determined from the degeneracy condition once the values of αm
and η are given. The results show that the bandwidth of either
upper or lower bandgap (as shaded) can be widened by increasing
the value of αm, while the gap center frequency is nearly unchanged
with the variation in αm. The changing trends of the gap edge fre-
quencies with the value of η at a constant modulating amplitude
of αm= 0.2 are presented in Figs. 7(b) and 7(d ), where it can be
seen that the bandgap frequency can be enhanced by increasing η,
and the bandwidth is insensitive to the change in the η value.
To verify the prediction of the non-modulated lattice, Fig. 8 plots

the fundamental dispersion branch of the corresponding modulated
lattice at ωm= 0.3ω0 for three different values of αm: (a, d ) αm=
0.1, (b, e) αm= 0.15, and (c, f ) αm= 0.2. The other parameters
are the same as those in Fig. 7. In Fig. 8, it is seen that the bandwidth
of the unidirectional bandgap can be widened with the increase in
αm, while the gap center frequency is almost unchanged, which is
in agreement with the results presented in Figs. 7(a) and 7(c).
The effect of the stiffness ratio η on the bandwidth of the unidirec-
tional bandgap is also evaluated as plotted in Fig. 9 in three cases:
(a, d ) η= 1, (b, e) η= 2, and (c, f ) η= 3. The results show that with
the increase in the stiffness ratio η, the bandwidth of the unidirec-
tional bandgap shows a small change in bandwidth, but it shifts

to higher frequencies, which is in accordance with the results pre-
sented in Figs. 7(b) and 7(d ).

5 Conclusion
The modulated media, whose mechanical properties are changed

in both space and time, support the non-reciprocal wave propaga-
tion, which is expected to bring the new application possibilities
in the field of unprecedented wave and vibration control.
However, the realization of time-varying properties poses a great
challenge to future applications of modulated media. Although
there are many promising methods for stiffness modulation, such
as the use of permanent magnets with externally driven coils [35]
and piezoelectric patches shunted with circuits [37], and others
[38], there has been no general method to create the time-periodic
inertial mass yet. To solve this problem, the authors proposed a fea-
sible method for the design of time-varying mass media based on
the metamaterials using their microstructures involving dynamic
mechanisms [42]. In this paper, a dynamic-mechanism metamater-
ial with the simultaneous modulation of stiffness and mass is intro-
duced and analyzed through the extensive study on the previously
proposed time-varying mass metamaterial. The homogenization
scheme is established based on the rigorous theoretical analysis of
structural dynamics, explaining that the proposed metamaterial
can be represented as a homogeneous body with the simultaneous
time-periodic stiffness and mass. The energy input required for
this “dynamic” structure is also examined, and it is found that the
external energy input denotes only a small portion of the total
energy.
By connecting the doubly modulated elements with springs of a

constant stiffness, a space–time lattice metamaterial is constructed
for manipulation of the non-reciprocal wave propagation. The
Bloch-based method is used to obtain the dispersion diagram of
doubly modulated lattices. The dispersion diagram shows the
presence of asymmetric bandgaps, which is indicative of the
wave non-reciprocity. In particular, it is found that the frequency
degeneracy appears at the BZ edge or BZ center, causing a unidi-
rectional bandgap at either upper-only or lower-only frequencies.

Fig. 7 The start and end frequencies of (a) upper-only and (c) lower-only bandgaps of the non-
modulated lattice at a different modulating amplitude αm and (b, d ) corresponding results for a different
stiffness ratio η
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The degeneracy condition is derived from the dispersion equation
of the non-modulated lattice, and by numerical examples, it is ver-
ified that this condition is applicable to the modulated lattice. The
influence of the modulating amplitude αm and stiffness ratio η on
the bandwidth of the unidirectional bandgap is also studied, and
it is found that by increasing αm, the bandwidth can be widened,
while the gap center frequency stays almost unchanged. In

contrast, an increase in η can enhance the gap center frequency,
while the bandwidth is almost unchanged. Compared to the
singly modulated lattices, the doubly modulated metamaterial
can realize the frequency-selective non-reciprocity by making a
degeneracy at either the BZ center or the BZ edge, and thus
denotes a more promising material for the design of non-reciprocal
devices.

Fig. 8 The fundamental dispersion branch of themodulated lattice with the upper-only bandgap in case
of different modulating amplitude: (a) αm=0.1, (b) αm=0.15, (c) αm=0.2, and (d–f ) corresponding
results for the lower-only bandgap

Fig. 9 The fundamental dispersion branch of the modulated lattice with the upper-only bandgap at the differ-
ent stiffness ratio of (a) η=1, (b) η=2, (c) η=3, and (d–f ) corresponding results for the lower-only bandgap
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Appendix A: Dynamic Analysis of Doubly
Time-Modulated Structure
In Eq. (1), force FT exerted by the rotational spring is expressed

as

FT = F(K)
1 cosφ(K)

1 + F(G)
1 sinφ(K)

1 + F(K)
2 cosφ(K)

2 + F(G)
2 sinφ(K)

2

(A1)

where F(K)
1 , F(G)

1 , F(K)
2 , and F(G)

2 represent the forces associated with
the tension and shear stiffness of springs #1 and #2, respectively.
According to Hooke’s law, these forces are expressed as

F(K)
1 = F(K)

2 = KU0 cos(ωrt + ϕ0) (A2)

F(G)
1 = F(G)

2 = GU0 sin(ωrt + ϕ0) (A3)

Angles φ(K)
1 = ∠CAD and φ(K)

2 = ∠BAE, as shown in Fig. 10,
satisfy the following geometric relationships:

sinφ(K)
1 =

l0 sin(ωrt + ϕ0)
l1

, cosφ(K)
1 =

l0 cos(ωrt + ϕ0)+U0

l1
,

(A4)

sinφ(K)
2 =

l0 sin(ωrt + ϕ0)
l2

, cosφ(K)
2 =

l0 cos(ωrt + ϕ0)−U0

l2
,

(A5)

where l1 and l2 denote the lengths of the deformed springs and can
be, respectively, calculated by

l1 =
������������������������������������������������
[l0 cos(ωrt + ϕ0) + U0]

2 + [l0 sin(ωrt + ϕ0)]
2

√
(A6)

l2 =
�����������������������������������������������
[l0 cos(ωrt + ϕ0)−U0]

2 + [l0 sin(ωrt + ϕ0)]
2

√
(A7)

Substitution of Eqs. (A2)–(A5) into (A1) yields

FT = [Gsin2(ωrt + ϕ0) + Kcos2(ωrt + ϕ0)]
1
l1
+
1
l2

( )
U0l0

+ K cos(ωrt + ϕ0)
1
l1
−
1
l2

( )
U2

0

(A8)

Force FB exerted by the rotational m1-body is expressed as

FB = F(m)
1 cosφ(m)

1 + F(m)
2 cosφ(m)

2 (A9)

where F(m)
1 and F(m)

2 , respectively, denote the forces in bars #1 and
#2, and they are expressed as

F(m)
1 =

m1(−r̈1 + ω2
r r1) + K1(r0−r1)

r1 + U0 cos(ωrt + ϕ0)
l (A10)

F(m)
2 =

m1(r̈2−ω2
r r2) + K1(r2−r0)

r2−U0 cos(ωrt + ϕ0)
l (A11)

φ(m)
1 and φ(m)

2 , respectively, denote the included angles between the
bar #1 and motionless slide track, and between the bar #2 and
motionless slide track, and they satisfy the following geometric
relationships:

cosφ(m)
1 =

r1 cos(ωrt + ϕ0) + U0

l
(A12)

cosφ(m)
2 =

r2 cos(ωrt + ϕ0)−U0

l
(A13)

Furthermore, distances r1 and r2 between the m1-bodies and spin-
ning center satisfy the following geometric relationships:

U2
0 + r21+2r1U0 cos(ωrt + ϕ0) = l2−d2 (A14)

U2
0 + r22 − 2r2U0 cos(ωrt + ϕ0) = l2−d2 (A15)

where d refers to the vertical distance from the spinning center of
the bottom track to the motionless track.
Based on Eqs. (A8), (A9), (A14) and (A15), and assuming that

the magnitude of U0 is infinitesimal compared to l0 and r0, i.e.,
U0/l0, U0/r0≪ 1. The equilibrium equation (1) of the m0-body can
be expressed in terms of F and U0 as follows:

F−[2G + 2(K−G) cos2(ωrt + ϕ0)]U0

−2(K1−2m1ω
2
r ) cos

2(ωrt + ϕ0)U0

= [m0 + 2m1cos
2(ωrt + ϕ0)]Ü0

−4m1ωr sin(ωrt + ϕ0) cos(ωrt + ϕ0)U̇0 (A16)

which is equivalent to Eq. (2).

Appendix B: Energy Calculation of the Doubly
Time-Modulated Structure
Assuming the displacement response of U0(t) = Û0 sin(ωt), then

force F(t) acting on the m0 body can be calculated by Eq. (2), which
is given by

F = meff (t)Ü0 + ṁeff (t)U̇0 + Keff (t)U0 (B1)
Fig. 10 A schematic view of the geometric configuration of the
doubly time-modulated structure
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The rate of work done by force F(t), denoted as PF(t), can be
calculated by

PF(t) = F(t)dU0(t)/dt (B2)

The moment of forceMT(t) for maintaining a constant rotation of
the top spinning structure is determined by the equilibrium equa-
tion, which can be expressed as

MT(t) + U0 sin(ωrt + ϕ0)
F(K)
1

l1
+
F(K)
2

l2

( )
l0 + F(G)

2 l2−F(G)
1 l1 = 0

(B3)

where F(K)
1 , F(K)

2 , F(G)
1 , and F(G)

2 are calculated by Eqs. (A2) and
(A3). The equilibrium equation of the bottom spinning structure
that governs the moment of force MB(t) can be expressed as

MB +
U0 sin(ωrt + ϕ0)

l
(F(m)

1 r1 + F(m)
2 r2)−2m1ωr(r1ṙ1 + r2 ṙ2) = 0

(B4)

where F(m)
1 and F(m)

2 are calculated by Eqs. (A10) and (A11). The
rate of the net work done by the external moment of force is
obtained by

PM(t) = ωr(MT +MB) (B5)

The kinetic energies of the m0-body and m1-bodies are expressed
respectively as

E0 =
1
2
m0ω

2Û2
0 cos

2(ωt) (B6)

E1 =
1
2
m1(ṙ

2
1 + ṙ22) +

1
2
m1ω

2
r (r

2
1 + r22) (B7)

The time rate of change of the total kinetic energy (Ek=E0+E1)
is given by

d(Ek)/dt = −m0ω
3Û2

0 cos(ωt) sin(ωt) + m1(ṙ1 r̈1 + ṙ2r̈2)

+ m1ω
2
r(r1 ṙ1 + r2ṙ2) (B8)

where r1, r2 and their time derivatives can be computed byEqs. (A14)
and (A15). The potential energies of springs that are characterized
by stiffness K, G, and K1 are expressed, respectively, as

E(K)
p = K[Û0 sin(ωt) cos(ωrt + ϕ0)]

2 (B9)

E(G)
p = G[Û0 sin(ωt) sin(ωrt + ϕ0)]

2 (B10)

E(K1)
p =

1
2
K1(r1−r0)2 +

1
2
K1(r2−r0)2 (B11)

The time rate of change in the total potential energy
(Ep = E(K)

p + E(G)
p + E(K1)

p ) is given by

d(Ep)/dt = d(E(K)
p )/dt + d(E(G)

p )/dt + d(E(K1)
p )/dt (B12)

where

d(E(K)
p )/dt

= KÛ2
0 [ω sin(2ωt) cos2(ωrt + ϕ0)−ωrsin

2(ωt) sin(2ωrt + 2ϕ0)]

(B13)

d(E(G)
p )/dt

= GÛ2
0 [ω sin(2ωt) sin2(ωrt + ϕ0) + ωrsin

2(ωt) cos(2ωrt + 2ϕ0)]

(B14)

d(E(K1)
p )/dt = K1(r1−r0)ṙ1 + K1(r2−r0)ṙ2 (B15)

Finally, the time rate of change in the internal energy is calculated
as

d(Etotal)/dt = d(Ek)/dt + d(Ep)/dt (B16)
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