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a b s t r a c t 

This paper combines negative capacitance (NC) with inductance (L) to enlarge low- 

frequency bandgap width in locally resonant piezoelectric metamaterials. The studied 

metamaterials are obtained by directly bonding patches on the surfaces of host struc- 

tures, then connecting patches to shunts. Shunts with NC and L in series and in parallel 

are both studied. Analytical expressions of the bandgap ranges are derived, which reveal 

that the bandgap size is increased not simply because the NC enhancing the material’s 

electro-mechanical coupling factor, but in a more complicated way. Parametric studies are 

performed to analytically investigate the tuning properties of the LR bandgap by NC. Re- 

sults demonstrate that by modifying NC value, the LR bandgap size can be significantly 

increased. Numerical simulations are done to verify the effects of the broadened bandgap 

on vibration transmission and reveal the limitations of the used analytical model. Prac- 

tical implementation of the shunts are also discussed, recommendations on choosing the 

shunt configurations and NC values are given. This paper gives a theoretical guideline on 

designing piezoelectric metamaterials with bandgap effects at desired frequency ranges for 

practical applications like low-frequency vibration and noise reduction or isolation. 

© 2020 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

In recent years, the emerging metamaterials based on local resonators provide new ways to deal with low-frequency 

vibration and noise issues [1–6] . Metamaterials present sub-wavelength bandgaps (at frequencies much lower than the first 

Bragg bandgap), within which wave propagation is prohibited. Therefore, using the bandgaps, one can totally remove the res- 

onant modes or isolate vibration transmission. Metamaterials based on passive resonators are first studied. However, they 

have narrow bandgaps and are not adaptable to working condition or environment changes. These drawbacks limit they ap- 

plications in practice. Recently, piezoelectric materials with external shunting circuits have been integrated into structures, 

results in so-called piezoelectric (smart) metamaterials [7–12] . In such metamaterials, the locations and widths of bandgaps 

can be easily tuned by just varying the circuits, no modification is needed on the mechanical structures. Different shunting 

circuits, such as resonant shunts and negative capacitance (NC) circuits, have been proposed to create and tune bandgaps 

in piezoelectric metamaterials. However, there are still challenges in creating wide and controllable bandgaps at low fre- 

quencies in these metamaterials, because of the necessity of using large inductance or lack of robustness. In this paper, we
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Fig. 1. Different shunting configurations: (a) L in series with NC; (b) L in parallel with NC. C 0 indicates NC. The piezoelectric patch made of PZT is 

represented by a current source I eq (t) in parallel with a capacitance C s p . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are going to demonstrate that combining resonant shunts with NC could be an effective way to realize wide and tunable

bandgaps at low frequencies. 

Piezoelectric shunt techniques are first proposed for vibration reduction of flexible structures. Hagood and von Flotow 

[13] demonstrated that a piezoelectric patch connected with an inductance (L) behaves like a mechanical resonator. This 

is because the L and the intrinsic capacitance of the patch form a resonant shunt. Based on this feature, patches shunted

with L are periodically bonded on a bar to create locally resonant (LR) bandgaps in Thorp et al’s work [14] . It was shown

that bandgaps are created in the bar near the resonance frequency of the circuit at sub-wavelength frequencies. The loca- 

tion of the bandgap can be tuned by varying the L value. Airoldi and Ruzzene [15] studied the effective bending stiffness

of a periodic beam with distributed patches shunted by L and resistance (R). They demonstrated that the beam’s effective 

bending stiffness presents resonant feature near the resonance frequency of the circuit, just like the effective mass of a 

metamaterial with mechanical resonators does near the resonance frequency. Therefore, it was concluded that the periodic 

beam with patches shunted by L is an electro-mechanical version of the locally resonant metamaterials. Following these 

works, the conception of locally resonant piezoelectric metamaterial is expanded to plates [16–20] . However, due to the res-

onance nature, bandgaps in these metamaterials are narrow. To enlarge LR bandgaps in piezoelectric metamaterials, Wang 

et al. [21,22] proposed an amplifier-resonator feedback circuit to broad bandgaps. Numerical and experimental results in 

their works demonstrate that the bandgap is broadened, but is still not wide enough. The conception of varying shunts’ 

parameters gradually in space to create “rainbow traps” is explored in [23,24] . This kind of design shows good effects in

increasing bandgap ranges, but the number of unit cells needed to realize a “rainbow trap” with acceptable wave isolation 

level could be large. Shunts with multiple resonance frequencies are also proposed. The multiple resonant effects could be 

realized using multi-branch shunts [25] or digital circuits with properly designed control law [26,27] . Limited by the com-

plexity of multi-branch shunts and processing speed in digital circuits, the number of resonance frequency is within 3 at 

present. Except resonant shunts, NC circuits are also proposed to control bandgaps in piezoelectric metamaterials [28–30] . 

NC can cancel a part of the intrinsic capacitance of a patch, therefore to enhance the electro-mechanical coupling effect 

[31,32] . Recently, it is also shown that NC can increase or decrease the effective static stiffness of the structure covered by

the patches [33] . This property has been explored to enlarge bandgaps in piezoelectric metamaterials. In these applications, 

patches shunted with NC can be directly bonded on the surfaces of structures [34] , the NCs are used to change the local

stiffness therefore to tune the bandgaps induced by Bragg scattering effects. In such a manner, the integrity of the struc- 

tures is preserved. However, in order to obtain wide and low-frequency bandgaps, the NC needs to significantly reduce the 

stiffness of the host structures, i.e., the NC need to work at the vicinity of its unstable zone, which is impractical. In other

studies [35–38] , patches shunted with NC are used to control the stiffness of local resonators in passive metamaterials, 

therefore to broaden the bandgaps caused by passive resonators. In this way, it is more easy to obtain wide bandgaps at

low frequencies, however extra local resonators need to be added into the system, increasing the total mass and volume or

break integrity of the host structure, which are strictly limited in many practical applications. 

In this paper, L and NC are combined to realize low and wide bandgaps in piezoelectric metamaterials. It should be

noted that combining L and NC are previously studied for vibration reduction of structural modes [39,40] , but few works

are done to increase bandgap size. The studied metamaterials are obtained by directly bonding patches on the surfaces of 

a host structure, therefore to avoid adding too much extra mass and keep the integrity of the original structure. A beam is

used as the host structure in this study. Note that the proposed conception in this paper can be naturally extended to other

types of structures, like plates and shells. Combining NC with L in the shunts remains the resonant nature of the shunts.

Therefore, LR bandgaps at low frequencies can still be obtained in the proposed piezoelectric metamaterials. Effects of NC 

on the LR bandgap are analytically and numerically studied in the following sections. 

2. Theoretical analysis 

2.1. Shunting configurations 

NC could be connected with L in series or in parallel, as shown in Fig. 1 . In these figures, C 0 indicates NC, the piezoelec-

tric patch made of PZT is represented by a current source I eq (t) in parallel with a capacitance C s p . All these two shunting

configurations and the case with only L are studied in this paper. The impedance ( Z su ) of these different shunts are summa-

rized in Table 1 . In the table, j is the unit of complex number and ω is the angular frequency. 
2 
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Table 1 

Impedance of different shunts. 

only L L and NC in series L and NC in parallel 

Z su = j ωL −ω 2 LC 0 +1 
j ωC 0 

j ωL 
(1 −ω 2 LC 0 ) 

Fig. 2. (a) The studied piezoelectric metamaterial beam, (b) a unit cell of the metamaterial. 

 

 

 

 

2.2. Governing equations 

Fig. 2 (a) shows the studied metamaterial beam with periodically distributed shunted piezoelectric patches, a unit cell of 

it is illustrated in Fig. 2 (b). 

We consider the flexural waves in the metamaterial beam. The beam is slender, Euler-Bernoulli beam theory could be 

used. Under harmonic excitation, the equations of the transverse motion of the beam w (x ) can be written as 

∂ 2 

∂x 2 

[
D (x ) 

∂ 2 w (x ) 

∂x 2 

]
− ω 

2 m (x ) w (x ) = 0 , (1) 

where, D (x ) is the bending stiffness of the beam, m (x ) is the mass per unit area. The unit cell has a piece-wise configuration,

the length of the period is l b , as shown in Fig. 2 (b). The expressions for the piece-wise bending stiffness in a unit cell are 

D (x ) = 

{
D 1 = D b + 

E p (ω) b[ ( h b +2 h p ) 
3 −h 3 

b 
] 

12 
, 0 ≤ x < l p 

D 2 = D b , l p ≤ x < l b 

in which, D b = E b bh 3 
b 
/ 12 is the bending stiffness of the host beam, E b is the Youngs modulus of the host beam, E p is the

effective Young’s modulus of the shunted piezoelectric patch [13] , expression of it is 

E p (ω) = E oc 
p 

(
1 − k 2 31 

1 + j ωC s p Z su (ω) 

)
, (2) 

in which, k 31 = d 31 

√ 

E sc 
p / ε 

σ
3 

is the extensional coupling factor of the patch [41] , E oc 
p = E sc 

p / (1 − k 2 31 ) is the patch’s Youngs’

modulus under open-circuited (OC) condition, C s p = C T p (1 − k 2 
31 

) is the intrinsic capacitance of the patch under constant strain

and C T p = A p ε σ3 /h p , with A p the area of the electrode. 

The linear mass is 

m (x ) = 

{
m 1 = ρb b h b + 2 ρp b h p , 0 ≤ x < l p 
m 2 = ρb bh b , l p ≤ x < l b 

in which, ρb and ρp are the densities of the host beam and the patch, respectively. 

2.3. Transfer matrix method 

The transfer matrix (TM) method is used to calculate the dispersion curves. The sate vector y(x ) is used in the TM 

method. Therefore, Eq. (1) is rewritten into the form 

∂ y(x ) = C (x, ω) y(x ) , (3) 

∂x 

3 
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where, C (x, ω) is a periodic and piece-wise function 

C (x, ω) = 

{
C 1 (x, ω) , 0 ≤ x < l p 
C 2 (x, ω) , l p ≤ x < l b 

For the transverse motion, the state vector is y(x ) = [ w (x ) θ (x ) M(x ) Q(x )] T , in which, the slope is θ (x ) = ∂ w (x ) /∂ x, the

bending moment is M(x ) = −D (x ) ∂ 2 w (x ) /∂x 2 and the shear force is Q(x ) = −D (x ) ∂ 3 w (x ) /∂x 3 , and 

C i (x , ω) = 

⎡ 

⎢ ⎣ 

0 1 0 0 

0 0 − 1 
D i (x ) 

0 

0 0 0 1 

−ω 

2 m i (x ) 0 0 0 

⎤ 

⎥ ⎦ 

, i = 1 , 2 . (4) 

Eq. (3) describes a 1D medium with periodic coefficients. Using the Floquet theorem, the state vectors of the two ends

of a unit cell are related through 

y(x + l b ) = λy(x ) , (5) 

in which, λ = e j kl b is the Floquet multiplier, with k the wavenumber. 

The state vectors of the two ends can also be related through a TM T 

y(x + l b ) = T y(x ) . (6) 

Eqs. (5) and (6) together form an eigenvalue problem for the Floquet multiplier and the state vector 

(T − λI ) y(x ) = 0 , (7) 

in which, I is a diagonal matrix with all terms equal to one. 

For the TM between the two ends of the studied unite cell ( Fig. 2 (b)), considering the continuities of displacement and

force at the interface between the two segments, T is given by 

T = T 2 T 1 , (8) 

where, T 1 relates the two state vectors at x = 0 and x = l p , while T 2 relates the two state vectors at x = l p and x = l b . T 1 and

T 2 can be expressed as [15] 

T 1 = e l b C 1 , T 2 = e (l b −l p ) C 2 . (9) 

After obtaining the TM, the Floquet multiplier can be obtained by solving the eigen-value problem in Eq. (7) when the

frequency is given, the wavenumber is then deduced according to λ = e j kl b . 

2.4. Analytical estimation of LR bandgap range 

The bandgaps in passive locally resonant metamaterials are caused by negative parameters like negative density or bulk 

modulus [42] . In locally resonant piezoelectric metamaterials, it has been mentioned that bandgaps for flexural waves are 

associated with negative bending stiffness [43] . However, no analytical expressions have yet been given to directly estimate 

the ranges of bandgaps. Such expressions could be very useful to analyze the influences of NC and other parameters on the

bandgap sizes and locations. 

Using the effective medium theory, the effective bending stiffness of the whole unit cell can be approximately expressed 

as [15] 

D e f f (ω) = 

D A D b 

(1 − χ) D A + χD b 

, (10) 

in which, χ = l p /l b , it is the covering ratio of the patch, D A is the bending stiffness of the part covered by patches, the

expression of it is 

D A ( ω ) = D b + 

D 

sc 
p 

1 − k 2 
31 

− k 2 31 

1 − k 2 
31 

D 

sc 
p 

1 

1 + j ω Z su C 
s 
p 

, (11) 

in which, D 

sc 
p = E sc 

p b[ ( h b + 2 h p ) 
3 − h 3 

b 
] / 12 is the bending moment of the patches under SC condition. 

When the configuration of the shunt is given, namely, the expression of Z su is determined, according to Eqs. (10) and (11) ,

one can easily deduce the expressions of the effective bending stiffness and the range where the stiffness is negative. To

make the analysis more general, the following non-dimensional parameters are used hereinafter along with the previously 

defined χ = l p /l b 

γ = D b /D 

sc 
p , α = C 0 /C s p , 

α is a real number, it could be regarded as the non-dimensional NC value. 
4 
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Fig. 3. Graphical illustration of the stable zone in Eq. (13) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the case with only L in the shunt, the frequency range where the effective bending stiffness becomes negative is 

ω LC 

√ 

1 − k 2 
31 

γ (1 − k 2 
31 

) + 1 

< ω < ω LC 

√ 

(γ + 1 − χ)(1 − k 2 
31 

) 

γ (1 − k 2 
31 

) + 1 − χ
, (12) 

in which, ω LC = 1 / 
√ 

LC s p is the resonance frequency of the circuit. Eq. (12) also gives the bandgap range (which will be

verified later in this section), it can be seen that the lower boundary of the bandgap depends on the resonance frequency

of the circuit ( ω LC ), the ratio of the bending stiffness of the host beam to that of the short-circuited patch ( γ ) and the

extensional coupling factor ( k 31 ). The upper boundary not only depends on the three factors listed above, but also depends

on the covering ratio of the patch ( χ ). If χ = 1 , which means the patches cover all the surfaces of the host beam, the upper

boundary is exactly equal to ω LC , this is the case studied in [44] . If χ < 1 , namely, the patches are shorter than the host

beam in a unit cell, the upper boundary is lower than ω LC . 

Due to the active nature of NCs [29] , they may cause stability issues in some circumstances, which must be avoided in

applications. Therefore, before presenting the expressions of bandgap ranges for the cases with NCs in the shunts, the stable 

zone for the NC values are shown first. In this paper, the constrains for the stability analysis are relaxed, the only constrain

is all poles of the electro-mechanical system must be in the left half complex plane. The L and R values are not constrained

to be positive (one can obtain negative L and R using synthetic or digital circuits), which means the effective capacitance of

the patches could be positive or negative. More details about this relaxed stability analysis can be found in Appendix A . Back

to the studied piezoelectric metamaterial beam in this paper, as long as it has a positive bending stiffness when ω = 0 , all

its poles are in the left complex plane. According to this, we can deduce the stable zone for NC. It is found that the stable

zone of NC is the same no matter it is in series or in parallel with L. The stable zone is 

α < − γ (1 − k 2 31 ) + 1 

(γ + 1)(1 − k 2 
31 

) 
, or α > −1 . (13) 

The stable zone includes two sets, as shown graphically in Fig. 3 . The limit of the left set depends on γ , k 31 and C s p (recall

that α = C 0 /C s p ), the limit of the right set only depends on C s p . 

When the shunts is composed of L in series with NC, the equivalent capacitance of the circuit becomes C eq = αC s p / ( 1 + α)

(see Fig. 1 (a)). Consequently, the resonance frequency of the circuit is ω LC = 1 / 
√ 

LC eq . If L is fixed, resonance frequency of the

circuit will change with the NC value. Usually, our interest is to obtain bandgaps at targeted frequency ranges. Accordingly, 

in our studies, we assume that resonance frequency of the circuit is fixed, which means L is varying according to the applied

NC value. In this case, the bandgap range becomes ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ω LC 

√ 

1 − 1 
1+ α

k 2 
31 

γ (1 −k 2 
31 

) +1 
< ω < ω LC 

√ 

γ (1 −k 2 
31 

) +(1 −χ)(1 − k 2 
31 

1+ α ) 

γ (1 −k 2 
31 

) +1 −χ
, α > −1 

ω LC 

√ 

γ (1 −k 2 
31 

) +(1 −χ)(1 − k 2 
31 

1+ α ) 

γ (1 −k 2 
31 

) +1 −χ
< ω < ω LC 

√ 

1 − 1 
1+ α

k 2 
31 

γ (1 −k 2 
31 

) +1 
, α < − γ (1 −k 2 31 ) +1 

(γ +1)(1 −k 2 
31 

) 

(14) 

From the above expressions, it can be seem that NC influences simultaneously the lower and upper boundaries of the 

bandgap when χ < 1 . For the critical situation with χ = 1 , only the lower or upper boundary (depends on the α value) will

be modified by NC. Comparing Eqs. (12) and (14) , it is also observed that the effects of NC on the bandgap boundaries are

not simply due to the modification of the material eletro-mechanical coupling factor (which becomes k 31 

√ 

α/ (α + 1) when 

the NC is connected in series). 
5 
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Fig. 4. Dispersion curves of the flexural waves in the piezoelectric metamaterial beam for three different shunts: (a) shunt with only L, (b) shunt with L 

and NC in series, α = −1 . 5 and (c) shunt with L and NC in parallel, α = −0 . 7 . Shadowed area in each figure corresponding to the frequency range where 

the negative effective bending stiffness is negative, predicted using one of the expressions in Eqs. (12) , (14) and (15) . 

 

 

 

 

 

 

 

 

 

When L is in parallel with NC, the equivalent capacitance of the circuit becomes C eq = (1 + α) C s p (see Fig. 1 (b)). In this

case, the bandgap range is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ω LC 

√ 

(γ +1)(1 −k 2 
31 

) 

γ (1 −k 2 
31 

) +1 − k 2 
31 

1+ α

< ω < ω LC 

√ 

(γ +1 −χ)(1 −k 2 
31 

) 

γ (1 −k 2 
31 

) +(1 −χ)(1 − k 2 
31 

1+ α ) 
, α > −1 

ω LC 

√ 

(γ +1 −χ)(1 −k 2 
31 

) 

γ (1 −k 2 
31 

) +(1 −χ)(1 − k 2 
31 

1+ α ) 
< ω < ω LC 

√ 

(γ +1)(1 −k 2 
31 

) 

γ (1 −k 2 
31 

) +1 − k 2 
31 

1+ α

, α < − γ (1 −k 2 31 ) +1 

(γ +1)(1 −k 2 
31 

) 

(15) 

It is also observed that NC modifies simultaneously the upper and lower boundaries if χ < 1 , and only one of the boundaries

if χ = 1 . 

To verify the accuracy of Eqs. (12) , (14) and (15) , the negative bending stiffness ranges predicted by them are compared

with the bandgap ranges obtained using dispersion curves, the results are shown in Fig. 4 . In these simulations, the host

beam is made of aluminum and the patches are made of PZT-5H, the geometric and material parameters are described in

Table 2 . For the NC in series with L, α = −1 . 5 is used as an example, and for the NC in parallel with L, α = −0 . 7 is used. The

shadowed area in each figure indicates the range where the effective bending stiffness is negative, it is obtained using one

of the expressions in Eqs. (12) , (14) and (15) . It can be observed that the bandgaps completely overlap the negative bending

stiffness ranges, which verifies the accuracy of using Eqs. (12) , (14) and (15) to predict the bandgaps. It is also observed that

the NC enlarges the negative bending stiffness ranges, therefore leading to wider bandgaps. More details on how NC and 

other parameters of the piezoelectric metamaterial influence the bandgap will be discussed later. 
6 
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Table 2 

Geometric and material parameters of the unit cell. 

Beam Piezoelectric patch 

Length l b = 60 mm l p = 50 mm 

Width b = 50 mm b = 50 mm 

Thickness h b = 3 mm h p = 0.5 mm 

Young’s modulus E b = 70 Gpa E sc 
p = 60.6 Gpa 

Density ρb = 2700 kg / m 

3 ρp = 7500 kg / m 

3 

Coupling constant \ d 31 = -2.74e-10 C/N 

Relative permittivity under constant stress \ ε σ3 = 3400 

Fig. 5. Variation of the bandgap boundaries (a-c) and size (d) along with α in the left set of its stable zone for the covering ratios (a) χ = 0 . 5 , (b) χ = 0 . 7 

and (c) χ = 1 when the NC is in series with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are also 

illustrated in Figs. 5 (a), (b) and (c), L 0 is the required inductance when no NC is connected with L. 

 

 

 

 

 

 

 

 

2.5. Tuning characteristics of LR bandgap by NC 

In this section, first, the influences of NC value on bandgap ranges are studied. Then, effects of NC on the wave attenua-

tion ability within bandgaps are analyzed. The bandgap ranges are predicted using Eqs. (14) and (15) , the wave attenuation

properties within bandgaps are obtained using the TM method. 

In the simulations to study the tuning characteristics of bandgap ranges, γ = 0 . 23 and k 31 = −0 . 39 are used, they are cor-

responding to the dimensional parameters listed in Table 2 . For the parameter χ, three different values of it are used, they

are χ = 0 . 5 , χ = 0 . 7 and χ = 1 , the aim of using 3 different χ values is to reveal the influences of it on the tunable features

of bandgap. Recall that, the stable zone of NC includes two sets, namely, the left set α < −[ γ (1 − k 2 
31 

) + 1] / (γ + 1)(1 − k 2 
31 

)

and the right set α > −1 , as shown in Fig. 3 . Accordingly, influences of NC will be analyzed separately in these two sets. 

The cases with L and NC in series are first analyzed. Fig. 5 (a), (b) and (c) show the variation of bandgap boundaries

along with α in the left set of its stable zone for the covering ratios χ = 0 . 5 , χ = 0 . 7 and χ = 1 . The shadowed areas
7 
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Fig. 6. Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the right set of its stable zone for the covering ratios (a) χ = 0 . 5 , 

(b) χ = 0 . 7 and (c) χ = 1 when the NC is in series with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are 

also illustrated in Fig. 6 (a), (b) and (c), L 0 is the required inductance when no NC is connected with L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are the bandgap regions. The required L values for different α are also illustrated in these figures, the value is divided by

L 0 , which is the required inductance when no NC is connected with L. Fig. 5 (d) illustrates the corresponding bandgap size

variation along with α. From Fig. 5 (a) and (b), it can be seen that for the situations with χ < 1 , NC decreases simultaneously

the upper and lower boundaries of the LR bandgap. The lower boundary drops faster than the upper one as | α| decreases,

therefore, the bandgap size enlarges. As χ gets larger, the upper boundary becomes less sensitive to α, and the bandgap is

broadened more in these situations. The bandgap can be enlarged the most when χ = 1 since the upper boundary becomes

immune to α. From Fig. 5 (a), (b) and (c), it is also seen that the required inductance value decreases as the bandgap enlarges.

This makes the circuit become more easy to be realized in practice since large analog inductance is difficult to obtain. Note

that if the shunts are realized using digital techniques, large inductance value is no longer a problem [24] . 

Fig. 6 shows the variation of bandgap boundaries and size along with α in the right set of its stable zone. It can be ob-

served that increasing the | α| results in increase of the upper and lower boundaries if χ < 1 . Basically, the upper boundary

gains fast than the lower one, leading to enlargement of the bandgap size. The lower boundary becomes less sensitive to α
as χ gets larger. Consequently, the bandgap size can be improved more for larger χ . For the special situation with χ = 1 ,

the upper boundary is left unchanged by NC, the largest bandgap can be achieved. Negative L values are essential in order

to obtain a stable system in this case, more details can be seen in Appendix A . It is also shown that inductance with a larger

absolute value is needed to have wider bandgaps. 

For the cases with L and NC in parallel, Figs 7 and 8 show the results corresponding to α inside the left set and the right

set of its stable zone, respectively. Comparing to the case with L and NC in series, it is observed that in this case, the bandgap

boundaries are oppositely increased within the left set and decreased within the right set. The trends of enlargement of 

bandgap size in Figs 7 and 6 are similar but not exactly the same, the obvious difference is that in Fig 7 , the NC has little

effect on the lower boundary of the gap even though the covering ratio is far smaller than 1. Comparing the results in
8 
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Fig. 7. Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the left set of its stable zone for the covering ratios (a) χ = 0 . 5 , (b) 

χ = 0 . 7 and (c) χ = 1 when the NC is in parallel with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are 

also illustrated in Fig. 7 (a), (b) and (c), L 0 is the required inductance when no NC is connected with L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs 8 and 5 , it can be observed that the boundaries have similar variation pattern along with α. However, it is noticed in

Fig. 8 (d) that, the gap size varies non-linearly with α when χ < 1 , a maximum value appears before α reaches the stable

zone limit. 

Results in Figs. 5, 6, 7 and 8 give the conclusion that, to enlarge the LR bandgap, NC can either be in series or in parallel

with L, the NC value can be chosen from one of the two sets of its stable zone. Consequently, to design a bandgap covering

a desired frequency rang, one have 4 different choices in terms of shunt configurations and NC values. To avoid tedious

discussions on similar results, in the following studies, only the cases using NC in series with L are considered, the NC

values are limited within the left set of its stable zone. 

The tuning characteristics of bandgap size by NC for different γ and k 31 values are studied in Fig. 9 . The right limit

of the left set of the stable zone depends on γ and k 31 (see Eq. (13) ). Therefore, in Fig. 9 (a) and (c), α ∗ (γ + 1)(1 −
k 2 

31 
) / [ γ (1 − k 2 

31 
) + 1] is used as the horizontal axis to eliminate the influences of the shifting of the stable zone’s boundary.

From Fig. 9 (a), it can be seen that the enlargement trend of the gap size caused by the varying of α is independent on γ .

Considering γ itself, from Fig. 9 (b) it is observed that the gap size varies non-linearly as γ increases, the gap size enlarges

in the beginning then decreases after a maximum. There is an optimal value for γ in order to have the largest bandgap size,

this value is independent on the NC value. The influences of k 31 are studied in Fig. 9 (c) and (d). k 31 varies when different

piezoelectric material is used in the metamaterial. Therefore, knowing the effects of k 31 can help us in choosing the most

suitable piezoelectric material in practice. Fig. 9 (c) shows the variation pattern of the gap size when α changes for different

k 31 values. Absolute value of k 31 (its value is usually negative) is within 0.5 for typical piezoelectric ceramics in market.

Accordingly, | k 31 | changes from 0.1 to 0.5 in Fig. 9 (c-d). It can be seen that k 31 also does not change the enlargement trend

of the gap size when α varies. Besides, it is observed that for larger | k 31 | , the gap size is less sensitive to the changing of α
near the stable zone boundary, which makes the system more robust in practice. 
9 



K. Yi and M. Collet Journal of Sound and Vibration 493 (2021) 115837 

Fig. 8. Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the right set of its stable zone for the covering ratios (a) χ = 0 . 5 , 

(b) χ = 0 . 7 and (c) χ = 1 when the NC is in parallel with the L. The shadowed areas indicate the bandgap regions. The required L values for different α

are also illustrated in Fig. 8 (a), (b) and (c), L 0 is the required inductance when no NC is connected with L. 

 

 

 

 

 

 

 

 

 

Influences of NC on the imaginary part of wavenumber are studied in Fig. 10 . To avoid singularity during the dispersion

curve calculation, a small resistance ( R = 50 �) is introduced into the circuit in series with L and NC. The imaginary part

of wavenumber is linked to the attenuation of waves within the bandgap. A larger absolute value of imaginary part means

stronger wave attenuation effect. From Fig. 10 it is observed that NC broadens the bandgap size, but degenerates the wave

attenuation ability. The degeneration is due to the enhancement of damping in the circuit by NC, since damping weakens 

the resonant behavior of the circuit. Nonetheless, the degeneration is mild, the wave attenuation effects are strong within 

these bandgaps, as will be seen from the forced responses of the metamaterial beam in the following section. 

In summary, studies in this section reveal how NC affects the bandgap when the piezoelectric metamaterial beam has 

different geometrical and material parameters. These results can be used as guidelines to design bandgaps at desired fre- 

quency ranges. 

3. Numerical simulations 

The main tuning characteristics of bandgap by NC are verified using finite element (FE) simulations. The simulations are 

done in commercial software COMSOL. The FE beam model has 10 unit cells, a harmonic boundary force is applied on the

left end of the beam, the right end of the beam is free. Transmission function between the displacement of the right end

and the excitation force will be studied during the discussions. Two different unit cell lengths are used, they are l b = 52 mm

and l b = 100 mm , the aim is to verify the influences of the covering ratio on the effects of NC. The other geometric and

material parameters are the same as in Table 2 . NC is in series with L in these simulations. In practice, resistance of the

circuit is inevitable. Therefore, a small resistance R = 50 � is also included in the shunt in series with the other parts. 
10 
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Fig. 9. Influences of (a-b) γ and (c-d) k 31 on the tuning characteristics of bandgap size by NC: (a) χ = 0 . 8 , k 31 = −0 . 39 , (b) χ = 0 . 8 , k 31 = −0 . 39 , (c) 

χ = 0 . 8 , γ = 0 . 23 and (d) χ = 0 . 8 , γ = 0 . 23 . 

Fig. 10. Influences of NC on the wave attenuation ability within the bandgap. 

 

 

 

 

 

First of all, accuracy of the FE models is checked and improved to be acceptable. The patches are kept OC to take into

account the electro-mechanical coupling effects in these simulations. Natural frequencies of the first 10 non-rigid modes 

are used to check the convergence of the simulations. The meshes of FE models are refined until the simulated natural

frequencies vary no more than 1% when the degrees of freedom are doubled. 

Secondly, the intrinsic capacitance value of the patch in the FE models is estimated. This capacitance value is necessary in

order to find the required inductance value when ω LC is designated. In the analytical studies, C s p is involved in the process to

determine inductance values (for example, through L = 1 /ω 

2 
LC 

C s p ). However, this analytical C s p can not be directly used in the
11 
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Fig. 11. Transmissibility at the right end of the metamaterial beam when a boundary transverse force is applied at the left end for the case with LR shunts. 

Shadowed area indicates the analytically predicted gap region using Eq. (12) , results corresponding to the original and corrected L are both shown in the 

figure. 

Table 3 

Resonance frequency of the circuit and the corre- 

sponding electrical parameters used in the FE simu- 

lations. 

L (H) R ( �) C 0 /C s ∗p f LC (Hz) 

reference 12.00 50 \ 100 

shunt 1 4.00 50 −1 . 5 100 

shunt 2 2.40 50 −1 . 25 100 

shunt 3 2.00 50 −1 . 2 100 

shunt 4 1.57 50 −1 . 15 100 
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FE simulations to deign the L values, because it overestimates the capacitance of the patch in the FE model. To demonstrate

this, the same L value is used in both the analytical and FE simulations, the analytically predicted bandgap range and the

gap observed in the finite metamaterial beam are compared in Fig. 11 for the case with LR shunts. The analytical bandgap

range (calculated using Eq. (12) ) is indicated by the shadow in Fig. 11 . The transmission function curve obtained in the FE

simulation using the same parameters as those in the analytical calculation is labeled with “original”, the frequency range 

with relatively low response level is the bandgap. It can be seen that the gap observed in the FE result is at higher frequency

range than the analytical one, which verifies that the analytical C s p overestimates the capacitance value of the patch in the

FE model, leading to a smaller L than the required one. Therefore, the capacitance in the FE simulation is corrected to be

 

s ∗
p = 0 . 84 C s p . Using this corrected capacitance, the corrected L value for the FE simulation is obtained. The curve with label

“corrected” in Fig. 11 is the FE result corresponding to the corrected L value. One can see that the gap in the FE simulation

now has good coincidence with the analytical one. 

After the above procedures, it is able to verify the effects of NC on the bandgaps. 4 shunts with different NC and L

parameters are studied for each of the two unit cell lengths, the parameters of shunts are listed in Table 3 (shunt 1 to

4). The case with LR shunts is used as reference, the corresponding shunting parameters are also given in Table 3 . Recall

that, C s ∗p in the table is the corrected capacitance of the patch in the FE model. f LC is the resonance frequency of the circuit

in Hz. Fig. 12 shows the transmission function curves for different studied cases. The predicted bandgap locations using 

Eqs. (12) and (14) are also indicated in these figures through the horizontal colorful slats. For the tuning trend of the

bandgap size and location caused by NC, it can be seen from the transmission curves in Fig. 12 (a) that, when the covering

ratio of the patch is close to one, NC decreases the lower boundaries of the gap, and has little influence on the upper ones,

therefore, leading to a wider bandgap, just as illustrated in Figs. 5 (c); when the covering ratio is far from one, the results

in Fig. 12 (b) clearly show that NC decreases simultaneously the upper and lower boundaries of the gap, the lower boundary

drops faster, therefore, shifting as well as enlarging of the bandgap are both observed, which is coincident with the results

in Fig. 5 (a). From Fig. 12 , it can also be seen that, with regard to the values of the bandgap sizes and locations, the FE

and analytical results have obvious differences when there are NCs in the shunts, which indicates that the analytical model 

based on Euler-Bernoulli beam theory and sub-wavelength homogenization theory can not precisely capture the bandgap’ 

features. 
12 
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Fig. 12. Transmission function curves for different patch covering ratios and shunts with different parameters: (a) l b = 52 mm , l p = 50 mm and (b) l b = 

100 mm , l p = 50 mm . The horizontal colorful slats in each figure indicate the predicted bandgap locations using Eqs. (12) and (14) . The used shunting 

parameters in different simulations are listed in Table 3 . 

 

 

 

 

 

 

 

In conclusion of this section, the FE results clearly verify the tuning characteristics of the bandgap observed in the analyt-

ical studies, therefore, the analytical model could be used to predict the tuning trend of the bandgap, however, to precisely

calculate the size and location of a bandgap, FE simulations are more suitable. 

4. Discussions 

To implement shunts with L and NC in practice, one can use analog circuits to synthesize negative capacitance and 

large inductance. In this way, it is recommended to use L in series with NC and choose the NC value from the left set of

stable zone. This choice could avoid using simultaneously negative capacitance and negative inductance in the shunts, it 

also benefits from the smaller inductance needed for wider bandgaps (see Fig. 5 ). The required inductance and negative

capacitance can be realized using the circuits in Fig. 13 (a) and (b), respectively [22,29] . The synthesized inductance and

negative capacitance are respectively 

L = 

R 1 R 3 R 4 

R 2 

C, C 0 = −R 3 

R 2 

C. 

A more advanced way to realize shunts with L and NC is using programmable digital circuits [24] . A digital circuit usually

is composed of voltage measuring block, digital signal processing (DSP) block and voltage controlled current source block. 

Digital circuit measures the voltage on the electrodes of PZT patches and feeds back current to the same patches, therefore

desired impedance is established between the terminals of patches. To simulate behaviors of shunts with L and NC, the 

inverse expression of the shunt’s impedance is programmed in the DSP block in Laplace domain as a transfer function. 

Since the impedance is realized digitally, no limitation is constrained on the inductance value and the configurations of L 
13 
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Fig. 13. (a) Antoniou’s circuit to synthesize inductance and (b) typical circuit to synthesize negative capacitance. 

 

 

 

 

 

 

 

 

 

 

 

with NC, namely, the L and NC could either in series or in parallel, and it is free to choose NC value within the whole stable

zone, as long as the implemented transfer function in the DSP block is causal and the whole system is stable. 

The above discussed synthetic and digital circuits both need power supply in practice. One possible solution is introduc- 

ing energy harvesting circuits into the system, the harvested energy maybe used to power low-powered electron devices in 

the circuits. Future work will be done to verify this idea. 

5. Conclusions 

In this paper, piezoelectric metamaterials shunted with combined L and NC are analytically and numerically studied. The 

metamaterial is obtained by periodically distributing piezoelectric patches on the surfaces of a host structure. A slender 

beam is used as host structure in this paper as an representative. Shunts with NC and L in series and in parallel are both

studied. Major conclusions of this paper are: 

(1) NC enlarges the frequency regions of negative stiffness caused by resonant shunts, therefore leading to wider 

bandgaps; 

(2) NC enlarges the LR bandgap size and also shifts the bandgap to lower or higher frequency range when the host beam

is not fully covered by the patches. As the covering ratio of the patches increases, the gap size becomes even wider

but the shifting effect of the bandgap location weakens; 

(3) Except the covering ratio of patches, other geometric and material parameters of the metamaterial do not change the 

enlargement trend of the bandgap size caused by NC. 

(4) The analytical model based on the Euler-Bernoulli beam theory and effective medium theory is useful to predict the 

tuning characteristics of bandgaps by NC. However, it can not precisely predict the sizes and locations of bandgaps, 

for such demand, FE models are more suitable. 

In the next step, experiments will be done to study the influences of real NC and L circuits on the bandgaps and to reveal

the limitations of such piezoelectric metamaterials under practical constrains. 
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Appendix A. Discussion on the stability of electro-mechanical systems with negative capacitance 

Basically speaking, in previous works [39,40] , the stable zone of NC is obtained under two constrains: (1) all the poles of

the systems are in the left side of the Laplace domain; (2) the effective capacitance of the patches must be positive, namely,

other electronics except the NC, such as R and L, must have positive values. The consequent stable zone of NC in series is

only the left set in Fig. 3 , and that of NC in parallel is only the right set. However, in this work, only the first constrain is

applied, the consequent stable zones for both configurations are the union of the two sets in Fig. 3 . In this relaxed stability

analysis, not only the NC value but also the values of the connected electronics have their own stable regions. Next, a single

DOF piezoelectric system is used to present stable zones for the NC and the connected (in series or in parallel) electronics. 
14 
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Fig. A1. Shunting circuit with a NC C 0 , a resistance in series R s and a resistance in parallel R p . 

Fig. A2. Parameter regions where one can obtain stable systems when different C 0 values are used. (a) C = −2 C p and (b) C = −1 . 5 C p represent the situations 

when NC is in the left set; (c) C = −0 . 8 C p and (d) C = −0 . 2 C p represent the situations when NC is in the right set. In these figures, yellow indicates a stable 

system and blue indicates a unstable system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

The studied piezoelectric system is represented by the following equations 

m d̈ + ξ ˙ d + kd + ηV = f, 

−ηd + C p V = Q, (A.1) 

Q is the charge, and the values for the system’s parameters are 

m = 1 kg ; k = 250 0 0 0 N / m ; ξ = 0 . 1 

√ 

mk N · s / m ;
C s p = 50 nF ; η = 0 . 073 N / V . 

The short-circuited natural frequency (undamped) of the system is ω sc = 500 rad / s ; the effective coupling factor esti- 

mated by using 

√ 

ω 2 oc −ω 2 sc 

ω 2 sc 
is 0.65, which is reasonable. C s p is the capacitance at constant strain, the corresponding capacitance 

at constant stress is C t p = 1 . 43 C p . 

The shunt in Fig. A1 is considered as a representative. Recall that C 0 is the NC. There are a resistance R s in series with

the NC and a resistance R p in parallel with the NC. The impedance for such shunt is Z 0 = (R s R p C 0 s + R s + R p ) / (R p C 0 s + 1) , s

is the variable in Laplace domain. 
15 
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Using Eq. (A.1) and the impedance of the shunt, one can easily obtain the poles of the system. The following criterion is

defined to indicate the stability of the system 

cr iter ion = max (real(pole (T sys ))) < 0 . 

in which, pole (·) means all the poles of the studied system T sys , real(·) means only consider the real part of these poles

and max (·) indicates the maximum value. Therefore, cr iter ion = 1 means all the poles are in the left complex plane and the

system is stable, cr iter ion = 0 means the opposite. 

Using the above defined criterion, the stable zone of parameters C 0 , R s and R p can be easily determined. It is found

that, if the value of C 0 satisfies −1 . 43 ≤ C 0 /C s p ≤ −1 , no stable system can be obtained by tuning the values of R s and R p . If

 0 /C s p < −1 . 43 , namely the NC value is in the left set, to obtain a stable system, a positive R s and a negative R p are required.

For examples, Fig. A2 (a) and (b) show the cr iter ion value when R s and R p change from negative to positive. In Fig. A2 (a)

and (b), C 0 = −2 C s p and C 0 = −1 . 5 C s p , respectively. In these figured, yellow means cr iter ion = 1 and blue means cr iter ion = 0 .

Fig. A2 (a) and (b) clearly show if the NC value is in the left set, R s must be positive and R p must be negative in order to

obtain a stable system, namely they must be within the top-left quadrant of the figure. It is also observed that, even within

the top-left quadrant, R s and R p are not free to choose, some combination of them will lead to unstable systems. On the

contrary, if the capacitance is chosen in the right set, i.e., C 0 /C s p > −1 , a negative R s and a positive R p are required to design

a stable system. Fig. A2 (c) and (d) show the parameter regions where one can obtain stable systems when C/C s p > −1 . One

can see that, R s and R p must be carefully chosen from the lower-right quadrant. 

Back to the studies in Fig. 6 , the NC is in the right set and L is in series with NC, therefore, negative L values are needed

to obtain a stable system. In Fig. 7 , the NC is in the left set and L is in parallel with NC, so negative L values are also used. 
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