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a b s t r a c t

In this letter, prestress is harnessed to break the spatial or/and time wave reciprocity and realize
asymmetric elastic wave propagations in the full elastodynamic context. Unlike other asymmetric
wave systems that rely on the complicated microstructures or multi-physical coupling, the proposed
metastructure is simply constructed with repetitive prismatic tensegrity cells (PTCs) where prestress
exists intrinsically. By investigating the prestress-trigged wave mode selection and conversion phe-
nomena with a theoretical model, we developed a new approach to achieve asymmetric elastic wave
propagation in the metastructure with modulated prestress distribution in space. Furthermore, by
expanding the prestress tuning in both space and time domains, the elastodynamic reciprocity is finally
broken in the tensegrity metastructure without introducing nonlinearity or external bias fields to the
system. Due to the simple construction and intrinsic tunability, the proposed tensegrity metastructure
design can be potentially useful in various applications, such as vibration isolation and elastic wave
communication.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Elastodynamic reciprocity is a fundamental principle that ap-
plies to both standing and propagating waves in linear struc-
tures [1]. Due to elastodynamic reciprocity, band structures of
time-invariant linear elastic material are symmetric about its
origin point k = 0, implying that waves propagate symmetrically
in opposing directions [2,3]. Breaking elastodynamic reciprocity
can lead to asymmetric elastic wave propagation [4–9], which
has great potential for applications in various engineering fields,
such as vibration mitigation, elastic wave communication and
structural health monitoring.

In recent years, increased interest in designing elastic meta-
materials or metastructures with artificial microstructures to
achieve asymmetric wave propagations has been witnessed [10–
15]. For example, Zhu [10] proposed a metamaterial plate with
time-invariant linear microstructures, which function as a wave
mode converter as well as a selective wave mode mirror, to
achieve asymmetric elastic wave propagation while still obeying
elastodynamic reciprocity. To truly break elastodynamic reci-
procity without external bias field, nonlinear [11,12] or spa-
tiotemporally varying properties [14–16] should be introduced
into the passive material system. Boechler [11] and Wallen [12]
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harnessed contact and geometric nonlinearity, respectively, to
achieve non-reciprocal elastic wave propagation in elastic ma-
terials. Vila [13] systematically investigated the non-reciprocal
dispersion properties of 1D linear elastic discrete system with
periodic time-varying coefficients. Nassar [14–16] theoretically
studied elastic metamaterials with modulated material properties
in both spatial and time domains, which results in asymmet-
ric elastic wave propagations. However, such analytical models
are far away from physical realization. To realize metamaterials
with reciprocity-breaking ability, additional active elements and
controlling circuits are added to the elastic microstructures [17–
19]. Still, those metamaterial/metastructure designs strongly rely
on the expensive microstructures and additional control systems.
Also, the lack of easy tunability hinders the implementation of
real applications of asymmetric wave propagation systems.

The introduction of electromechanical or magnetomechani-
cal coupling materials into the metastructure building blocks
provides a promising method to actively tune the overall wave
behavior. However, this can lead to large costs associated to the
presence of complicated external circuits and fabrication com-
plexity [20–25]. On the other hand, prestress has been lever-
aged to achieve various elastic wave manipulations in the full
elastodynamic context, such as broadband elastodynamic cloak-
ing [26,27] and stop bands control [28] in nonlinear elastic ma-
terials. Most recently, the studies on prestress-controlled wave
propagation in tensegrity metastructures open a new avenue for

https://doi.org/10.1016/j.eml.2020.100724
2352-4316/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.eml.2020.100724
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2020.100724&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ruizhu@bit.edu.cn
mailto:hugeng@bit.edu.cn
https://doi.org/10.1016/j.eml.2020.100724
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Y. Wang, W. Zhao, J.J. Rimoli et al. / Extreme Mechanics Letters 37 (2020) 100724

achieving simultaneous elastic wave controllability and easy tun-
ability in a linear structure where geometrical nonlinearity and
prestress-controlled elasticity can be found intrinsically [29–31].

In this letter, two kinds of tensegrity metastructures with
spatially-modulated time-invariant and spatiotemporally varying
prestress are designed to realize asymmetric and non-reciprocal
elastic wave propagation, respectively. The letter is arranged in
the following order. First, a theoretical model with coupled axial-
torsional effective stiffness is developed to study the wave mode
selection and conversion phenomena in the proposed metastruc-
ture consisting of prismatic tensegrity cells (PTCs). Then, tun-
able asymmetric elastic wave propagation is demonstrated by
harnessing the aforementioned wave phenomena with spatially
modulated prestress in the unaltered tensegrity metastructure.
Finally, non-reciprocal elastic wave propagation is realized by
expanding the prestress control in a tensegrity metastructure
with time–space modulation.

2. Theoretical model for prestress-controlled elastic wave
propagation in tensegrity metastructures

Fig. 1a shows the schematic of the PTC configuration. The PTC
consists two Aluminum (Al) disks at the top and bottom ends
with three Nylon cross-strings (gray colored) and three polylactic
acid (PLA) bars (yellow colored) between the disks. The properties
of each components of the PTC are listed in Table 1. It should
be noticed that without prestress in its building components, the
PTC is an under-constrained system and cannot keep its own
shape [32,33]. Therefore, prestress is an intrinsic property of a
PTC and the following metastructures.

In Fig. 1a, the prestress in a PTC’s string components, Ps, can
be determined as:

Ps = ks(Ls0 − Lsn) (1)

where ks is the string’s stiffness, Lsn and Ls0 are the nature length
of the strings and the length when the PTC is in its unloaded
equilibrium position. Since a stable unloaded structure requires
the relative angle of the PTC’s two end-disks to be 5π

6 [29], the
relation between Ls0 and the PTC’s geometrical parameters can
be obtained:

Ls0 =

√
(2 −

√
3)R2 + h2 (2)

And the prestress of the bars, Pb, has the following relationship
with Ps

Pb = −

√
(2 +

√
3)R2 + h2√

(2 −
√
3)R2 + h2

Ps (3)

The right-handed chiral arrangement of the PTC’s bars and
strings also offers a unique compression–rotation coupling, as
shown in Fig. 1a. To describe this coupling effect, an equivalent
model has been developed with an effective stiffness matrix [30]
and the constitutive equation is{

F
T

}
=

[
kh kc
kc km

]{
u
θ

}
(4)

where the two diagonal components of the 2 * 2 matrix are
the compression stiffness kh and the rotation stiffness km, re-
spectively. The off-diagonal components, kc , describe the afore-
mentioned compression–rotation coupling. By taking the partial
derivatives of the torque, T, and axial force, F, which are both
functions of u and θ , the prestress-related stiffness components
can be obtained.

A finite element (FE) model is also introduced to validate the
equivalent model with the help of commercial FE software ANSYS

V18, as shown in Fig. 1b. By understanding the working mecha-
nism of the proposed PTC, shell element, SHELL 281, and spring
element, LINK180, are selected for the disks and bars/strings,
respectively, to reduce the computational time while maintain-
ing the accuracy of the model. Spherical joints are used at the
connections between the strings/bars and the disks to permit the
rotational degrees of freedom (DoFs) of the LINK elements. Rigid
disk assumption is achieved by applying large elastic modulus to
the top and bottom disks. Prestress in the bars and strings are
applied with proper configurations in the corresponding LINK180
elements, respectively. Only axial force and torque are applied
on the PTC and therefore, only two DoFs, the relative rotational
angle, θ , and the relative axial displacement, u, between the two
end-disks, are considered.

Prestress plays a key role in the PTC’s compression–rotation
coupled stiffness. Fig. 1c demonstrates that the stiffness can be
tuned by changing the prestress in the strings. Both results ob-
tained from the theoretical and FE models are plotted for com-
parison purpose. First, very good agreement can be found be-
tween the two results suggesting that the equivalent model is
accurate enough to capture the coupling effect. Then, a prestress-
controlled range for each stiffness matrix component suggests the
potential for in situ elastic wave propagation tuning in any PTC-
based system. Furthermore, the monotonically varying coupling-
stiffness with the prestress indicates that an adjustable elastic
wave mode conversion can be achieved, which is the key for
our prestress-controlled asymmetric elastic wave metastructure
which will be explained in detail in the following section.

The prestress-controlled tunable asymmetric wave propaga-
tion can be obtained based on the wave mode selection and con-
version phenomena in a PTC-based compression–rotation cou-
pled metastructure, as shown in Fig. 2a. For linear elastic wave
propagations in the 1D infinite chain consisting of repetitive PTCs,
the governing equation of the nth cell can be written as

− ω2
[

m 0
0 J

]{
ũ
θ̃

}
=

[
kh(eiqh + e−iqh

− 2) kc(eiqh + e−iqh
− 2)

kc(eiqh + e−iqh
− 2) km(eiqh + e−iqh

− 2)

]{
ũ
θ̃

} (5)

where ũ and θ̃ are the amplitudes of the axial displacement
and rotational angle in the first PTC, respectively. An eigenvalue
problem can then be formed from Eq. (5) and the dispersion
results for two wave modes can be calculated:

ωL,H

=

√
1 − cos(kh)

mJ
(mkm + Jkh ∓

√
(mkm + Jkh)2 − 4mJ(kmkh − k2c ))

(6)

Both wave modes have compression–rotation coupled mo-
tions. The one with lower wave velocity is named as the lower
mode wave (L-wave) while the other one with higher wave ve-
locity is the higher mode wave (H-wave). A compression–rotation
ratio Ra∗

=
ũ
θ̃R

is defined to better distinguish the two wave
modes. By combining Eqs. (5) and (6), the ratios can then be
calculated as

(Ra∗)L,H = (
ũ
θ̃R

)L,H

=
2Jkc

R[mkm − Jkh ∓
√
(mkm + Jkh)2 − 4mJ(kmkh − k2c )]

(7)

Fig. 2b shows that the compression–rotation ratios change
with different prestress in the PTC’s strings. First, it is inter-
esting to find that the compression and rotational components
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Fig. 1. Reference configuration schematic, FEM model and tunable static stiffnesses of the PTC. (a) Reference configuration schematic of the PTC. (b) FEM model of
the PTC. (c) kh , kc and km change with the prestress of the string. P0 is the reference prestress.. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Schematic and wave property of the 1D PTCs chain. (a) Schematic of repetitive PTCs chain wave system. (b) The Ra∗ change with prestress in the strings.
(c)(d) FEM relative displacement map, results which represent relative displacement as color intensity with respect to position (horizontal axis) and time (vertical
axis) on the pulse excitation input. (c) pulse input, Ra∗ equal to −0.7(Ra∗ of L-wave). (d) Pulse input, Ra∗ equal to 0.7(Ra∗ of H-wave).

Table 1
The material and geometrical parameters of the PTC.
Material parameters Geometrical parameters

The mass of the disk (m) 17.3*10−3 (kg) Radius of the end-disks (R) 6.0*10−2 (m)
Moment of inertia of the disk (J) 311.0*10−7 (kg.m2) Height of the PTC (h) 9.5*10−2 (m)
Stiffness of the bars (kb) 5.4*104 (N/m)
Stiffness of the strings (ks) 4.6*104 (N/m)

of the two waves have inverse and same phases, respectively.
Also, it is noted that when the prestress increases, the com-
pression component of the L-wave increases while that of the
H-wave decreases, which offers a good way to achieve targeted
wave mode conversion via prestress adjustment. Finally, transient
wave propagation studies are performed numerically to validate

the existence and orthogonality of the two wave modes. In the
numerical studies, a metastructure chain made of 100 PTCs is in-
vestigated. Convergence tests of both the finite element mesh size
and the time steps have been conducted to ensure the accuracy
of the numerical results. The right end of the chain is fixed while
a pulse displacement excitation is applied to the left end as an
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Fig. 3. Dispersion curve and 100 unit cells FEM results with different prestress level. (a)(b)(c)(d) The dispersion curve and FEM result of the chain with prestress P0 .
(a) The dispersion curve of the infinite PTC chain system. (b) FEM result with rotation displacement pulse as the input, which represent relative displacement as color
intensity with respect to position (horizontal axis) and time (vertical axis). (c) FEM result, the displacement at t0 = 0.02. (d) FEM result, the rotation displacement
at t0 = 0.02. (e)(f) The dispersion curve and FEM result of the chain with changed prestress(0.35P0). (e) The dispersion curve of the infinite PTC chain system. (f)
FEM result of PTC chain with rotation displacement pulse as the input.. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

input source with Ra∗ being −0.7( L-mode) and 0.7 (H-mode), as
shown in Fig. 2(c) and 2(d), respectively. It is noticed that the
two wave modes propagate separately without energy exchange
to each other, which confirms their independent existences and
orthogonality.

The prestress-tuned wave behaviors are analyzed in the pro-
posed PTC-based metastructure. First, the dispersion properties
of the two wave modes in the metastructure can be obtained
by calculating Eq. (6) and the results are shown in Fig. 3(a). It is
found that the L-wave and H-wave have different cut-off frequen-
cies and therefore, only H-wave can pass in the frequency region
highlighted as the gray zone. This particular frequency region
can further be used for the wave mode selection purpose. Then,

the wave mode conversion is investigated. Fig. 3(b)–(d) show the
wave propagation results for a purely rotational displacement
pulse excitation. Although no axial-displacement exists in the
input wave, two waves with axial displacement components can
still be found propagating in the chain, as shown in Fig. 3(b). The
colored axial displacement map in the figure indicates that the
two waves have different wave fronts with negative and positive
displacements, respectively. Both axial and rotational displace-
ments in the chain are plotted at time point t0 = 0.02, as shown
in Fig. 3(c) and (d), respectively. By calculating the compression–
rotation ratio, Ra∗, from the two displacement results, it can
be found that Ra∗ for the two wave modes are 0.7 and −0.7,
which coincide with the previously defined H-wave and L-wave,
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Fig. 4. Asymmetric wave propagation metastructure model designed by the prestress and transfer matrix method result and FE results which represent relative
displacement as color intensity with respect to position (horizontal axis) and time (vertical axis). (a) Asymmetric wave propagation metastructure model designed
by the prestress. (b) TMM result, L wave (Ra∗ = −0.7) harmonic input with different excitation frequencies. (c)FE result, 10-peak tone burst L wave input with
1000 Hz central frequency, in the left side.(d) FE result, 10-peak tone burst L wave input with 1000 Hz central frequency, in the right side.. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

respectively. Therefore, it is confirmed that the purely rotational
input wave converses into the two H- and L-type output waves.
Finally, the prestress tuning on the wave mode selection and
conversion is investigated. Prestress, Ps = 0.35 P0, is applied to
each PTC of the metastructure chain and the altered dispersion
curves are shown in Fig. 3(e). It is noticed that changing the pre-
stress cannot only alter the compression–rotation ratios ((Ra∗)L=
−0.4 and (Ra∗)H = 1.3) and wave velocities of the two wave
modes, but also change their cut-off frequencies, which results
in a broader frequency range for the wave mode selection (larger
gray zone in the figure). Finally, Fig. 3(d) shows the FE results
of wave mode conversion under purely rotational wave input. A
decreased L-wave velocity can be found obviously comparing to
the results in Fig. 3(c), which confirms the changes in wave mode
conversion due to the prestress tuning.

3. Employing prestresses to generate asymmetric wave prop-
agation and break reciprocity

In this section, asymmetric elastic wave propagation is demon-
strated by harnessing the aforementioned wave mode selection
and conversion phenomena in the tensegrity metastructures with
specially designed prestress distribution. Fig. 4(a) shows the
schematic of the prestress distribution in the proposed metas-
tructure which, from left to right, consists of 8 PTCs with Ps =

0.35P0, 8 PTCs with gradually increasing Ps whose value between
0.35P0 to P0, and 8 PTCs with Ps = P0.

It has been demonstrated in the previous section that the
change in prestress can alter the properties of the waves, such
as Ra∗, as well as the cutoff frequency of certain wave mode,
which provides the basis for the prestress-trigged wave mode

conversion and selection, respectively. Fig. 4(b) shows the trans-
mission results of L-type input waves with different excitation
frequencies. Two cases, left-to-right and right-to-left propaga-
tions, are studied, which are marked with dash-dot and solid
lines, respectively. Transfer matrix method (TMM) is used to
obtain the results and the details can be found in Appendix A.
In the figure, it can be found that the input L-wave can pass from
one end to the other in both cases when the excitation frequency
is below the wave’s cut-off frequency (the lower boundary of
the blue shaded zone). Wave mode conversions are clearly ob-
served in both cases since not one but two transmission curves
can be found for each incidence. In particular, the notable H-
wave transmission curve (pink-color curve) in the right-to-left
transmission results is produced by the wave mode conversion
(from the excited L-wave Ra* = −0.7) inside the chain. What
really interests us happens inside the blue shaded zone, where
asymmetric wave propagation is realized since the input wave
can only propagate from left to right but not the other way
around. To understand how the asymmetric wave propagation is
trigged by the prestress distribution in the tensegrity metastruc-
ture, detailed investigations are conducted on the wave mode
conversion and selection in the blue shaded zone. When the input
L-wave (Ra∗

= −0.7) with excitation frequency at 1000 Hz
(inside the blue shaded zone) is applied to the left end, first wave
mode conversion happens, which converts the input L-wave into
a left end PTC (with Ps = 0.35P0) supported H-wave (Ra∗

= 1.3).
Then, the wave propagates through the middle part PTCs with
gradually increasing Ps, where second wave mode conversion
happens, which changes the H-wave’s Ra∗ into 0.7. It is noted that
few reflection happens due to the gradient prestress distribution.
In the other case, the same L-wave (Ra∗

= −0.7) is applied to
the right end. Instead of wave mode conversion, a wave mode
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Fig. 5. The time–space modulated prestress, the dispersion result of this system and the numerical result of the 1800 PTCs system with modulated prestress. (a)
The time–space modulated prestress. (b) The dispersion result of this system. (c) The numerical result 1800 PTCs with the fix boundary in both end. The input is a
100-peak tone burst force excitation in the center of the system.

selection first happens. Since the blue zone represents the stop
band for L-wave but pass band for H-wave (Ra∗

= 0.7), no
input L-wave can pass the right part of the metastructure, which
results in a total block of the right-to-left wave propagation.
Here, the asymmetric wave propagation is realized by applying
specific prestress distributions in all identical PTCs. Since the
prestress can easily be altered in tensegrity’s strings without any
changes in its elastic components, in-situ tuning of asymmetric
wave propagation’s direction as well as frequency range can be
achieved.

In order to validate the prestress design with a transient
asymmetric wave propagation, FE simulations are performed by
inputting a 10-peak tone burst L-wave excitation with 1000 Hz
central frequency, A0(1 − cos(2π fc t/10)) × sin(2π fc t), to each
end of the tensegrity metastructure. The results of left-to-right
and right-to-left wave transmissions are shown in Fig. 4c and 4d,
respectively. Since the input wave is within the blue shaded zone,
wave mode conversion happens in Fig. 4c which results in part of
the wave energy being transmitted to the right end, while wave
mode selection totally blocks the L-wave energy reaching the left
end, as shown in Fig. 4d.

The designed prestress distribution in spatial domain can lead
to asymmetric wave propagation with, however, unchanged reci-
procity in the metastructure. Here, we extend the prestress dis-
tribution design in both spatial and time domains in order to
realize non-reciprocal elastic wave propagation in the tensegrity
metastructure. The prestress tuning could be achieved in practice,
for example, with a hydraulic actuator. To break the time-reversal
symmetry, we introduce time–space modulated prestress in the

PTCs of the metastructure, as shown in Fig. 5a. A traveling wave-
like space–time domain modulation is applied and the prestress
of the nth PTC is P0 + 0.58P0 × sin( 2π ·nh

WLm
− ωmt), where ωm =

628 rad/s is chosen as the angular frequency of the time-domain
modulation while WLm = 3h is chosen as the wavelength of
the space-domain modulation. In order to force on the frequency
range where non-reciprocal wave propagation happens, each PTC
disk is grounded with a axial spring (0.5kh) and a torsion spring
(0.5km) to eliminate ultra-low frequency wave branches in the
calculated dispersion curves, as shown Fig. 5b. The dispersion
curves for the considered metastructure with time–space modu-
lated prestress is calculated by seeking for a plane wave solution
with modulated amplitude [13] and the details can be found
in Appendix B. First, non-mirror symmetry for the zero dimen-
sionless wave vector point is noticed in Fig. 5b, which directly
indicates that the elastodynamic reciprocity is broken and there-
fore, left-to-right and right-to-left waves behave differently in
the modulated metastructure. Then, particular attention is paid
on the gray zone, where the wave branch only appears on the
side with positive dimensionless wave vector. This indicates that
the wave can only propagate from left to right and asymmetric
wave propagation is realized by breaking the time-reciprocal
symmetry. Finally, to validate the non-reciprocal wave propa-
gating phenomena, we use fourth order Runge–Kutta method
to numerically investigate the transient wave propagation in a
metastructure chain consisting of 1800 PTCs and fixed bound-
aries in both ends. The aforementioned time–space modulated
prestress is applied to each PTC of the metastructure. The input
is a 100-peak tone burst force excitation with 1170 Hz central
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frequency, F0(1 − cos(2π fc t/100)) × sin(2π fc t). The excitation is
applied at the center of the chain. Fig. 5c shows the transient
wave results and it can be found that most wave energy is prop-
agating from left to right while almost no energy transmission
can be found in the other direction, which agrees well with the
dispersion result. Also, it should be mentioned that the size of
the metastructure is dependent on several factors, such as the
working frequency range, the high/low gradient design which can
affect the transmission loss and the modulated frequency in the
non-reciprocal system.

4. Conclusions

In this paper, a theoretical model with coupled axial-torsional
effective stiffness is first developed to study the
prestress-controlled wave selection and conversion phenomena
in tensegrity metastructures. Then, asymmetric wave propaga-
tion in the metastructure is realized with designed prestress
distribution in spatial domain. Finally, the non-reciprocal elas-
tic wave propagation is achieved by expanding the prestress
control in both spatial and time domains. Unlike other asym-
metric wave structure designs which strongly rely on the ex-
pensive microstructures and external control systems, the pro-
posed prestress-controlled tensegrity metastructures have the
advantages of easy realization and potentially in situ tunability.
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Appendix A. Transform matrix method for tensegrity metas-
tructure

The Transfer Matrix method is used to model the mechanical
behavior of a 1D PTC chains deriving a frequency-dependent func-
tion that describes net transmission of an incident harmonic wave
from one end of a finite structure through to the receiving end.
A lateral view schematic of the PTC chain is presented in Fig. A.1
where an PTC unit cell j is shown to be positioned between an
adjacent PTC unit cell j − 1 at its left and an adjacent PTC unit
cell j + 1 at its right. The jth PTC unit cell has mass mj, moment
of inertia Jj, and effective axial stiffness khj, effective coupling
stiffness kcj and effective rotation stiffness kmj, respectively. The
height of every unit cell is h.

The displacement field uj and rotation field θj in the z direction
are written as a superposition of forward and backward H-wave
and L-wave, which is shown in Eq. (7)

uj

= [A+

LjPLuje
iqLjz + A−

LjPLuje
−iqLjz + A+

HjPHuje
iqHjz + A−

HjPHuje
−iqHjz]e−iωt

θj

= [A+

LjPLθ je
iqLjz + A−

LjPLθ je
−iqLjz + A+

HjPHθ jeiqHjz + A−

HjPHθ je−iqHjz]e−iωt

(A.1)

Where

PHuj =

(
ũ√

ũ2 + θ̃2

)
Hj

, PHθ j =

(
θ̃√

ũ2 + θ̃2

)
Hj

,

PLuj =

(
ũ√

ũ2 + θ̃2

)
Lj

, PLθ j =

(
θ̃√

ũ2 + θ̃2

)
Lj

ω is the angular frequency of the wave, qHj and qLj are the wave
number of the H-wave and L-wave in the jth PTC unit cell, which
can be calculated by Eq. (5). A+

Lj , A
−

Lj , A
+

Hj, A
−

Hj are the amplitude
of forward and backward of H-wave and L-wave in jth unit cell,
respectively.

Calculating the force and torque in the boundaries of the jth
unit cell, omitted eiωt part, the relationship between displace-
ment, rotation angle, force, torque in the left side of the unit cell
and amplitude of the wave can be given as follow:⎡⎢⎢⎣

ujleft

θjleft

Fjleft
Tjleft

⎤⎥⎥⎦ =
[
Bjleft

]
⎡⎢⎢⎢⎢⎣

Aj
H+

Aj
H−

Aj
L+

Aj
L−

⎤⎥⎥⎥⎥⎦ (A.2)

Where the coefficient matrix[
Bjleft

]
= [Djleft ][Ej] (A.3)

where (see Box I). The stiffness coefficients are given as follow:

kFHj = khjPHju + kcjPHjθ , kFLj = khjPLju + kcjPLjθ ,
kTHj = kcjPHju + kmjPHjθ , kTLj = kcjPLju + kmjPLjθ

By the same method, the relationship between displacement,
rotation angle, force, torque in the right side of the unit cell and
amplitude of the wave can be given as follow:⎡⎢⎢⎣

ujright

θjright

Fjright
Tjright

⎤⎥⎥⎦ =
[
Bjright

]
⎡⎢⎢⎢⎢⎣

Aj
H+

Aj
H−

Aj
L+

Aj
L−

⎤⎥⎥⎥⎥⎦ (A.4)

Where the coefficient matrix (see Box II):
Consider the displacement, rotation angle, force and torque

continuous in the boundary,⎡⎢⎣ ujright
θjright
Fjright
Tjright

⎤⎥⎦ =

⎡⎢⎣ uj+1left
θj+1left
Fj+1lef t
Tj+1lef t

⎤⎥⎦ (A.5)

the transfer matrix between the jth and j + 1th unit cell can be
given as follow⎡⎢⎢⎣

Aj
H+

Aj
H−

Aj
L+

Aj
L−

⎤⎥⎥⎦ =
[
Bj+1left

]−1 [Bjright
]⎡⎢⎢⎣

Aj
H+

Aj
H−

Aj
L+

Aj
L−

⎤⎥⎥⎦ (A.6)
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Fig. A.1. Lateral view schematic of the PTC chain.

[
Ej
]

=

⎡⎢⎣ eiqHj(j−1)h 0 0 0
0 e−iqHj(j−1)h 0 0
0 0 eiqLj(j−1)h 0
0 0 0 e−iqLj(j−1)h

⎤⎥⎦
[
Djleft

]
=⎡⎢⎣ PHuj PHuj PLuj PLuj

PHθ j PHθ j PLθ j PLθ j
kFHj(eiqHjh − 1) + mjω

2PHuj kFHj(e−iqHjh − 1) + mjω
2PHuj kFLj(eiqLjh − 1) + mjω

2PLuj kFLj(e−iqLjh − 1) + mjω
2PLuj

kTHj(eiqHjh − 1) + Jjω2PHθ j kTHj(e−iqHjh − 1) + Jjω2PHθ j kTLj(eiqLjh − 1) + Jjω2PLθ j kTLj(e−iqLjh − 1) + Jjω2PLθ j

⎤⎥⎦

Box I.

[
Bjright

]
= [Djright ][Ej]

[
Dj,right

]
=

⎡⎢⎣ PHjueiqHjh PHjue−iqHjh PLjueiqLjh PLjue−iqLjh

PHjθeiqHjh PHjθe−iqHjh PLjθeiqLjh PLjθe−iqLjh

kFHj(eiqHjh − 1) kFHj(e−iqHjh − 1) kFLj(eiqLjh − 1) kFLj(e−iqLjh − 1)
kTHj(eiqHjh − 1) kTHj(e−iqHjh − 1) kTLj(eiqLjh − 1) kTLj(e−iqLjh − 1)

⎤⎥⎦
Box II.

By iterative use the Eq. (A.6), the transfer matrix between the first
and nth unit cell can be given as follow:⎡⎢⎢⎣

A1
H+

A1
H−

A1
L+

A1
L−

⎤⎥⎥⎦ = [T ]

⎡⎢⎣ An
H+

An
H−

An
L+

An
L−

⎤⎥⎦ (A.7)

where

[T ] = [B2left ]
−1

[B1right ][B3left ]
−1

[B2right ] . . . [Bnleft ]
−1

[Bn−1right ]

[T ] is a 4 × 4 matrix, an assumption that the metastructure has
no reflection in both sides. Then the Eq. (A.7) can be simplified as
follow[

A1
H+

A1
L+

]
=

[
T(1,1) T(1,3)
T(3,1) T(3,3)

][
An
H+

An
L+

]
(A.8)

The transmission of H-wave and L-wave for arbitrarily input can
be given by Eq. (A.8).

Appendix B. Dispersion curve calculated for time–space mod-
ulated prestress tensegrity metastructure

In this part, we main follow Vila’s work [13], and calculated
the dispersion curve of the metastructure with periodic time
modeled prestress, which is showed in Fig. 5a. So that, all three

stiffness coefficients that vary in time, and by constant inertia
coefficients. The prestress modulation is expressed as a traveling
wave propagating with velocity vm = WLm/Tm, where WLm = 3h
and Tm respectively denote the spatial wavelength and temporal
period of the modulation. Thus, at any given instant of time, it
is possible to describe the structure as the assembly of unit cells
that are identified by one spatial modulation period 3h. Based on
this description, the motion for the nth cell of the assembly can
be expressed as

Mün + K(l)
h (t)un−1 + Kh(t)un + K(r)

h (t)un+1 + K(l)
c (t)θn−1 + Kc(t)θn

+ K(r)
c (t)θn+1 = 0 (B.1)

Jθ̈n + K(l)
c (t)un−1 + Kc(t)un + K(r)

c (t)un+1 + K(l)
m (t)θn−1

+ Km(t)θn + K(r)
m (t)θn+1 = 0 (B.2)

where M, Kh, Kc , Km, un and θn denote the mass, compression
stiffness matrices, coupling stiffness matrices, rotation stiffness
matrices, a vector of displacement of the unit cell n and a vector of
rotation angle degrees of freedom of the unit cell n. The stiffness
matrices are all expressed as a periodic functions of time with
period Tm so that the following relation holds

Kh(t) = Kh(t + Tm)
Kc(t) = Kc(t + Tm)
Km(t) = Kh(t + Tm)

(B.3)
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[
K(l)

h (t)e−i3qnh
+ Kh(t) + K(r)

h (t)ei3qnh K(l)
c (t)e−i3qnh

+ Kc(t) + K(r)
c (t)ei3qnh

K(l)
c (t)e−i3qnh

+ Kc(t) + K(r)
c (t)ei3qnh K(l)

m (t)e−i3qnh
+ Km(t) + K(r)

m (t)ei3qnh

]{
un(t)
θn(t)

}
+

[
M 0
0 J

]{
ün(t)
θ̈n(t)

}
= 0

(B.4)

Box III.

Accordingly, each of the matrices in Eqs. (B.1) and (B.2) can be
expanded in terms of their Fourier series and expressed as

K(l)
h (t) =

∞∑
s=−∞

eisωmtK(l)
hs ,Kh(t) =

∞∑
s=−∞

eisωmtKhs,

K(r)
h (t) =

∞∑
s=−∞

eisωmtK(r)
hs ,

K(l)
c (t) =

∞∑
s=−∞

eisωmtK(l)
cs ,Kc(t) =

∞∑
s=−∞

eisωmtKcs,

K(r)
c (t) =

∞∑
s=−∞

eisωmtK(r)
cs

K(l)
m (t) =

∞∑
s=−∞

eisωmtK(l)
ms,Km(t) =

∞∑
s=−∞

eisωmtKms,

K(r)
m (t) =

∞∑
s=−∞

eisωmtK(r)
ms

(B.5)

Where ωm = 2π/Tm is the frequency associated with the tempo-
ral modulation. The dispersion relations for the considered time-
varying structure can be estimated, following the Hill-
determinant method, by seeking for a plane wave solution with
modulated amplitude, which is expressed as

un(t) = a(t)ei(3nqh+ωt), θn(t) = b(t)ei(3nqh+ωt) (B.6)

where a(t) = a(t + Tm), b(t) = b(t + Tm) is two periodic am-
plitude functions in time. The frequencies in the displacement
amplitude a(t) and rotation angle amplitude b(t) depend on the
stiffness modulation frequency ωm = 2π/Tm and it can be
expressed as a Fourier series in form

a(t) =

∞∑
z=−∞

azeizωmt , b(t) =

∞∑
z=−∞

bzeizωmt (B.7)

Based on the Bloch theory

un+1(t) = ei3qhun(t),un−1(t) = e−i3qhun(t)

θn+1(t)(t) = ei3qhθn(t), θn−1(t) = e−i3qhθn(t)
(B.8)

Substituting into Eqs. (B.1) and (B.2) gives as in Box III which may
be written as[

K̂h(q, t) K̂c(q, t)
K̂c(q, t) K̂m(q, t)

]{
un(t)
θn(t)

}
+

[
M 0
0 J

]{
ün(t)
θ̈n(t)

}
= 0

(B.9)

where

K̂h(q, t) = K(l)
h (t)e−i3qnh

+ Kh(t) + K(r)
h (t)ei3qnh

K̂c(q, t) = K(l)
c (t)e−i3qnh

+ Kc(t) + K(r)
c (t)ei3qnh

K̂m(q, t) = K(l)
m (t)e−i3qnh

+ Km(t) + K(r)
m (t)ei3qnh

Next, substituting Eq. (B.6) into Eq. (B.9) and performing har-
monic balance, by collecting the terms with frequency ω + zωm

we reach

− (ω + zωm)2
[

M 0
0 J

]{
az
bz

}
+

∞∑
s=−∞

[
K̂hs(q) K̂cs(q)
K̂cs(q) K̂ms(q)

]{
az−s
bz−s

}
= 0

(B.10)

Choosing a truncation order Z for the amplitude a(t) and b(t),
i.e., ap = 0 and bp = 0 for |z| ≤ Z. The solution of the following
quadratic eigenvalue problem with truncated terms.

− (ω + zωm)2
[

M 0
0 J

]{
az
bz

}
+

Z+z∑
s=−Z+z

[
K̂hs(q) K̂cs(q)
K̂cs(q) K̂ms(q)

]{
az−s
bz−s

}
= 0

(B.11)

Z = 1 is chosen in the study. Then the compression stiffness
matrix is given as follow:

K̂hs(q)

= 0.5khIδs,0 + kh

⎡⎣ 2 −1 −e−i3qh

−1 2 −1
−ei3qh 1 2

⎤⎦ δs,0

+ dkh

⎡⎣ eis2π/3
+ eis2π −eis2π/3

−e−is2πe−i3qh

−eis2π/3 eis4π/3
+ eis2π/3

−eis4π/3

−e−is2πei3qh −eis4π/3 eis2π + eis4π/3

⎤⎦ δs,±1

(B.12)

The coupling stiffness matrix is given as follow:

K̂cs(q)

= kc

⎡⎣ 2 −1 −e−i3qh

−1 2 −1
−ei3qh 1 2

⎤⎦ δs,0

+ dkc

⎡⎣ eis2π/3
+ eis2π −eis2π/3

−e−is2πe−i3qh

−eis2π/3 eis4π/3
+ eis2π/3

−eis4π/3

−e−is2πei3qh −eis4π/3 eis2π + eis4π/3

⎤⎦ δs,±1

(B.13)

The rotation stiffness matrix is given as follow:

K̂ms(q)

= 0.5kmIδs,0 + km

⎡⎣ 2 −1 −e−i3qh

−1 2 −1
−ei3qh 1 2

⎤⎦ δs,0

+ dkm

⎡⎣ eis2π/3
+ eis2π −eis2π/3

−e−is2πe−i3qh

−eis2π/3 eis4π/3
+ eis2π/3

−eis4π/3

−e−is2πei3qh −eis4π/3 eis2π + eis4π/3

⎤⎦
× δs,±1

(B.14)
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Thus leads to 6×(2Z+1) eigenvalues that are of the general form

λr,z = ωr + zωm (B.15)

With r = 1, 2, 3, textand z = −1, 0, 1. The associated eigenvec-
tors ar,z and br,z , can be expressed as:

ar,z = [az
−Z , . . . , a

z
0, . . . , a

z
+Z ]

T
r

br,z = [bz
−Z , . . . , b

z
0, . . . , b

z
+Z ]

T
r

(B.16)

Then, by solving eigenvalue problem obtained from the Eq.
(B.11), the dispersion result of the metastructure with peri-
odic time modulated prestress can be obtain, which is shown
in Fig. 5b.

References

[1] J.D. Achenbach, Reciprocity in Elastodynamics, Cambridge University Press,
2003.

[2] J.D. Achenbach, Wave Propagation in Elastic Solids, Elsevier Science, 1973.
[3] A.T. de Hoop, Handbook of Radiation and Scattering of Waves, Academic

Press, 1995.
[4] G. Trainiti, M. Ruzzene, Non-reciprocal elastic wave propagation in

spatiotemporal periodic structures, New J. Phys. 18 (2016) 83047.
[5] K. Yi, S. Karkar, M. Collet, One-way energy insulation using time-space

modulated structures, J. Sound Vib. 429 (2018) 162–175.
[6] J. Huang, X.M. Zhou, A time-varying mass metamaterial for non-reciprocal

wave propagation, Int. J. Solids Struct. 164 (2019) 25–36.
[7] P.A. Deymier, V. Gole, P. Lucas, J.O. Vasseur, K. Runge, Tailoring phonon

band structures with broken symmetry by shaping spatiotemporal mod-
ulations of stiffness in a one-dimensional elastic waveguide, Phys. Rev. B
96 (2017).

[8] M.A. Attarzadeh, M. Nouh, Non-reciprocal elastic wave propagation in 2D
phononic membranes with spatiotemporally varying material properties,
J. Sound Vib. 422 (2018) 264–277.

[9] A.A. Maznev, A.G. Every, O.B. Wright, Reciprocity in reflection and
transmission: what is a phonon diode? Wave Motion 50 (2013) 776–784.

[10] X. Zhu, X. Zou, B. Liang, J. Cheng, One-way mode transmission in
one-dimensional phononic crystal plates, J. Appl. Phys. 108 (2010) 124909.

[11] N. Boechler, G. Theocharis, C. Daraio, Bifurcation-based acoustic switching
and rectification, Nature Mater. 10 (2011) 665–668.

[12] S.P. Wallen, M.R. Haberman, Nonreciprocal wave phenomena in spring-
mass chains with effective stiffness modulation induced by geometric
nonlinearity, Phys. Rev. E. 99 (2019) 013001.

[13] J. Vila, R.K. Pal, M. Ruzzene, G. Trainiti, A Bloch-based procedure for
dispersion analysis of lattices with periodic time-varying properties, J.
Sound Vib. 406 (2017) 363–377.

[14] H. Nassar, H. Chen, A.N. Norris, M.R. Haberman, G.L. Huang, Non-reciprocal
wave propagation in modulated elastic metamaterials, Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 473 (2017) 0188.

[15] H. Nassar, H. Chen, A.N. Norris, G.L. Huang, Non-reciprocal flexural wave
propagation in a modulated metabeam, Extreme Mech. Lett. 15 (2017)
97–102.

[16] H. Nassar, X.C. Xu, A.N. Norris, G.L. Huang, Modulated phononic crystals:
Non-reciprocal wave propagation and Willis materials, J. Mech. Phys. Solids
101 (2017) 10–29.

[17] K. Yi, M. Ouisse, E. Sadoulet-Reboul, G. Matten, Active metamaterials with
broadband controllable stiffness for tunable band gaps and non-reciprocal
wave propagation, Smart Mater. Struct. 28 (2019) 065025.

[18] Y.F. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G.L. Huang, C. Daraio,
Observation of nonreciprocal wave propagation in a dynamic phononic
lattice, Phys. Rev. Lett. 121 (2018) 194301.

[19] G. Trainiti, Y. Xia, J. Marconi, G. Cazzulani, A. Erturk, M. Ruzzene, Time-
periodic stiffness modulation in elastic metamaterials for selective wave
filtering: theory and experiment, Phys. Rev. Lett. 122 (2019) 124301.

[20] Z. Wang, Q. Zhang, K. Zhang, G. Hu, Tunable digital metamaterial for
broadband vibration isolation at low frequency, Adv. Mater. 28 (2016)
9857–9861.

[21] Q. Zhang, Y. Chen, K. Zhang, G. Hu, Programmable elastic valley Hall
insulator with tunable interface propagation routes, Extreme Mech. Lett.
28 (2019) 76–80.

[22] A. Bergamini, T. Delpero, L. De Simoni, L. Di Lillo, M. Ruzzene, P. Er-
manni, Phononic crystal with adaptive connectivity, Adv. Mater. 2 (2013)
1343–1347.

[23] R. Zhu, Y.Y. Chen, M.V. Barnhart, G.K. Hu, C.T. Sun, G.L. Huang, Experimen-
tal study of an adaptive elastic metamaterial controlled by electric circuits,
Appl. Phys. Lett. 108 (2016) 011905.

[24] L. Airoldi, M. Ruzzene, Design of tunable acoustic metamaterials through
periodic arrays of resonant shunted piezos, New J. Phys. 13 (2011) 113010.

[25] Y.Y. Chen, R. Zhu, M.V. Barnhart, G.L. Huang, Enhanced flexural wave
sensing by adaptive gradient-index metamaterials, Sci. Rep. 6 (2016).

[26] W.J. Parnell, A.N. Norris, T. Shearer, Employing pre-stress to generate finite
cloaks for antiplane elastic waves, Appl. Phys. Lett. 100 (2012) 171907.

[27] W.J. Parnell, Nonlinear pre-stress for cloaking from antiplane elastic waves,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012) 563–580.

[28] K. Bertoldi, M.C. Boyce, Wave propagation and instabilities in mono-
lithic and periodically structured elastomeric materials undergoing large
deformations, Phys. Rev. B 78 (2008).

[29] R.K. Pal, M. Ruzzene, J.J. Rimoli, Tunable wave propagation by varying
prestrain in tensegrity-based periodic media, Extreme Mech. Lett. 22
(2018) 149–156.

[30] Y.T. Wang, X.N. Liu, R. Zhu, G.K. Hu, Wave propagation in tunable
lightweight tensegrity metastructure, Sci. Rep. 8 (2018).

[31] N. Ali, I. Smith, Dynamic behavior and vibration control of a tensegrity
structure, Int. J. Solids Struct. 47 (2010) 1285–1296.

[32] L. Zhang, Y. Li, Y. Cao, X. Feng, Stiffness matrix based form-finding method
of tensegrity structures, Eng. Struct. 58 (2014) 36–48.

[33] I.J. Oppenheim, W.O. Williams, Geometric effects in an elastic tensegrity
structure, J. Elasticity 59 (2000) 51–65.

http://refhub.elsevier.com/S2352-4316(20)30076-6/sb1
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb1
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb1
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb2
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb3
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb3
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb3
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb4
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb4
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb4
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb5
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb5
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb5
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb6
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb6
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb6
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb7
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb8
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb8
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb8
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb8
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb8
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb9
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb9
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb9
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb10
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb10
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb10
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb11
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb11
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb11
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb12
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb12
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb12
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb12
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb12
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb13
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb13
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb13
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb13
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb13
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb14
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb14
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb14
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb14
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb14
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb15
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb15
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb15
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb15
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb15
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb16
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb16
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb16
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb16
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb16
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb17
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb17
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb17
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb17
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb17
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb18
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb18
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb18
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb18
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb18
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb19
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb19
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb19
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb19
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb19
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb20
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb20
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb20
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb20
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb20
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb21
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb21
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb21
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb21
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb21
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb22
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb22
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb22
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb22
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb22
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb23
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb23
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb23
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb23
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb23
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb24
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb24
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb24
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb25
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb25
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb25
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb26
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb26
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb26
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb27
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb27
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb27
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb28
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb28
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb28
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb28
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb28
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb29
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb29
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb29
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb29
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb29
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb30
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb30
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb30
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb31
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb31
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb31
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb32
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb32
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb32
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb33
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb33
http://refhub.elsevier.com/S2352-4316(20)30076-6/sb33

	Prestress-controlled asymmetric wave propagation and reciprocity-breaking in tensegrity metastructure
	Introduction
	Theoretical model for prestress-controlled elastic wave propagation in tensegrity metastructures
	Employing prestresses to generate asymmetric wave propagation and break reciprocity
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Transform matrix method for tensegrity metastructure
	Appendix B. Dispersion curve calculated for time–space modulated prestress tensegrity metastructure
	References


