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Asymmetric droplet splashing
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The ideal droplet impact, i.e., the orthogonal impact on a smooth surface, results in the
formation of an axisymmetric lamella followed by various symmetry-breaking instabilities.
Impacts found in nature are nonideal, i.e., are affected by symmetry-breaking factors, e.g.,
surface topography, surface elasticity, impact nonorthogonality, etc. This work is focused
on oblique impacts. The lamella retains a nearly circular shape during the early stages of
such impacts, showing a weak effect of the inclination angle. A strong effect is observed
during splashing which occurs at different locations along the lamella edge. The variations
of the location of the border between the splash and no-splash zones as a function of the
relevant parameters were determined. New features of the splashing referred to as abnormal
splashing were observed at reduced ambient pressures. It is shown that the abnormal
splashing is a direct consequence of the nonmonotonic variations of the threshold pressure
as a function of the Weber number for orthogonal impacts. A simple model being able
to capture the basic features of the splash process was proposed and validated through
comparisons with the experimental results.

DOI: 10.1103/PhysRevFluids.5.073603

I. INTRODUCTION

Following its impact on a dry, smooth surface, a droplet forms a thin radial lamella. The
lamella detaches from the surface and ejects secondary droplets if the impact velocity exceeds a
certain threshold, resulting in the splashing phenomenon. Droplet splashing is ubiquitous both in
nature and in a variety of applications including aerosol formation, ink printing, spray coating,
cooling, cleaning, combustion, and pesticide delivery. It has been studied by numerous researchers
[1–4] following Worthington’s original investigation [5]. Several mechanisms explaining splashing
have been proposed, including the inertial dynamics [6–8], the air film dynamics under the
lamella [9–16], and the lamella aerodynamics [17–19]. A consensus explaining the observed
phenomena has yet to be reached [1], and this is due to the rapid droplet evolution and numerous
contributing effects, including droplet properties (kinematics [6–8], surface tension [10,20–22],
viscosity [20,23]), impact surface properties (wettability [24–26], roughness [6,7,9,20,22,27–30],
moving velocity [31–34], inclination angle [10,35–38], temperature [39,40], and surface flexibility
[41]), and ambient gas properties (pressure [23,28,29,32,38,42] and molecular weights [42]).

While most impacts encountered in nature and in applications are oblique, they have attracted
limited interest [10,35–38] and remain rather poorly understood. Very recently, we investigated the
suppression of droplet splashing on an inclined surface and developed a model to predict threshold
parameters for upward and downward splashes [38]. The observation method (side view) provided
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FIG. 1. (a) Sketch of the experimental setup. Vn and Vt stand for the normal- and tangential-to-the-surface
components of V0, respectively. (b) A typical image (α = 40◦, We = 513). (c) Sketch of the top view of the
evolution of lamella following droplet impact. O0 and OT identify the initial impact point and the center of
lamella at time T, respectively. Gu, G, and Gd identify points at the lamella tip corresponding to the radial
angles of 0°, ϕspl, 180°, where ϕspl stands for the splash angle with splash occurring for 180◦ > ϕ > ϕspl. Vl,n,ϕ

is the normal velocity component of the lamella tip at G. Vt,n and Vt,t stand for the normal- and tangential-to-
the-lamella-edge velocity components of Vt , respectively. L is the distance between the roots of the first-ejected
secondary droplets on both sides of the lamella at the instant they are ejected. Da,l is the diameter of the attached
lamella at the same instant. Black arrows point in the downward direction.

the means for observing droplet evolution along the vertical cut through the droplet, leaving the
full three-dimensional structure unexplored. In order to observe the three-dimensional structure, we
developed a new technique based on observation from underneath the impact surface. This method
was originally used to observe the air film trapped underneath a droplet [15,43–50]. By decreasing
the spatial resolution and by using droplet as a lens [49,50] [see Fig. 1(a)], we are able to increase
the observation area and can identify several features of the impact process, including formation of
the lamella, and its lifting and breakup into secondary droplets [see Figs. 1(b) and 4].

Four types of impacts were observed in this study: impacts with no splashing, with normal
splashing, with upward-only splashing, and with wing splashing. The lamella remains attached
to the surface for the no-splash impact. For the normal-splash impact, the splash occurs for the
lamella segment ϕspl � ϕ � 180◦ (see Fig. 4). Here the splash angle ϕspl is defined as the radial
angle ϕ measured downward from the slope line up to the location where splashing begins to occur
[see Fig. 1(c)]. For the upward-only-splash impact, the splash occurs at the upward segment of
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the lamella for 0◦ � ϕ � ϕspl,d [see Figs. 6(c) and 6(d)]. For the wing-splash impact, the splash
occurs in the lamella segments ϕspl,u � ϕ � ϕspl,d on both sides of the lamella [see Fig. 7(c)].
Here, ϕspl,u and ϕspl,d denote the radial angles marking the beginning and the end of the splash
zone, respectively. Needless to say, ϕspl,u = ϕspl,d = 180◦ for a no-splash impact, ϕspl,u = ϕspl, and
ϕspl,d = 180◦ for the normal-splash impact. The upward-only and the wing splash are referred
to as the abnormal splashes. Both the normal and the abnormal splashes display the up/down
asymmetry.

We found that the lamella maintains an approximately circular shape during the early stages of
the impact. We determined variations of the radial splash angle ϕspl as a function of the inclination
angle α, the Weber number We = ρD0V 2

0 /σ , and the ambient pressure P, and observed abnormal
splashing at reduced pressure. Here ρ is the liquid density, D0 the droplet diameter, V0 the impact
velocity, and σ the surface tension. We extended the existing two-dimensional model predicting
lamella tip velocity to three-dimensional configurations and used it to predict the lamella tip velocity
around the spreading circle. The model predictions agree reasonably well with the experimental
observations.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(a). By placing an LED light source (Godox SL-200W)
about 50 mm away from the impact point, the droplet can be used as a lens to observe the impact
process from underneath of the impact surface. A Photron SA1.1 high-speed camera was used
to record the impact process at rates of up to 40 000 fps and with a spatial resolution of up to
10 μm/pixel. To achieve the required spatial resolution, a 105 mm microlens (Nikon AF Micro
Nikkor 1:2.8D) and three spacer rings (Nikon) were used. The resolution of the images is up to 512
× 512. A typical image recorded using this method displayed in Fig. 1(b) shows rich phenomena
including formation of lamella, its lifting, propagation of contact line separating lifted and attached
segments of lamella, and formation of secondary droplets. As shown in Fig. 1(b), the area where
lamella is attached to the surface is brighter than the area where lamella is detached from the surface,
and this is due to different refraction of light. The boundary between these two areas is referred to
as the contact line.

The spreading diameter is determined by extracting the location of the contact line using the
software IMAGEJ. The error in identification of the location of contact line is less than one pixel for
splashes with ϕspl > 90◦, which results in error in measuring diameter of no more than two pixels
[see Fig. 5(b)]. This error increases for splashes with ϕspl < 90◦ up to six pixels as the contact line is
more diffused in the images and uncertainty in the determination of its location is can be up to three
pixels [see Figs. 1(b) and 5(a)]. As the typical diameters are larger than 150 pixels at the instant of
the first ejection of the secondary droplets, the error of determination of lamella diameter is either
less than 1.3%(ϕspl > 90◦) or less than 4.0%(ϕspl > 90◦).

Ethanol of density ρ = 791 kg/m3, dynamic viscosity μ = 1.19 mPa s, and surface tension σ =
22.9 mN m−1 [22,32,38] was used in the experiments and the ambient temperature was kept at
24 ± 1 ◦C A syringe pump with a flat-tipped needle was used to create droplet which was released
from height H above the impact surface. The droplet release occurred naturally by slowly increasing
its mass until its weigh overcome adhesion forces. This process resulted in droplets with diameter
D0 = 1.74 ± 0.05 mm. As the droplet diameter is close to the capillary length [50] of ethanol, lc =√

σ/(ρg) = 1.72 mm, no shape oscillations were observed before the impact. Here g = 9.81 m/s2

is the gravitational acceleration. The impact velocity V0 was varied from 1.5 to 3.24 m/s by changing
release height H, with the corresponding Weber numbers varying from 135 to 643.

The impact surface was made from transparent acrylic with the mean roughness amplitude of
Ra = 0.011 μm [22]. A rotary table with inclination angle α in the range of 0°–90° was used to
adjust α with a precision of ±0.1° [38] [see Fig. 1(a)]. The experimental apparatus was placed in a
transparent vacuum chamber where gas pressure P could be adjusted in a range of 10–101 kPa.
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FIG. 2. (a) Images of the impacting droplet for α = 40◦, We = 361. Dv and Dh are the vertical and
horizontal spreading diameters (see Movie S1 for more details [51]). (b) The same images transformed to
imitate viewing in the direction normal to the impacted plate with dashed circles illustrating lamella location.
(c) Variations of the diameter ratio η = Dv_a/Dh, where Dv_a = Dv/sin α, as function of t and α for We = 260.
(d) Variations of η at t = 1 as a function of We and α. Error bars indicate the standard deviation.

III. RESULTS AND DISCUSSION FOR ATMOSPHERIC PRESSURE

A. Evolution of the lamella shape

Evolution of the lamella shape following an oblique impact is not well understood. Our
observations show that the droplet moves along the surface due to the existence of Vt [see Fig. 1(a)].
Consequently, one would expect a noncircular lamella. We begin the discussion of the spreading
process for Weber numbers below the splash threshold where the boundaries between the three
phases (gas, liquid, and solid) can be clearly identified.

As shown in Fig. 2(a), variations of the horizontal (Dh) and vertical (Dv ) spreading diameters
as functions of nondimensional time t = TV0/D0 can be determined using the recorded images,
where T is the time measured from the beginning of the impact. Images displayed in Fig. 2(b)
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FIG. 3. Sketch of the outward velocity (solid arrows) along the periphery following impacts on surfaces
with α = 0◦ (a), α = b (b), and α = c (c), where 0◦ < b < c. Circles illustrate positions of the spreading lamella
tip.

correspond to the viewing direction being orthogonal to the impacted plate, i.e., these are images
taken from Fig. 2(a) transformed by stretching the vertical direction by a factor of 1/sin(α). The
spreading lamella retains a nearly circular shape during the early stages of the impact, i.e., Dh

approximately equals Dv/sin(α). This effect is documented through time variations of the diameter
ratio η = [Dv/ sin(α)]/Dh displayed in Fig. 2(c), which demonstrates that η < 1.1 for time up to
t = 1, but increases thereafter with a more rapid increase for larger α’s. The first droplet ejection
typically occurs before time reaches t = 1, with η being at that instant less than 1.1 for all Weber
numbers used in the experiment [see Fig. 2(d)]. The shape of the spreading lamella can therefore
be assumed as being circular during the early stages of the impact process, which means that our
results can be viewed as a leading order approximation with the error being O(ε) or smaller, where
ε = |1 − η|. This assumption is used in the formulation of the definition of the splash angle ϕspl [see
Fig. 1(c)] and its determination [see Figs. 5(a) and 5(b)], as well as in building the theoretical model,
where the outward velocity Vl,n,ϕ of the lamella tip along the circular periphery is asymmetric on an
inclined surface, as shown in Fig. 3; please see Sec. III C for detailed information.

B. Progressive splash suppression

Figure 4 shows the time evolution of droplets impacting on surfaces with various inclination
angles α at We = 416. Each row represents a different α, each column represents a different t . The
images demonstrate progressive splash suppression with an increase of α consistent with previous
research [38]. Figure 4(a) illustrates the splash occurring all around the lamella. Figures 4(b) and
4(c) show elimination of splash in the upwards segments of the lamella with the length of the
splashing portion decreasing with an increase of α. Figure 4(d) demonstrates that no splash occurs
when the inclination angle reaches 50°.

An increase of We leads to an increase of the splashing portion of the lamella as illustrated
in Figs. 5(a) and 5(b). Based on the experimental observations that the lamella retains a nearly
circular shape during the early stages of the impact process, the position of the border between the
splashing and nonsplashing lamella segments corresponds to the radial angle ϕspl = arcsin(L/Da,l )
[see Fig. 1(c)] for definitions of L and Da,l ). Figure 5(a) explains how these distances are measured.
When the border between the splash and no-splash zones is located below the center of the attached
lamella, ϕspl = 180◦ − arcsin(L/Da,l ), as illustrated in Fig. 5(b).

Figure 5(c) shows variations of ϕspl as a function of We and α. The data represent averages of
data extracted from at least three experiments. The splashing portion of the lamella increases with
an increase of We (ϕspl decreases). Increase of the inclination angle results in higher We’s required
to trigger splashing on the same portion of lamella.
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FIG. 4. Effect of the inclination angle α on the droplet splashing for We = 416 (see Movie S2 for more
details [51]). The scale bar corresponds to 1.0 mm. (a) α = 20◦, splash occurs everywhere around the lamella.
(b) α = 30◦ and (c) α = 40◦, splash occurs only at a part of the lamella. (d) α = 50◦, there is no splash.

C. Discussion

To interpret the experimental results, the impact velocity V0 is decomposed into the normal-to-
the-surface (Vn) and parallel-to-the-surface (Vt ) components [see Fig. 1(a)], i.e.,

Vn = V0 cos α, Vt = V0 sin α. (1)

Vt can be further decomposed into the normal-to-the-lamella-tip (Vt,n) and tangential-to-the-lamella-
edge (Vt,t ) components [see point G in Fig. 1(c)]

Vt,n = Vt cos ϕ, Vt,t = Vt sin ϕ, (2)

where ϕ is the radial angle giving location of point G and advantage was taken of experimental
observations showing that the lamella retains a nearly circular shape during the early stages of the
impact.

Since the splash is symmetric with respect to the slope, it is enough to analyze the lamella
movement for ϕ ∈ 〈0◦, 180◦〉. As proposed by Gordillo and Riboux [19], it is the gas lubrication
layer underneath the lamella tip that dominates the vertical lift force which drives the splashing.
The lubrication pressure is proportional to the normal-to-the-lamella-tip velocity component Vl,n,ϕ

which, therefore, needs to be determined in the analysis, whereas the tangential-to-the-lamella-tip
velocity component Vl,t,ϕ = Vt,t plays no role in the splash onset. Vl,n,ϕ results from two effects: the
first one is the orthogonal impact with velocity Vn leading to the spreading velocity Vl , determined
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FIG. 5. (a) and (b) Droplet evolution during impact for α = 40◦ and We = 541, 416, respectively (see
Movie S3 for more details [51]). (c) Variations of the radial splash angle ϕspl as a function of We and α. Error
bars indicate the standard deviation. Threshold Weber number for ϕspl = 0◦ was determined for the upward
splash, while in the case of ϕspl = 180◦ it was determined for the downward splashes, resulting in the absence
of error bars. The upward splash was not observed for α = 50◦ even at the highest We used in this study and,
therefore, there are no data at ϕspl = 0◦. Solid lines correspond to the theoretical results based on the modified
RG model (see text for details). (d) Variations of the lamella tip velocity Vl determined using the modified RG
model for We = 416 as a function of ϕ. The black solid line represents the threshold velocity for the orthogonal
impact.

using the relation proposed by Riboux and Gordillo (RG) [17],

Vl =
√

3/2
√

D0Vn/2T (3)

the second effect is the tangential movement of the droplet with respect to the impact plate with
velocity Vt . Combining these two effects gives a relation for Vl,n,ϕ in the form

Vl,n,ϕ = Vl − Vt,n = Vl − V0 sin α cos ϕ (0◦ � ϕ � 180◦). (4)

This relation reduces for ϕ = 0◦,180° to relations giving the upward and downward velocities of
the lamella tip presented in Ref. [38]. The outward velocity of the lamella tip at the beginning of
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droplet ejection (Vle,n,ϕ ) is of special interest. This quantity can be determined by first computing the
dimensionless lamella ejection time te = 2TeVn/D0 from the momentum balance of the form [17]

√
3/2Re−1t−1/2

e + Re−2Oh−2 = 1.21 t3/2
e (5)

where Te stands for the moment of the initiation of lamella formation, Re = ρVnD0/2μ is the
Reynolds number, and Oh = μ/

√
ρD0σ/2 is the Ohnesorge number, then determining Vle using

Eq. (3), and, finally, computing Vle,n,ϕ using Eq. (4). Variations of Vle,n,ϕ for We = 416 determined
in this manner as a function of ϕ and α are illustrated in Fig. 5(d).

Splash occurs only if the velocity of the lamella tip exceeds a certain threshold Vl,t [38]. This
threshold is known for the orthogonal impact and can be used as a reference point for the oblique
impact. The threshold Weber number for the orthogonal impact corresponds in our experiments
to We = 286, and this value combined with Eqs. (3) and (5) was used to determine Vl,t , which
is marked in Fig. 4(d) using a thick black solid line. The lamella lifts up at locations along its
circumference where Vle,n,ϕ > Vl,t . This means that it lifts up everywhere when α = 20◦ [Fig. 4(a)].
Only a portion lifts up when α = 30◦ [Fig. 4(b)] and α = 40◦ [Fig. 4(c)]. The tip velocity is lower
than Vl,t everywhere when α = 50◦ [Fig. 4(d)] and no splash occurs under such conditions.

For a Weber number resulting in a splash occurring at a certain α, the lamella tip velocity Vle,n,ϕ

increases with ϕ until Vle,n,ϕ = Vl,t , which marks the border between the splash and no-splash
zones. This point corresponds in Fig. 5(d) to the intersection of the line showing variations of
Vle,n,ϕ as a function of ϕ with the threshold Vl,t , and its position defines the threshold angle
ϕspl,α . These thresholds are marked in Fig. 5(d) in the case of α = 30◦, 40◦ as ϕspl,α=30◦ and
ϕspl,α=40◦ , respectively. Splash occurs for ϕ > ϕspl,α under otherwise identical conditions. The actual
determination of the threshold angle starts with the substitution of the known Vle,n,ϕ (= Vl,t ) into
Eqs. (3)–(5) and determination of the corresponding ϕspl for a specified We and α. The predicted
variations of ϕspl as a function of We and α displayed in Fig. 5(c) agree reasonably with the
experimental data, which suggests that the splash onset is determined by the outward velocity of
the lamella tip.

The simple model presented above does not consider many factors which could affect splashing,
e.g., fluid movement inside the droplet, gravity effects, formation of various boundary layers,
etc. While its predictions somewhat underestimate the experimental results for α = 20◦–40◦ and
overestimate a bit for α = 50◦, they nevertheless properly capture the overall trends, which suggests
that the model properly accounts for the dominant physical factors.

IV. RESULTS AND DISCUSSION FOR THE REDUCED AMBIENT PRESSURE

A. The constant Weber number case

Reduction of the ambient pressure P in general suppresses droplet splashing in the sense that
it occurs later while its pattern remains unchanged, i.e., the splashing occurs for ϕspl � ϕ � 180◦.
This is documented in Figs. 6(a), 6(b), 6(e), 7(a), 7(b), 7(d), and 8, and it is consistent with the
previously reported observations [38,42]. There is, however, a narrow range of pressures where
either the upward-only splashing, as illustrated in Figs. 6(c) and 6(d), or the wing splashing, as
illustrated in Fig. 7(c), occurs. In Figs. 6(c) and 6(d) ejection from the downward portion of the
lamella is observed after a fairly long time from the beginning of the impact. We define the upward-
only splash based on the very initial stages of the impact and, accordingly, we classify these impacts
of as upward only. The splash displayed in Fig. 7(c) is characterized by formation of droplet trains
in the form of wings and we refer to it as the wing splash. The abnormal splashes were observed
only at low inclination angles, i.e., they were observed for α = 20◦ and α = 30◦, but when the
inclination angle increased to α = 40◦, ϕspl increased monotonically with pressure reduction (see
Fig. 8).

Results displayed in Fig. 6 demonstrate that splashing on a surface with α = 20◦ is marginally
affected by the ambient pressure if this pressure is larger than 51 kPa. For ambient pressures in the
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1.440.900.54t = 0.18

P = 101 kPa

36 kPa

51 kPa

(a)

(b)
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(e)

43 kPa

46 kPa

FIG. 6. Effect of the ambient pressure on the droplet splashing for α = 20◦, We = 593 (see Movie S4 for
more details [51]). Each column represents a different dimensionless time t and each row represents a different
ambient pressure. (a) P =101 kPa, ϕspl = 0◦. (b) P = 51 kPa, ϕspl = 0◦. (c) P = 42 kPa, upward-only splashing.
(d) P = 39 kPa, upward-only splashing. (e) P = 36 kPa, no splashing.

range 51 > P > 38.5 kPa, the upward-only splashes occur. Decrease of the ambient pressure below
36 kPa eliminates splashing. Results displayed in Fig. 8 show no abnormal splashing for α = 40◦ in
the range of pressures used in this study.

Variations of ϕspl as a function of P were measured experimentally for We = 593. The blue
(51 > P > 38.5 kPa) and orange (36 > P > 31 kPa) zones in Fig. 9(a) show that the widths of the
zones for the abnormal splashing decrease with an increase of α until such splashes are eliminated,
which occurs at α = 40◦ for the conditions used in the experiments. The threshold pressure required
to suppress the downward splash decreases with a decrease of the inclination angle in agreement
with the previous study [38], as illustrated by points located furthest to the left in Fig. 9(a).

Variations of ϕspl at a reduced pressure as a function of α and We can be predicted using
information from the orthogonal impact [38]. As a starting point, the threshold pressure Pt for
such impact was measured for We in the range 286 to 643 with the results displayed in Fig. 9(b).
The threshold pressure initially decreases, then increases, and then remains nearly constant as We
increases, in agreement with the previous observations [38,42] at lower We’s. These observations
predicted another decrease with a further increase of We but such conditions could not be reproduced
in our apparatus due to a limited height of its vacuum chamber. The reasons for the nonmonotonic
variations are not understood [38,42] with their resolution deserving further attention.

Following the previous study [38], we assume that the threshold lamella tip velocities are the
same for orthogonal and oblique impacts at the same pressure. Conditions leading to the same
lamella tip velocities in both types of impacts need to be determined. As conditions vary along
the lamella circumference in the oblique impact, this equivalence can be established only locally
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(c)

(d)

1.81.080.36t = 0.18

P = 101 kPa

41kPa

31 kPa

33 kPa

FIG. 7. Effect of the ambient pressure on droplet splashing for α = 30◦, We = 593 (see Movie S5 for
more details [51]). Rows and columns correspond to different P’s and times t , respectively. (a) P = 101 kPa,
ϕspl = 0˚. (b) P = 41 kPa, ϕspl = 84˚. (c) P =33 kPa. Wing splashing occurs for 71◦ � ϕ � 127◦. (d) P =
31 kPa, ϕspl = 180˚.

leading to the concept of the local equivalent orthogonal impact velocity (EOIV). Figure 10 shows
that EOIV is the orthogonal impact velocity which results in the lamella tip velocity Vle equal
to the lamella tip velocity Vle,n,ϕ at location ϕ (point G) during oblique impact with velocity V0

and inclination angle α. Vle,n,ϕ can be determined using Eqs (3)–(5). We determine EOIV from
Eqs. (3) and (5) using condition Vle = Vle,n,ϕ . Determination of the local equivalent orthogonal
Weber number (EOWN) follows with V0 being replaced by EOIV.

In the next step to predict ϕspl, the local EOWN was determined for We and the position along
the lamella circumference defined by ϕ using Eqs (3)–(5). The results are illustrated in Fig. 9(b) for
We = 593 using solid color lines. In the third and final step, Pt is determined for ϕ of interest by
selecting this ϕ on the right axis in Fig. 9(b), then determining EOWN for the inclination angle of
interest and, finally, determining Pt using data from the orthogonal impact. The relevant information
flow is illustrated in Fig. 9(b) using the dash-dotted lines. The solid lines displayed in Fig. 11 were
determined using the above process. Use of information presented in Fig. 11(a) permits theoretical
determination of ϕspl’s for various P’s (these P’s must be larger than P’s producing abnormal
splashing) at We = 593 with the results being consistent with the experiments [see solid lines in
Fig. 9(a)].

Figure 11(a) illustrates variations of the threshold pressure determined using the available theory
and Pt for the orthogonal impact as a function of ϕ and α for We = 593. When α = 40◦, Pt

decreases monotonically as ϕ increases, which is consistent with the experimental results displayed
in Fig. 8. When α = 30◦, Pt initially decreases and then increases with ϕ which characterizes
the wing splashing displayed in Fig. 7(c). When α = 20◦, Pt remains constant for ϕ <∼ 45◦ and
ϕ >∼ 105◦ but increases with ϕ for 45◦ < ϕ < 105◦ which characterizes the upward-only splashing
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FIG. 8. Effect of the ambient pressure on the droplet splashing for α = 40◦, We = 593 (see Movie S6 for
more details [51]). Each column represents a different dimensionless time t and each row represents a different
ambient pressure. (a) P = 101 kPa, ϕspl = 64◦. (b) P = 51 kPa, ϕspl = 108◦. (c) P = 41 kPa, ϕspl = 117◦.
(d) P = 31 kPa, ϕspl = 180◦.

documented in Figs. 6(c) and 6(d). The blue area in Fig. 11(a) indicates pressure range (36–46 kPa)
resulting in the upward-only splashing for α = 20◦ while the light-brown area indicates pressure
range (36.0–42.8 kPa) for the wing splashing at α = 30◦. The predicted ranges agree qualitatively
with the results displayed in Fig. 9(a), where the pressure range for the abnormal splashing at
α = 20◦ is larger than that at α = 30◦.

Information in Fig. 11(a) is also used to determine ϕspl’s for various pressures at a certain α

and We = 593, with the green dash-dotted line illustrating the information flow required for the
determination of this angle. To illustrate use of this figure, consider ambient pressure P = 80 kPa
which is marked using black dotted line. This pressure is selected as it is higher than pressures
leading to abnormal splashing; analysis of abnormal splashing is presented later in this discussion.
If Pt at a given ϕ and α is higher than 80 kPa, the lamella does not splash at this location at this
inclination angle and P = 80 kPa. Otherwise, splashing occurs. Intersection of line Pt (ϕ) with
the line giving the ambient pressure P = 80 kPa defines the threshold angle ϕspl,α with splashing
occurring for ϕ > ϕspl,α . This threshold is marked as ϕspl,α=40◦ . The theoretically determined ϕspl’s
are illustrated using solid lines in Fig. 9(a) and are consistent with the experimental data points
given by symbols in Fig. 9(a).

Figure 11(b) provides a closer look at impacts with α = 20◦, where ranges of threshold pressure
leading to the normal splash (P > 46 kPa), the upward-only splash (46 > P > 36 kPa), and no
splash (P < 36 kPa) can be identified for We = 593. The reader may recall that the normal splash
for such α results in splashing for ϕspl � ϕ � 180◦ and upward-only splash gives splashing for

073603-11



HAO, LU, ZHANG, WU, HU, AND FLORYAN

FIG. 9. (a) Variations of ϕspl as a function of P for We = 593. Error bars indicate the standard deviation.
The blue and orange zones identify conditions leading to the abnormal splashing for α = 20◦ and α = 30◦,
respectively. The solid lines illustrate theoretical results. (b) Variations of Pt as a function of We for the
orthogonal impact (black circles), where error bars indicate the uncertainty, and variations of the local EOWN
(solid lines) as a function of the radial angle ϕ for We = 593. Dash-dotted lines illustrate flow of information
used in the theoretical determination of Pt required to initiate splashing at a given ϕ.

0◦ � ϕ � ϕspl,d . To explain use of this plot in predicting splashing properties, select ambient
pressure P = 41 kPa. Splashing occurs for the lamella segment 0◦ < ϕ < ϕspl,d =∼ 76◦ as Pt ’s
required to produce splash for ϕ >∼ 76◦ are larger than this pressure. Images displayed in Fig. 7(d)
show that splashing does indeed occur for ϕ � 68°, which is in a reasonable agreement with these
predictions. Increasing the ambient pressure to P = 43 kPa triggers splashing below ϕspl,d =∼ 87◦,
which compares favorably with images displayed in Figs. 6(c) and 6(d).

The wing splash displayed in Fig. 6(c) requires further discussion. The orange line in Fig. 11(c)
illustrates variations of Pt as a function of ϕ for the conditions used in the experiment. The
nonmonotonic character of these variations, which is similar to that reported for the orthogonal
impact see Fig. 9(b), suggests that the same physical processes become important for both types of
impacts under similar ambient pressures. The difference between oblique and orthogonal impacts
is due to variations of the local conditions along the lamella circumference in the former case
while these conditions remain constant in the latter case. Variation of the local conditions lead

Gd
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O0

G
Vle,n, Vle EOIV

FIG. 10. Sketch explaining concept of the local equivalent erthogonal impact velocity (EOIV). (a) Top view
of the oblique impact. Symbols are as indicated in Fig. 1(c). Vle,n,ϕ is the lamella tip velocity at the moment
of initiation of lamella formation at the specified location (ϕ) along the lamella, specified inclination angle
(α), and specified impact velocity (V0). Black arrow points in the downward direction. (b) Side view of the
orthogonal impact. Vle is the lamella tip velocity at the moment of initiation of lamella formation with the
impact velocity V0 set to be equal to the EOIV.
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FIG. 11. (a) Variations of the theoretically determined threshold pressure as a function of the radial angle
ϕ for We = 593 and α = 20◦ (blue line), 30° (orange line), and 40° (green line). The green dash-dotted lines
illustrate the information flow required for determination of ϕspl from the known P. The blue and light-brown
zones identify the pressure ranges for the abnormal splash for α = 20◦, 30°, respectively. (b) Variations of
the threshold pressure Pt as a function of the radial angle ϕ for We = 593, α = 20◦ (solid blue line). The
green, blue, and yellow areas illustrate pressure ranges for the normal splash, upward-only splash, and no
splash, respectively. The thin dotted lines identify splash angles ϕspl,d defining location of the end of the splash
zone for Pt = 41, 43 kPa. (c) Variations of the threshold pressure Pt as a function of the radial angle ϕ for
We = 593, α = 30◦ (solid orange line). The green, orange, and yellow areas illustrate pressure ranges for
the normal splash, wing splash, and no splash, respectively. The thin dotted lines identify splash angles ϕspl,d

defining location of the end of the splash zone for Pt = 41, 43 kPa. (d) Variations of the threshold pressure
Pt as a function of the radial angle ϕ for We = 593, α = 40◦° (solid green line). The green and yellow areas
illustrate pressure ranges for the normal splash and no splash conditions, respectively.

to abnormal splashing documented here. The theoretical model shows that normal splashing occurs
for P > 42.8 kPa, the wing splashing occurs for 36 < P < 42.8 kPa and no splashing occurs for
P < 36 kPa. Now consider a certain value of the ambient pressure, e.g., P = 39 kPa. Results given
in Fig. 11(c) show that when ϕ <∼ 70◦ or ϕ >∼ 140◦ Pt ’s are larger than this pressure and,
therefore, no splashing can take place. Images displayed in Fig. 6(c) show splashing occurring
for 71◦ � ϕ � 127◦ in reasonable agreement with these predictions. The reader should note that
P = 33 kPa was used in the experiment and no splashing should take place under such conditions
according to the theory. The error is associated with the error in measuring the threshold pressure
for the orthogonal impact as discussed before, so only qualitative agreement between predictions
and experiments can be claimed in this case.

It is shown that the nonmonotonic variations of the threshold pressure as a function of We
can be directly observed in the splash evolution during an oblique impact. Both the upward-only
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FIG. 12. Effect of the Weber number on the droplet splashing for P = 51 kPa, α = 30◦ (see Movie S7 for
more details [51]). Each column represents a different dimensional time T and each row represents a different
Weber number We. (a) We = 593, ϕspl = 30◦. (b) We = 537, ϕspl = 68◦. (c) We = 485, ϕspl = 124◦. (d) We =
406, ϕspl = 180◦.

splashing displayed in Figs. 6(c) and 6(d) and the wing splashing displayed in Fig. 7(c) contradict
the assumption that it is the lift force (which is proportional to the lamella tip velocity) that drives the
droplet splashing (see Sec. III and [17–19,38]) but phenomena illustrated in Figs. 3 and 4 support
this assumption. The resolution of these differences and explanation of the processes dominating
system response in each case deserve future scrutiny.

Figure 11(d) illustrates transition between the normal splash and no splash for We = 593, α =
40◦. Normal splash occurs for P > 36 kPa and no splash for P < 36 kPa, in agreement with images
displayed in Fig. 8.

B. The fixed ambient pressure case

Results displayed in Fig. 12 show that the splash angle ϕspl increases monotonically with
a decrease of We for α = 30◦ for the constant ambient pressure of P = 51 kPa, while results
displayed in Fig. 13 show that ϕspl increases monotonically with an increase of the inclination angle
α for We = 593 and the same ambient pressure.

Variations of ϕspl as a function of We and α at P = 51 kPa illustrated in Fig. 14(a) demonstrate
that ϕspl decreases monotonically with an increase in α and a decrease of We. Phenomenological
results demonstrating similar dependencies are given in Figs. 12 and 13.

A similar process was used to determine ϕspl for various We’s at P = 51 kPa. We determine
the local EOWN as a function of the radial angle ϕ and the Weber number We for α = 20◦, with
results illustrated using color lines in Fig. 14(b) and providing the basis for the determination of
the threshold pressure Pt . The information flow required to determine Pt is illustrated using orange
dash-dotted lines, and the results of this process, i.e., computed Pt ’s, are displayed in Fig. 14(c). To
illustrate use of this figure, consider ambient pressure P = 51 kPa which is marked using a black
dotted line. If Pt at a given ϕ and We is higher than 51 kPa, the lamella does not splash at this location
at this We and at this pressure. Otherwise, splashing occurs. Intersection of line Pt (ϕ) with the line
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FIG. 13. Effect of the inclination angle α on the droplet splashing for P = 51 kPa, We = 593 (see Movie
S8 for more details [51]). Each column represents a different dimensionless time t and each row represents a
different inclination angle. (a) α = 20◦, ϕspl = 0◦. (b) α = 30◦, ϕspl = 30◦. (c) α = 40◦

˚, ϕspl = 108◦.
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FIG. 14. (a) Variations of ϕspl as a function of We for P = 51 kPa. Error bars indicate the standard deviation.
The solid lines illustrate theoretical results. (b) Variations of the equivalent orthogonal Weber number (EOWN)
as a function of the radial angle ϕ for α = 20◦ for selected Weber numbers identified using color solid lines.
The orange dash-dotted lines illustrate the information flow required for the determining Pt ’s for a typical
combination of ϕ and We. Circles identify the experimentally determined Pt ’s for the orthogonal impact.
(c) Variations of the theoretically determined threshold pressure Pt as a function of the radial angle ϕ at various
We’s for α = 20◦. The dash-dotted lines illustrate information flow required for the determination of ϕspl,We for
selected We’s for the ambient pressure of P = 51 kPa.
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FIG. 15. (a) Variations of the equivalent orthogonal Weber number (EOWN) as a function of the radial
angle ϕ for α = 30◦ for selected Weber numbers identified using color solid lines. The orange dash-dotted
lines illustrate the information flow required for determination of Pt ’s for a typical combination of ϕ and We.
Circles identify the experimentally determined Pt ’s for the orthogonal impact. (b) Variations of the theoretically
determined threshold pressure Pt as a function of the radial angle ϕ at various We’s for α = 30◦. The dash-
dotted lines illustrate information flow required for the determination of ϕspl,We for selected We’s for the ambient
pressure of P = 51 kPa.

giving the ambient pressure P = 51 kPa defines the threshold angle ϕspl,We for this Weber number at
P = 51 kPa with splashing occurring for ϕ > ϕspl,We. These thresholds are marked in Fig. 14(c) for
We = 406, 471 as ϕspl,We=406 and ϕspl,We=471, respectively. The theoretically determined ϕspl’s are
illustrated using blue line in Fig. 14(a) and are consistent with the experimental data points given
by blue circles in Fig. 14(a). The reader may note that these predictions are affected by the error in
the determination of the threshold pressure for the orthogonal impact.

Similar analysis is repeated for α = 30◦, with results displayed in Figs. 15(a) and 15(b). The
theoretically determined ϕspl’s are illustrated using orange line in Fig. 14(a) and are consistent with
the experimental observations [see orange rectangles in Fig. 14(a)].

Pt

We EOWN

We

Pt P

We

spl,We=695
spl,We=541

spl,We=615 spl,We=471

FIG. 16. (a) Variations of the equivalent orthogonal Weber number (EOWN) as a function of the radial
angle ϕ for α = 40◦ for selected Weber numbers identified using color solid lines. The orange dash-dotted
lines illustrate the information flow required for determination of Pt ’s for a typical combination of ϕ and We.
Circles identify the experimentally determined Pt ’s for the orthogonal impact. (b) Variations of the theoretically
determined threshold pressure Pt as a function of the radial angle ϕ at various We’s for α = 40◦. The dash-
dotted lines with arrows illustrate information flow for determination of ϕspl,We for selected We’s for the ambient
pressure of P = 51 kPa.
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The same analysis has been carried out for α = 40◦ with results displayed in Figs. 16(a) and
16(b). The theoretically determined ϕspl’s are illustrated using the green line in Fig. 14(a) and are
consistent with the experimental observations [see green diamonds in Fig. 14(a)].

V. CONCLUSION

Droplet impacts on inclined surfaces were observed from underneath the impacted plate using
the droplet as a lens. It was found that the lamella maintained a circular shape during the early
stages of the impact. The splash angle ϕspl increased monotonically with an increase of the Weber
number We and a decrease of the inclination angle α at atmospheric pressure, whereas abnormal
splashing was observed at reduced pressures. Predictions based on an extended model match the
experiments and suggest that the outward velocity of the lamella tip determines the splash onset
even for abnormal splashes. The abnormal splashing is shown to be a direct consequence of the
nonmonotonic variations of the threshold pressure as a function of the Weber number for orthogonal
impacts. The results provide a basis for the development of splash control strategies based on the
combination of the inclination angle and the ambient pressure, including control of the location and
size of the splashing zone.

ACKNOWLEDGMENTS

We would like to thank Prof. S. Ma, Prof. Q. Tian, and Dr. Q. Ma, for kindly providing us the
high-speed camera. This study was financially supported by National Key R&D Program of China
under Grant No. 2018YFF0300800, the National Natural Science Foundation of China under Grant
No. 51406012, and 111 Project under Grant No. B16003.

[1] C. Josserand and S. T. Thoroddsen, Drop impact on a solid surface, Annu. Rev. Fluid Mech. 48, 365
(2016).

[2] A. L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing …, Annu. Rev. Fluid Mech.
38, 159 (2006).

[3] S. T. Thoroddsen, T. G. Etoh, and K. Takehara, High-speed imaging of drops and bubbles, Annu. Rev.
Fluid Mech. 40, 257 (2008).

[4] G. Liang and I. Mudawar, Review of drop impact on heated walls, Int. J. Heat Mass Tran. 106, 103 (2017).
[5] A. M. Worthington, On the forms assumed by drops of fluids falling vertically on a horizontal plate, Proc.

R. Soc. London 25, 261 (1876).
[6] C. D. Stow and M. G. Hadfield, An experimental investigation of fluid flow resulting from the impact of

a water drop with an unyielding dry surface, Proc. R. Soc. A. 373, 419 (1981).
[7] C. Mundo, M. Sommerfeld, and C. Tropea, Droplet-wall collisions: experimental studies of the deforma-

tion and breakup process, Int. J. Multiphase Flow 21, 151 (1995).
[8] S. T. Thoroddsen, K. Takehara, and T. G. Etoh, Micro-splashing by drop impacts, J. Fluid Mech. 706, 560

(2012).
[9] L. Xu, Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Rev. E. 75, 056316 (2007).

[10] J. Liu, H. Vu, S. S. Yoon, R. Jepsen, and G. Aguilar, Splashing phenomena during liquid droplet impact,
Atom. Spray. 20, 297 (2010).

[11] Y. Liu, P. Tan, and L. Xu, Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on
smooth surfaces, Proc. Natl. Acad. Sci. USA 112, 3280 (2015).

[12] Z. Jian, C. Josserand, S. Popinet, P. Ray, and S. Zaleski, Two mechanisms of droplet splashing on a solid
substrate, J. Fluid Mech. 835, 1065 (2018).

[13] S. Mandre, M. Mani, and M. P. Brenner, Precursors to Splashing of Liquid Droplets on a Solid Surface,
Phys. Rev. Lett. 102, 134502 (2009).

073603-17

https://doi.org/10.1146/annurev-fluid-122414-034401
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1146/annurev.fluid.40.111406.102215
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.031
https://doi.org/10.1098/rspl.1876.0048
https://doi.org/10.1098/rspa.1981.0002
https://doi.org/10.1016/0301-9322(94)00069-V
https://doi.org/10.1017/jfm.2012.281
https://doi.org/10.1103/PhysRevE.75.056316
https://doi.org/10.1615/AtomizSpr.v20.i4.30
https://doi.org/10.1073/pnas.1417718112
https://doi.org/10.1017/jfm.2017.768
https://doi.org/10.1103/PhysRevLett.102.134502


HAO, LU, ZHANG, WU, HU, AND FLORYAN

[14] S. Mandre and M. P. Brenner, The mechanism of a splash on a dry solid surface, J. Fluid Mech. 690, 148
(2012).

[15] J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, Skating on
a Film of Air: Drops Impacting on a Surface, Phys. Rev. Lett. 108, 074503 (2012).

[16] L. Duchemin and C. Josserand, Rarefied gas correction for the bubble entrapment singularity in drop
impacts, C. R. Mec. 340, 797 (2012).

[17] G. Riboux and J. M. Gordillo, Experiments of Drops Impacting a Smooth Solid Surface: A Model of the
Critical Impact Speed for Drop Splashing, Phys. Rev. Lett. 113, 024507 (2014).

[18] G. Riboux and J. M. Gordillo, Boundary-layer effects in droplet splashing, Phys. Rev. E. 96, 013105
(2017).

[19] J. M. Gordillo and G. Riboux, A note on the aerodynamic splashing of droplets, J. Fluid Mech. 871, R3
(2019).

[20] R. Rioboo, C. Tropea, and M. Marengo, Outcomes from a drop impact on solid surfaces, Atom. Spray.
11, 155 (2001).

[21] J. Palacios, J. Hernandez, P. Gomez, C. Zanzi, and J. Lopez, Experimental study of splashing patterns and
the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces, Exp. Therm. Fluid Sci.
44, 571 (2013).

[22] J. Hao, Effect of surface roughness on droplet splashing, Phys. Fluids 29, 122105 (2017).
[23] C. S. Stevens, A. Latka, and S. R. Nagel, Comparison of splashing in high- and low-viscosity liquids,

Phys. Rev. E. 89, 063006 (2014).
[24] T. C. de Goede, N. Laan, K. G. de Bruin, and D. Bonn, Effect of wetting on drop splashing of newtonian

fluids and blood, Langmuir 34, 5163 (2018).
[25] E. S. Quintero, G. Riboux, and J. M. Gordillo, Splashing of droplets impacting superhydrophobic

substrates, J. Fluid Mech. 870, 175 (2019).
[26] M. A. Quetzeri-Santiago, K. Yokoi, A. A. Castrejón-Pita, and J. R. Castrejón-Pita, The Role of the

Dynamic Contact Angle on Splashing, Phys. Rev. Lett. 122, 228001 (2019).
[27] K. Range and F. Feuillebois, Influence of surface roughness on liquid drop impact, J Colloid Interface Sci.

203, 16 (1998).
[28] L. Xu, L. Barcos, and S. R. Nagel, Splashing of liquids: Interplay of surface roughness with surrounding

gas, Phys. Rev. E. 76, 066311 (2007).
[29] A. Latka, A. Strandburg-Peshkin, M. M. Driscoll, C. S. Stevens, and S. R. Nagel, Creation of Prompt and

Thin-Sheet Splashing by Varying Surface Roughness or Increasing Air Pressure, Phys. Rev. Lett. 109,
054501 (2012).

[30] I. Roisman, A. Lembach, and C. Tropea, Drop splashing induced by target roughness and porosity: the
size plays no role, Adv. Colloid Interfac. 222, 615 (2015).

[31] J. C. Bird, S. Tsai, and H. A. Stone, Inclined to splash: triggering and inhibiting a splash with tangential
velocity, New J. Phys. 11, 063017 (2009).

[32] J. Hao and S. I. Green, Splash threshold of a droplet impacting a moving substrate, Phys. Fluids 29,
012103 (2017).

[33] H. Almohammadi and A. Amirfazli, Understanding the drop impact on moving hydrophilic and hydropho-
bic surfaces, Soft Matter 13, 2040 (2017).

[34] K. A. Raman, Normal and oblique droplet impingement dynamics on moving dry walls, Phys. Rev. E. 99,
053108 (2019).

[35] Š. Šikalo, C. Tropea, and E. N. Ganic, Impact of droplets onto inclined surfaces, J. Colloid Interf. Sci.
286, 661 (2005).

[36] L. Courbin, J. C. Bird, and H. A. Stone, Splash and anti-splash: observation and design, Chaos 16, 041102
(2006).

[37] D. G. K. Aboud and A. M. Kietzig, Splashing threshold of oblique droplet impacts on surfaces of various
wettability, Langmuir 31, 10100 (2015).

[38] J. Hao, J. Lu, L. Lee, Z. Wu, G. Hu, and J. M. Floryan, Droplet Splashing on an Inclined Surface,
Phys. Rev. Lett. 122, 054501 (2019).

073603-18

https://doi.org/10.1017/jfm.2011.415
https://doi.org/10.1103/PhysRevLett.108.074503
https://doi.org/10.1016/j.crme.2012.10.028
https://doi.org/10.1103/PhysRevLett.113.024507
https://doi.org/10.1103/PhysRevE.96.013105
https://doi.org/10.1017/jfm.2019.396
https://doi.org/10.1615/AtomizSpr.v11.i2.40
https://doi.org/10.1016/j.expthermflusci.2012.08.020
https://doi.org/10.1063/1.5005990
https://doi.org/10.1103/PhysRevE.89.063006
https://doi.org/10.1021/acs.langmuir.7b03355
https://doi.org/10.1017/jfm.2019.258
https://doi.org/10.1103/PhysRevLett.122.228001
https://doi.org/10.1006/jcis.1998.5518
https://doi.org/10.1103/PhysRevE.76.066311
https://doi.org/10.1103/PhysRevLett.109.054501
https://doi.org/10.1016/j.cis.2015.02.004
https://doi.org/10.1088/1367-2630/11/6/063017
https://doi.org/10.1063/1.4972976
https://doi.org/10.1039/C6SM02514E
https://doi.org/10.1103/PhysRevE.99.053108
https://doi.org/10.1016/j.jcis.2005.01.050
https://doi.org/10.1063/1.2390551
https://doi.org/10.1021/acs.langmuir.5b02447
https://doi.org/10.1103/PhysRevLett.122.054501


ASYMMETRIC DROPLET SPLASHING

[39] H. J. J. Staat, T. Tran, B. Geerdink, G. Riboux, C. Sun, J. M. Gordillo, and D. Lohse, Phase diagram for
droplet impact on superheated surfaces, J. Fluid Mech. 779, R3 (2015).

[40] G. Riboux and J. M. Gordillo, Maximum drop radius and critical Weber number for splashing in the
dynamical Leidenfrost regime, J. Fluid Mech. 803, 516 (2016).

[41] C. J. Howland, A. Antkowiak, J. R. Castrejón-Pita, S. D. Howison, J. M. Oliver, R. W. Style, and A. A.
Castrejón-Pita, It’s Harder to Splash on Soft Solids, Phys. Rev. Lett. 117, 184502 (2016).

[42] L. Xu, W. W. Zhang, and S. R. Nagel, Drop Splashing on a Dry Smooth Surface, Phys. Rev. Lett. 94,
184505 (2005).

[43] M. M. Driscoll and S. R. Nagel, Ultrafast Interference Imaging of Air in Splashing Dynamics, Phys. Rev.
Lett. 107, 154502 (2011).

[44] R. C. A. van der Veen, T. Tran, D. Lohse, and C. Sun, Direct measurements of air layer profiles under
impacting droplets using high-speed color interferometry, Phys. Rev. E 85, 026315 (2012).

[45] Y. Liu, P. Tan, and L. Xu, Compressible air entrapment in high-speed drop impacts on solid surfaces,
J. Fluid Mech. 716, R9 (2013).

[46] J. de Ruiter, R. Lagraauw, D. van den Ende, and F. Mugele, Wettability-independent bouncing on flat
surfaces mediated by thin air films, Nat. Phys. 11, 48 (2015).

[47] E. Q. Li and S. T. Thoroddsen, Time-resolved imaging of a compressible air disc under a drop impacting
on a solid surface, J. Fluid Mech. 780, 636 (2015).

[48] H. Y. Lo, Y. Liu, and L. Xu, Mechanism of Contact Between a Droplet and an Atomically Smooth
Substrate, Phys. Rev. X 7, 021036 (2017).

[49] E. Q. Li, K. R. Langley, Y. S. Tian, P. D. Hicks, and S. T. Thoroddsen, Double Contact During Drop
Impact on a Solid Under Reduced Air Pressure, Phys. Rev. Lett. 119, 214502 (2017).

[50] M. J. Thoraval, K. Takehara, T. G. Etoh, and S. T. Thoroddsen, Drop impact entrapment of bubble rings,
J. Fluid Mech. 724, 234 (2016).

[51] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.073603 for sup-
plementary movies with commentaries.

073603-19

https://doi.org/10.1017/jfm.2015.465
https://doi.org/10.1017/jfm.2016.496
https://doi.org/10.1103/PhysRevLett.117.184502
https://doi.org/10.1103/PhysRevLett.94.184505
https://doi.org/10.1103/PhysRevLett.107.154502
https://doi.org/10.1103/PhysRevE.85.026315
https://doi.org/10.1017/jfm.2012.583
https://doi.org/10.1038/nphys3145
https://doi.org/10.1017/jfm.2015.466
https://doi.org/10.1103/PhysRevX.7.021036
https://doi.org/10.1103/PhysRevLett.119.214502
https://doi.org/10.1017/jfm.2013.147
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.073603

