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a b s t r a c t

Insulation of water sound through impedance mismatch has the advantage of broadband effectiveness
compared to using materials with bandgaps induced either by local resonance or Bragg scattering. In
general, acoustic impedance of an isotropic solid under normal incidence condition is the product
of mass density and longitudinal wave velocity. It is derived here, the acoustic impedance of an
anisotropic solid depends additionally on a new parameter, and a carefully designed anisotropic
solid can achieve a very small impedance along a specific direction. Honeycomb beam lattice is
proposed as an example to achieve a much smaller effective impedance than water based on the
above principle. Numerical simulation shows, a thin slab, with an overall thickness being two orders of
magnitude smaller than the water wavelength, designed from the highly anisotropic lattice can reflect
almost 97.7% of incident acoustic energy. A deep subwavelength sample with a thickness 21 mm
is then fabricated and measured in a water tube. The experiment shows, the sample can reduce
sound transmission by nearly 18.7 dB over the low frequency range 1.5 kHz ∼3.5 kHz. This study
demonstrates the potential of anisotropic lattices in engineering effective impedance for insulating
water sound at low frequency.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Insulating water sound is of great value in underwater acous-
ics engineering, such as reducing noise by drilling equipment,
hielding underwater acoustic radiations. Traditionally, insula-
ion relies on impedance mismatch, where larger contrast in
mpedance leads to higher reflections or insulation [1,2]. Common
olids, such as metals or plastics, have impedances being nearly
000 times larger than air, and can effectively block air sound
ven with a small thickness. However, the impedance ratios
etween common solids and water are in the order of 10 due
o much larger density of water than air. Therefore, a heavy
olid plate with large thickness is unavoidable to block water
ound effectively. The situation is even worse when insulating
ow frequency water sound with larger wavelength.

In the past decades, materials with artificial microstructures,
.g., photonic/phononic crystals and metamaterials, have brought
orth many interesting phenomena beyond conventional materi-
ls [3–12]. Bandgaps, induced by Bragg scattering or local res-
nance, are used to prevent acoustic/elastic wave at specific
requency ranges [3]. Bragg bandgaps are due to destructive in-
erferences of waves with comparable wavelength to the lattice
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period, and usually occur at high frequency ranges. Apart from
Bragg scattering, stopping bands can also be formed in sub-
wavelength regimes by introduced local resonant elements [13–
17]. In such sub-wavelength regimes, the periodic structures be-
have as metamaterials with effective negative density or negative
modulus. They can block wave propagation since only evanes-
cent wave modes are allowed in such single negative materials.
However, both mechanisms suffer from a limited bandwidth.

The most feasible design with broadband efficiency returns
back to the traditional impedance mismatching. For the case
of sound waves normally incident onto an isotropic acoustic
medium or elastic solid, only longitudinal wave mode of the
medium is excited. Acoustic impedance of the medium is eval-
uated as the product of mass density and longitudinal wave
velocity [2]. To decrease the impedance, one possible solution
is reducing the mass density. Air is one such example with its
density being nearly 103 smaller than water. The impedance
of air is thus three orders of magnitude smaller than water,
and air is indeed one of the most efficient medium for block-
ing water sound. However, air suffers from an extremely small
modulus due to its very small density, and is not suitable for
practical underwater acoustic applications. Nowadays, the design
of acoustic material is not limited to isotropic materials. Arti-
ficial structures with effective anisotropic elastic properties are
frequently employed, and can be easily fabricated with current

advanced fabrication technology [18–20]. It is found in this paper

https://doi.org/10.1016/j.eml.2020.100916
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2020.100916&domain=pdf
mailto:hugeng@bit.edu.cn
https://doi.org/10.1016/j.eml.2020.100916


2 Y. Chen, B. Zhao, X. Liu et al. / Extreme Mechanics Letters 40 (2020) 100916

w
t
d
=(
Fig. 1. Transmission and reflection of normally incident acoustic waves onto a
water/solid interface. The solid is supposed to be orthotropic, and its material
principal direction is orientated at an angle θm with respect to the horizontal
direction.

that, for the case of sound waves normally incident onto an
orthotropic solid, its acoustic impedance differs significantly from
that of isotropic case. For general orientation of the principal axis
of an orthotropic solid, both quasi-transverse wave and quasi-
longitudinal wave are excited simultaneously. The impedance
then depends on a new parameter, in addition to the mass density
and the quasi-longitudinal wave velocity. The parameter is a
function of material anisotropy, orientation of the material as
well as the ratio between the quasi-transverse wave velocity and
quasi-longitudinal one. This provides us a new degree of freedom
to design acoustic impedance as required by using anisotropic mi-
crostructure. It will be shown that, an extremely small impedance
can be achieved by tailoring the anisotropic microstructure, while
the mass density and the wave velocity are not necessarily very
small. This finding enables us to design anisotropic microstruc-
tures with small impedance compared to water, and to explore
prominent sound insulation behavior with such solids.

This article is organized as follows. We first investigate acous-
tic transmission between water and an anisotropic solid, and
derive the conditions for obtaining low impedance. The derived
conditions are verified through sound insulation performance of
a slab with pre-assumed anisotropic material property. Secondly,
we propose a honeycomb beam lattice as example for realizing
the small effective impedance through microstructure design.
Numerical simulations are carried out to validate the impedance
design and its sound insulation behavior. Thirdly, experimental
sample based on the honeycomb beam lattice is fabricated and
experimentally tested in a water acoustic tube to demonstrate
its sound insulation performance at low frequency range. Finally
follows a brief summary.

2. Theory of sound insulation with anisotropic solids

We study the acoustic transmission of a plane wave normally
incident onto an interface separating water and a solid (Fig. 1).
We assume a mass density ρ0 = 1000 kg/m3 and a sound velocity
c0 = 1500 m/s for water. The solid material is supposed to
be orthotropic, and its material principal axis shows an angle
θm with respect to horizontal direction. For the case of aligned
principal axis to the interface, i.e., θm = 0◦ or 90◦, a normally
incident plane wave only excites purely longitudinal wave mode
in the solid. For the other angles θm ̸=0◦ and 90◦, both quasi-
longitudinal wave mode (qL mode) and quasi-transverse wave
mode (qT mode) will be excited. One should notice here, a purely
longitudinal wave mode or transverse wave mode exists only

along the principal axes of the orthotropic solid.
To derive the reflected pressure, we need to solve the two
wave modes in the solid. For the considered normally incident
plane waves, wave vector of the excited wave mode is along
+x direction. Therefore, displacement fields of the two modes
are u = u0exp(ikx), with k being the wave number and u0 =

{u0, v0} the displacement polarization. The time harmonic term,
exp(−iωt) with ω being the circular frequency is omitted. The
mass density of the orthotropic solid is assumed to be ρs and
the two-dimensional constitutive law in a global coordinate xoy
reads,⎛⎝σx

σy

σxy

⎞⎠ =

⎛⎝C11 C12 C16

C12 C22 C26

C16 C26 C66

⎞⎠⎛⎝εx

εy

γxy

⎞⎠ , (1)

here, σx, σy and σxy are the stress and, εx, εy and γxy are
he engineering strain, respectively. By substituting the above
isplacement fields into the dynamic elasticity equation –ω2ρsu
∇ · σ, and the following eigenvalue problem is derived,

C11k2 − ρsω
2 C16k2

C16k2 C66k2 − ρsω
2

)(
u0

v0

)
= 0. (2)

This equation has two non-trivial solutions, one corresponding to
the qL mode and the other to qT mode. Displacement fields for
the qL mode and qT mode are, respectively,

uqL = {1, tan θqL} exp(ikqLx) (3)

uqT = {1, tan θqT } exp(ikqT x) (4)

cqL =

√
C11 + C66 +

√
∆

2ρs
, θqL = tan−1 2C16

C11 − C66 +
√

∆
(5)

cqS =

√
C11 + C66 −

√
∆

2ρs
, θqS = tan−1 2C16

C11 − C66 −
√

∆
, (6)

in which, kqL = ω/cqL and kqT = ω/cqT are respectively the
wave numbers of the qL mode and qT mode, cqL and cqT are the
wave velocities, and ∆ = 4(C16)2 + (C11−C66)2. θqL and θqT are the
polarization angles, i.e., the angle between the vibration direction
of material particles and the wave vector, corresponding to the
qL mode and qT mode, respectively. The qL mode is closer to
longitudinal mode since θqL is smaller than 45◦. The two modes
become purely longitudinal (θqL = 0◦) or transversal (θqT = 90◦)
only if the material axis is parallel to the interface as mentioned
previously. For isotropic cases, the two modes are always purely
longitudinal and transversal.

Now we write the total pressure in water as

p1 = pi exp(ik0x) + pr exp(−ik0x), (7)

in which pi denotes the amplitude of the incident wave, and
k0 = ω/c0 is the wave number in water. For inclined material
principal axis, both the qL and qT modes in the solid will be
excited. Displacement fields in the solid is of the form u = tqLuqL
+ tqTuqT ,{
u = tqT exp(ikqT x) + tqL exp(ikqLx)
v = tqT tan θqT exp(ikqT x) + tqL tan θqL exp(ikqLx)

. (8)

tqL and tqT are the transmittance coefficient for the qL mode
and qT mode, respectively. By considering the continuous con-
dition for the normal displacement and the surface traction at
the water/solid interface, the following reflection coefficient is
obtained,

R =
pr

=
Z − ρ0c0 (9)
pi Z + ρ0c0
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where

Z = ηρscqL, η =
1 + tan2 θqL

1 +
(
cqL/cqT

)
tan2 θqL

. (10)

q. (9) is the same as acoustic reflection between two fluids.
herefore, one can consider Z as an effective acoustic impedance
f the solid. This effective acoustic impedance, Eq. (10), is valid
or both isotropic solids and anisotropic solids. For an isotropic
olid, the factor η is fixed to be η = 1 since tanθqL = 0,
and the impedance depends only on the density ρs and the
longitudinal wave cqL as expected. For an anisotropic solid, the
parameter η provides a new degree of freedom to tune the
effective impedance Z.

In order to achieve a high reflection for water sound, a much
larger impedance or a much smaller impedance than water is
needed. Higher impedance requires a much larger density or a
much larger sound velocity than water, which is hardly possible
with common solids. Usually, a very thick solid plate is required
to insulate water sound efficiently. For instance, in order to in-
sulate 90% energy of incident plane underwater acoustic waves
at 2 kHz, a steel plate with a thickness as large as 93 mm, or
with an area density 730 kg/m2, is unavoidable or an aluminum
plate with an even large thickness 299 mm and an area density
800 kg/m2 is required. An alternative strategy to block water
sound is to use materials with much smaller impedance than
water. Air is one example, and its impedance is three orders of
magnitude smaller than water because its mass density is three
orders of magnitude smaller. However, the extremely low density
of air also results in its very small modulus, and this limits its
practical applications in underwater environment. Here, as shown
in Eq. (10), by designing anisotropic material with an extremely
small factor η, it is possible to realize much smaller impedance
than water while the effective mass density is not necessarily
small. From Eq. (10), an extremely small η << 1 implies the
following three conditions:
(1) The anisotropy is necessary,
(2) The material principal axes are oblique to the interface, θm ̸=0
or 90◦,
(3) The quasi-transverse wave velocity is much smaller than the
quasi-longitudinal one, i.e. cqL/cqT >> 1.

The conditions (1) and (2) together ensure tanθqL ̸=0. To fig-
ure out what kind of orthotropic solids can achieve very small
impedance, we consider the following elasticity matrix in the
principal coordinate system,

C =

⎛⎜⎝C0
11 C0

12 0
C0
12 C0

22 0
0 0 C0

66

⎞⎟⎠ =

⎛⎝Λ−1 v 0
v Λ 0
0 0 µ

⎞⎠ KC (11)

in which

Λ =

√
C0
22

C0
11

, ν =
C0
12√

C0
11C

0
22

, µ =
C0
66√

C0
11C

0
22

, KC =

√
C0
11C

0
22.

(12)

he material anisotropy is partially determined by Λ. v and µ

are two parameters related to easy deformation modes [21]. If
the parameter v is close to 1 and the parameter µ is very small,
the material is called a bi-mode material, or a two-dimensional
pentamode material [22]. In such materials, the quasi-transverse
wave velocity is much smaller than the quasi-longitudinal wave
velocity. Therefore, the bi-mode material is one possible choice
to achieve extremely small impedance.

In the following plots, we consider five combinations for the
parameter group (v, µ). We set the anisotropy Λ = 5, and set ρ
s
and Kc to be the density and bulk modulus of water, ρs = ρ0
and Kc = K0 = 2.25 GPa, respectively. The effective acoustic
impedance, normalized by that of water Z0 = ρ0c0, is plotted
in Fig. 2 as a function of the material orientation angle θm. It
can be easily seen that, the achievable minimum impedance is
mainly determined by the parameter ν, while the other parame-
ter µ determines the range of θm available for small impedance.
Therefore, at least the parameter ν of the material should be close
to 1 to achieve a small impedance. Indeed, these materials can
be understood as uni-mode materials [22]. The anisotropic factor
Λ determines the angle, θmin = cos−1 √

Λ/(1 + Λ), for which
he minimal impedance is achieved. We also plot in Fig. 2(a) and
b) the Young’s modulus E as a function of the orientation angle
m. It is interesting to note that, for the case with the parameter
close to 1 (Fig. 1(a)), when the acoustic impedance reaches

he minimal, the Young’s modulus E is not necessarily minimal.
espite the above derived impedance is for normal incidence
ondition, it will be shown in the following that, highly reflection
s also preserved for oblique incidence.

To verify the above impedance analysis, we study acoustic
ransmission of a solid plate under normal and oblique plane
ave incidences (Fig. 3). Sound reduction index (SRI) is used to
haracterize the sound insulation performance, and is obtained
s −20log10|T | with T being the transmission coefficient. We
hoose the above material parameters, ρs = ρ0, Kc = K0, Λ =

, ν = 0.999 and µ = 0.001 for the solid plate. When the
aterial principal direction is aligned with the interface, i.e., θm =

◦, 90◦ the acoustic impedance is comparable to that of water
(θm = 0◦) = 0.45Z0, Z(θm = 90◦) = 2.24Z0. For the studied
ow frequency range fd/c0 = 0.05, or equivalently λ = c0/f

20d, the corresponding SRI in Fig. 3(b) is less than 1 dB for
ncident angles smaller than 30◦. If the material axis is chosen to
e θm = 28.5◦, the acoustic impedance becomes much smaller

Z(θm = 28.5◦) = 0.0385Z0. The calculated results in Fig. 3(c)
indicate a highly reflective behavior, and the SRI is larger than 20
dB for most incident angles and frequency. For instance, a 20 dB
reduction in transmission is achieved at a very low frequency f =

.0025c0/d. This means, 99% of the incident energy is reflected by
the plate, although the plate is extremely thin compared to the
wavelength λ = 400d. It is noted that, the horizontal bright blue
lines in Fig. 3(c) denotes Fabry–Perot resonant transmission. The
resonances are attributed to shear waves in the plate [23]. They
occur at very low frequencies due to the extremely small shear
wave velocity.

3. Microstructure design and numerical validation

The above investigations are all based on hypothetical material
parameters. Here, we will implement the low impedance by using
honeycomb beam lattice (Fig. 4(a)). The lattice can be treated
as a bi-mode material when the beams are sufficient thin, and
the corresponding parameter v and µ are respectively close to 1
and 0 [21]. We remark here that; the honeycomb lattice is not
the only choice. Indeed, from the previous analysis, lattices with
only the parameter v being close to 1 can be used to achieve low
impedance.

The honeycomb beam lattice is characterized by three dimen-
sionless parameters, i.e. the length ratio h/l, the dimensionless
beam thickness t/l and the topology angle β (Fig. 4(a)). The
lattice is isotropic when h = l and β = 60◦, otherwise be-
comes anisotropic. All the beams are assumed to be composed
of aluminum with mass density ρAl = 2700 kg/m3, Young’s
modulus EAl = 69 GPa and Poisson’s ratio vAl = 0.33. Plane
waves normally incident onto the lattice from the left, as indi-
cated by black arrows (Fig. 4(a)). We first study the achievable
effective properties’ range of the honeycomb beam lattice. For
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Fig. 2. Normalized effective acoustic impedance and Young’s modulus of orthotropic solids versus different material principal direction θm . Impedance is calculated
rom Eq. (10).
Fig. 3. (a) Sketch of acoustic transmission through solid plate. Material parameters of the solid plate are ρs = ρ0 , Kc = K0 , Λ = 5, ν = 0.999 and µ = 0.001. θm
indicates the material orientation angle, and θi indicates the incidence angle. (b) Calculated SRI versus normalized wave frequency fd/c0 and the incidence angle θi;
rincipal direction of the solid is parallel with the interface θm = 0◦; (c) The same as in (b) but for θm = 28.5◦ . (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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he geometry parameters 60◦
≤ β ≤ 80◦, 0.25 ≤ h/l ≤ 1.0,

.03 ≤ t/l ≤ 0.2, and the lattice orientation angle 0 ≤ θm ≤

0, Fig. 4(b) shows the attainable effective impedance and the
ffective mass density. Here, the effective material parameters are
etrieved based on dispersion relations [21]. The black curve is for
sotropic lattice with β = 60◦ and h/l = 1.0, where the effective
ass density and the effective impedance follows a power law
∼ ρ2. For anisotropic lattices with orientation angle θm = 0◦,

he achievable range of the effective impedance and the mass
ensity is as indicated by the pink region. If we allow for rotated
attice axis, i.e., θm ̸=90◦, the achievable properties cover a larger
pace. The available small effective impedance can be further
ecreased by an order of magnitude. Apparently, for the same
ffective mass density, we have a much broader design space
or the effective impedance by taking into account of anisotropy
nd lattice orientation, and particularly can achieve much smaller
ffective impedance.
We compare here an isotropic lattice (β = 60◦, h/l = 1.0

nd t/l = 0.059) and an anisotropic lattice (β = 74◦, h/l =

.25 and t/l = 0.03). The two lattices share the same effective
ensity ρs = 0.179ρ0. Effective elasticity parameters of the
sotropic lattice are C0

11 = C0
22 = 0.601K0, C0

12 = 0.593K0, and
0
66 = 0.004K0, and those of the anisotropic lattice are C0

11 =

.041K , C0
= 1.718K , C0

= 0.264K and C0
= 0.006K .
0 22 0 12 0 66 0
lthough the two lattices share the same porosity, their effective
mpedances are much different. The effective impedance of the
nisotropic lattice without rotating the material axis (marked as
in Fig. 4(b)) is smaller than the isotropic one (marked as A in

ig. 4(b)). Furthermore, by choosing a lattice orientation angle
m = 28.5◦, the effective impedance (marked as C in Fig. 4(b))
s further decreased. We show in Fig. 4(c) the simulated SRI of
he slabs with microstructures corresponding to the A, B and C
ases. The simulations are performed using coupled acoustic-solid
odule in COMSOL Multiphysics. Voids in the structures are filled
ith air (ρair = 1.29 kg/m3, cair = 343 m/s), and the background
egion is occupied by water (ρ0 = 1000 kg/m3, c0 = 1500 m/s).
he plate thickness is d = 21 mm. For the studied frequency
ange 0.1 kHz ≤ f ≤ 3.5 kHz, or equivalently 20d ≤ λ ≤ 700d,
he isotropic lattice (case A) is nearly transparent to water sound.
The anisotropic lattice without rotating the material axis (case B)
has a moderate insulation at high frequency range. For a rotated
material axis θm = 28.5◦ (case C), the anisotropic lattice shows
obvious sound insulation over the entire studied frequency range.
For instance, at a frequency 238 Hz (see arrow in Fig. 4(c)), despite
the wavelength is 300 times larger than the plate λ = 300d,
the lattice can block nearly 97.7% of the incident energy with
an SRI 16.4 dB. The sharp drop of sound insulation for case C in
Fig. 4(c) at around 3 kHz is also due to Fabry–Perot resonance
transmission, the same as in Fig. 3(c).
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Fig. 4. (a) Honeycomb lattice composed of beams with thickness t, length h and l and topology angle β . The lattice orientation forms an angle θm with respect to
orizontal direction; (b) Attainable effective impedance and effective mass density of the lattice with the geometry parameters 60◦

≤ β ≤ 80◦ , 0.25 ≤ h/l ≤ 1.0,
.03 ≤ t/l ≤ 0.2, and the orientation angle 0 ≤ θm ≤ 90; (c) Numerically simulated SRI for slabs composed of isotropic and anisotropic lattices, respectively.
Fig. 5. (a) Simulated pressure fields for transient plane waves incident onto a microstructured slab assembled from isotropic lattice (case A in Fig. 4(b)) at different
ime. (b) (c) The same as in (a) but for anisotropic lattice without rotating the principal direction (case B in Fig. 4(b)), and with rotated principal direction (case C
n Fig. 4(b)), respectively.
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i
T
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Furthermore, we simulate the transient response of the three
icrostructured slabs under the incidence of a Gaussian pulse
xp(−(π t/3000)2) × cos(2π fct), with a central frequency fc =

38 Hz. The Gaussian pulse lasts for about two periods t = 2/fc =

.4 ms, and has a half-amplitude width 143 Hz. As expected, the
ncident wave completely transmits through the slab composed
f the isotropic lattice (Fig. 5(a)). For the slab corresponding to the
nisotropic lattice without rotating the material axis (Fig. 5(b)),
he result is similar due to the significant large wavelength com-
ared to the slab λ = 300d. However, once the anisotropic
attice is rotated, the corresponding slab almost totally reflects
he incident wave (Fig. 5(c)). Since all the three lattices have the
ame porosity, one can conclude that, both the anisotropy and
he rotated material axis are necessary in reducing the effective
mpedance of the lattice.
. Experiment verification

Finally, we experimentally verify the proposed water sound
nsulation design by using the above honeycomb beam lattice.
he experiment sample is composed of anisotropic beam lattice
ith the same geometry parameter as in Case C (β = 60◦, h/l =

0.25, and l = 10 mm), except for that a larger beam thickness
t/l = 0.05 is used instead. Thicker beams reduce the insula-
tion performance, however facilitate the fabrication. A circular
microstructure slab (see inset of Fig. 6(a)) is fabricated using
the advance electric discharging machining technology with an
accuracy tolerance 0.02 mm. The sample has a diameter 200 mm
and a thickness 21 mm, and is sealed with a 2-mm-thick rubber
to prevent water from entering into the void. The principal axis
of the lattice is also chosen as θm = 28.5◦. The effective acoustic
impedance of the lattice is 2 orders of magnitude smaller than
that of water, Z = 0.0536Z . The sample is sandwiched in
eff 0
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Fig. 6. (a) Fabricated aluminum sample and setup for the underwater sound transmission experiment; Underwater sound wave is generated by a transducer at
the top and pressure signals at the four marked locations are measured by hydrophones; (b) Measured transient acoustic signals at the four locations; (c) Fourier
transformed amplitude for incident signal at location 1 and transmitted signal at location 3. (d) SRI evaluated from the incident and transmitted signals.
the middle of a water tube (Fig. 6(a)). Transient acoustic waves
incident onto the sample from the top end, and pressures at the
four indicated locations are measured.

The incident wave is also a Gaussian pulse as in the numerical
imulation. Due to the frequency limitation of the experiment
ystem, the central frequency of the Gaussian pulse is 2.5 kHz.
he measured signals at the four locations are shown in Fig. 6(b).
rom the measured signals at the backward locations (Loc.1 and
oc. 2), the reflective signals after the incident wave are clearly
bserved, and their amplitudes are slightly weaker than the in-
ident ones. Due to a short distance of the measured position
o the sample, reflected pulse at positions 2 partially overlaps
ith the incident one. For the forward locations 3 and 4, the
ransmitted signals are much weaker than the incident ones as
xpected. To quantify the SRI, we perform Fourier transformation
o the incident pulse at position 1 and transmitted one at position
. The central frequency is clearly around 2.5 kHz, and a half
mplitude width extends from 1.5 kHz to 3.5 kHz is observed
Fig. 6(c)). The SRI is obtained as −20×Log10(AT/AI), where AT/AI
represents the Fourier transformed amplitude of the transmitted
and incident wave packet. The measured SRI is nearly 18.7 dB
in average over the frequency range. The result indicates a very
prominent insulation performance of the microstructure slab. In
addition, the measurement agrees very well with theory based on
homogenized material properties.

5. Conclusions

Through theoretical analysis of acoustic transmission between
water and anisotropic solids, we find that, the effective
impedance of anisotropic solids can be tailored by a new param-
eter in addition to the mass density and the quasi-longitudinal
wave velocity. Therefore, by tuning this parameter, we proposed
to realize anisotropic solids with extremely small impedance
and applied them to insulate low frequency water sound. To
obtain extremely small impedance, the material should be highly
anisotropy and the material principal direction should be oblique
with respect to the interface, and most importantly the quasi-
transverse wave velocity should be as small as possible compared
to the quasi-longitudinal one. The above design principles have
been verified by using pre-assumed continuum anisotropic ma-
terials and actual honeycomb lattice. Furthermore, a microstruc-
tured slab based on highly anisotropic honeycomb beam lattice
is fabricated, and experiment is carried out to verify the designed
sound insulation behavior. The measurement shows an average
of sound reduction index 18.7 dB for incident water sound at
the low frequency range 1.5 kHz to 3.5 kHz. This study provides
a novel strategy to the design acoustic impedance from highly
anisotropic solids.
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