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The systems exhibiting sustainable external energy exchange are abundant, e.g., biological organisms’ reaction to external
stimuli while maintaining a constant energy exchange with the surrounding. In a linear mechanical system exhibiting an external
energy gain or release, the recently proposed odd elasticity theory can characterize the overall stress and strain response.
However, realizing the required odd elasticity is still challenging. In this work, we discovered that the smart materials with
designed feedbacks can achieve this odd elasticity, thereby providing a practical platform to analyze the phenomenon related to
this novel elasticity theory. We also demonstrated this idea by designing a non-reciprocal Rayleigh wave via odd elasticity and
the equivalent piezoelectricity with linear feedback. The underpinned electric energy scenario was also examined. Our work
establishes a method to easily realize the materials with odd elastic behaviors and explore the rich phenomena related to non-

Hermitian systems.
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1 Introduction

The response of a linear elastic material to external small
mechanical stimuli is characterized by Hooke’s law, which
describes a linear relationship between stress and strain as
0= CijnYmn» Where Cy,, is the material elastic tensor [1]. For
passive materials without body couples, the elastic tensor has
a minor (Cy,,= Cjy = Cyjpy) and major symmetry (Cy,,=
Counij)- Therefore, in such systems, the time-reversal holds.
This linear elastic model, also termed Green elasticity [2], is
recognized as a potential tool for designing engineering
structures [3].

However, the Green elastic model with the above linear

Hooke’s law is no longer applicable to the systems with
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sustainable external energy exchange, in which time-reversal
symmetry is broken. Such systems are abundant, for ex-
ample, in biological systems, such as cytoskeleton [4,5], li-
quid crystals [6], active membranes [7], and many others [8].
The common features of these systems are that the energy is
supplied independently at the constituent level, which gen-
erates system movement in dissipating this energy; these
systems are called active matter [9]. Their implications to
engineering are also straightforward, for example, in bioin-
spired microrobots [10] and non-reciprocal wave propaga-
tion [11]. The systems with locally sustained external energy
gain and release also form key ingredients of non-Hermitian
physics [12].

To phenomenologically characterize the linear mechanical
response of the active matter, a more general Cauchy elas-
ticity theory could be explored to describe the external en-
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ergy exchange of the material [13]. Recently, Scheibner et al.
[14] presented an alternative called odd elasticity theory. In
this theory, the major symmetry of the elastic tensor is re-
laxed to consider the local external energy gain or release
during loading. Odd elastic materials break the time-reversal
symmetry; therefore, they can provide an ideal platform for
demonstrating the unusual phenomena embodied in non-
Hermitian systems [15,16]. In addition, the similar ap-
proaches are also extended to fluid [17] and flexural waves
[18]. However, designing an odd elastic medium remains a
future achievement. In this study, we use classical piezo-
electric materials as a prototype and demonstrate that if a
linear feedback control between the local strain and electric
fields is provided, the piezoelectric material with such
feedback control can be idealized as an odd elastic medium.

The remainder of this paper is organized as follows. In
sect. 2, we demonstrate that the piezoelectric material with
linear feedback can be considered as an odd elastic medium.
In sect. 3, we investigate the bulk and edge waves in the
homogeneous odd elastic medium to validate the proposed
method, including a perfect matched layer and a non-
reciprocal Rayleigh wave. These properties are validated
using equivalent piezoelectric materials with the designed
feedback. In sect. 4, the external energy exchange in an odd
medium is revealed within a loading cycle, followed by some
conclusions.

2 Connection between odd elasticity and pie-
zoelectric materials with feedback

In this study, we consider a linear elastic material char-
acterized by o;; = Kjj,,n» Where o;; and p,,, are the stress and
strain tensors, respectively. The fourth-order elastic tensor

e
ijmn

K, can be decomposed into a symmetric part C

(Cp=C,p) and  an

ijmn

(C." = —C,,‘,’ni/.) as:

ijmn

K.m=C:

ijmn ijmn

o
ijmn

antisymmetric  part

+Ce (1)

A passive linear material obeys the Maxwell-Betti re-
ciprocity principle, implying that the elastic work is con-
served and should be zero in one static deformation cycle.
This constrains the elastic tensor to have the major sym-
metry, i.e., K., =K

ijmn mnij®
ishes. Here, K, = C; .
elastic material. However, for active linear materials, the
antisymmetric part in eq. (1) is necessary to characterize the
non-conservative energy in the considered system, and the
+#K The
elastic medium with this feature is called “odd elasticity”,
which was first presented in viscoelastic systems [19] and

while the antisymmetric part van-

which is widely used in the Green

ijmn

clastic tensor has no major symmetry K # K,
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recently extended to the non-Hermitian elastic system [14].
Since an odd elastic material breaks the time-reversal sym-
metry, it can neither be made by passive materials nor by
classical smart materials with no feedback control. Among
smart materials, piezoelectric materials are widely used in
engineering applications, and the general piezoelectric con-
stitutive relation can be written as follows:

_ Oe _
0= Cijmnymn ekijEk’ (2)

D, = erVyt ek,

where D, and E| are, respectively, the electric displacement
and electric field strength; e;; and &; denote the piezoelectric
modulus and dielectric permittivity, respectively. In piezo-

electric materials, the elastic tensor Cl.j‘.ifm has a major sym-

metry.

Here, we consider the inverse piezoelectric effect, i.e., the
electric field induces deformations. If we can provide a linear
feedback control between the local strain and electric field
such that £, = {},,,,.7..,» and focus only on the mechanical part,
we get the equation:

— (Ve _ -
O-ij - Cijmnymn ekij(kmnymn - Kijmn Y mn> (3 )
0 . . .
where K, = Cy —e;(;,, Evidently, K, loses its major

symmetry as required by odd elasticity. Comparing with eq.
(1), we get

C i = K= (€x5Cim ™ i)/ 2 )
C i = _(eki/( kmn ~ @i knm) /2.

The external electric field introduces the odd part of the
stiffness tensor and modifies the elastic modulus tensor C,;
of the system. Figure 1 depicts the principle of designing an
odd elastic medium. To achieve an odd homogeneous elastic
medium, we consider a piezoelectric material and divide it
into small elements; each element comprises a sensor and an
actuator, as depicted in Figure 1(c). While the material is
deformed, the sensor delivers a signal, and the actuator
creates a strain with a proper transfer function. If each ele-
ment is small enough and works independently, the me-
chanical response of the whole system can be characterized
by an odd elastic medium. In practice, we can use piezo-
electric composites instead of the pure piezoelectric material;
the underlying principle remains the same.

From the energy point of view, the variation of the internal
energy comes from the mechanical and electrical parts. It can
be written as:

dw=g¢,,dy,,+DdE,. 5
If we consider a linear feedback with the electric field and

local strain, the variation of the internal energy is further

written as:

d‘W = (Tmndymn + Dkamndymn = ﬁmndymn’ (6)
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(Color online) Schematic of the principle to realize an odd elasticity by piezoelectric material with feedback. (a) Homogeneous odd elastic

medium; (b) equivalent piezoelectric material with feedback control; (c) the scheme of feedback control.

here the effective stress &,, consists of two parts: one from
the mechanical strain and the other from the electric field due
to the feedback coupling. From eq. (6), the odd elasticity can
be explained as follows: if the coupling between the two
types of independent variables (y,,, and E;) for a linear pie-
zoelectric material is established via a feedback mechanism,
the total energy can be expressed in terms of reduced in-
dependent variables (here y,,,). This results in a new effective
elastic tensor without a major symmetry, which accounts for
the electric energy apart from the mechanical energy.

In other words, for a piezoelectric material with a linear
feedback mechanism, its mechanical response can be char-
acterized by an odd homogeneous elastic material. The extra
energy gain or release besides the usual mechanical energy is
provided by the electric energy. Using the same rationale, we
can also choose the reduced independent variable as £; and
define an odd piezoelectric material; here, the extra external
energy release or gain is provided by the mechanical energy.

The above concept can be extended to other smart mate-
rials. In what follows, we illustrate this concept using two
examples: the impedance matched design and non-reciprocal
Rayleigh wave.

3 Bulk and edge waves in an odd elastic med-
ium

3.1 A brief introduction to odd elasticity

In this subsection, we outline some basic ingredients of a

two-dimensional (2D) isotropic odd elastic medium pro-

posed by Scheibner et al. [14]. To gain a better understanding

of odd elastic parameters, the deformations are defined by s,

(a =0, 1,2, 3) as follows:

So= Uty

ST Uy T Uy

S,=u,,—u ™
2T U T Uy,

S3=T Uty

where the above deformations s, and s, represent the dilation

and rotation, respectively (anticlockwise is defined positive),
and s, and s; denote two types of shear strain. Similarly, we
can also define the corresponding stress ¢,, representing se-
parately the pressure, torque, and two types of shear stress.
For a 2D isotropic odd elastic medium, we can write the
relationship between the strain and stress defined previously
as:

ty K o
f_ g o 8
t) 1o Kolls,f ®)
15 Ky p||ss

Besides the two traditional parameters, x (bulk modulus)
and u (shear modulus), the 2D isotropic odd elastic medium
also has two additional coupling parameters 4 and K|, re-
presenting the coupling between rotation and dilation, shear,
and shear,, respectively, as illustrated by Figure 2.

In a linear elastic material, torque is decoupled through
rotation due to the conservation of the angular momentum.
This coupling may appear by a careful micro-structural de-
sign [20] or by imposing additional external moments [21].
However, these methods are not treated in this paper. For
simplicity, we will focus on the K-type (only shear coupling,
A =0 and K # 0) odd elastic medium. The constitutive re-
lation in eq. (8) can be written in a traditional type (Voigt
notation):

oy| |ktu o k—u Kol
Op|=|k—u k+p =Ko 72| )
%12 K, K, u |20

where K is a material constant introduced to characterize the
external energy exchange. It contains information on the
amplitude of this exchange and its variation with time during
the mechanical loading; therefore, it is generally a complex
value. It should also be emphasized that the odd elasticity is
fundamentally different from an anisotropic linear elastic
material. To realize the odd elastic material defined by eq.
(9), we consider a piezoelectric medium with the following
classical constitutive relation:
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Figure 2 (Color online) Classification of 2D strains and their coupling.
(a) Coupling between dilation and rotation; (b) coupling between two shear
modes. The box with solid lines represents the original geometry, and the
green-colored region represents the deformed shape.

oyl |[ktu k—p O[] (e O ’
Op|=|Kk—u Ktu 0f| V2 |- €1 0 EA 5 (10)
O 0 0 ul|2n 0 epll”

where the mechanical part is isotropic with bulk modulus x
and shear modulus g, respectively. Following the idea ex-
plained in sect. 2, we may set e,,; = —e;;; and choose the
feedback tensor as:

71
Y2 | (11)
2y

E

X

E

y

0 0
Kyl ey,

Ko/ ey
—K,/ e, 0

Substituting eq. (11) into eq. (10) and eliminating the
electrical degree of freedom, we get the same form of the
stress and strain relation as that for the odd homogeneous
elasticity described by eq. (9).

In general, an odd elastic medium cannot be impedance-
matched with any linear elastic material; there could be
significant scattering at the interface formed between an odd
elastic medium and a linear Green elastic material. However,
based on the concept introduced in sect. 2, the odd elastic
medium can be impedance-matched with a piezoelectric
material if a proper feedback mechanism between the local
strain and the electric field is provided. To verify this remark
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and prove the concept advanced in sect. 2, we analyze a shear
wave propagation in a semi-infinite homogeneous odd
elastic medium joined separately with a semi-infinite
homogeneous linear elastic material and the equivalent pie-
zoelectric medium with a proper feedback mechanism. In the
computation, the odd elasticity is realized by modifying the
weak form of the governing equation, and the perfect
matched layer (PML) for the odd elasticity is constructed
following the asymmetric transformation [22,23]. Both the
odd elasticity and the equivalent piezoelectricity are con-
ducted with the commercially available COMSOL Multi-
physics.

Figure 3(a) depicts the curl of the displacement fields in
the frequency domain when a shear wave travels from the
odd elastic medium to the linear elastic material resulting in a
significant scattering due to the impedance mismatch.
However, a perfect transmission is observed at the interface
formed by the odd elastic medium and its equivalent piezo-
electric material, as shown in Figure 3(b).

Since odd elastic materials favor external energy ex-
change, they can break the time-reversal symmetry. In the
next section, we explore some unique wave characteristics in
these types of elastic materials, including a non-reciprocal
Rayleigh wave.

3.2 Non-reciprocal Rayleigh wave

Rayleigh wave is a type of surface wave propagating along
the free surface of a semi-infinite elastic medium and de-
caying in-depth [24]. The control of Rayleigh waves plays an
important role in engineering, e.g., alleviating seismic waves
[25] and non-destructive structure health monitoring [26].
For a linear passive medium, Rayleigh waves always have
two symmetric velocities propagating in opposite directions
along a free surface because of the requirement of re-
ciprocity. Recently, it has been proved that a non-reciprocal
surface wave can be achieved with a time-varying material
[27,28] and a gyroscopic medium [29]. For a gyroscopic 2D
homogeneous elastic medium, Zhou’s group [11] extended
the Stroh formalism [30] to chiral density and demonstrated
the possibility of having a non-reciprocal Rayleigh wave in
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Figure 3 (Color online) Shear wave propagates in a semi-infinite odd elastic medium joined by (a) linear elastic material and (b) the equivalent
piezoelectric medium. We set classical elastic parameters as x = 53.8 [GPa], u = 25.9 [GPa], and p = 2700 [kg/m3]. They are the same for the three examined
media, the odd parameter K, = 0.3x, the piezoelectric parameters e,,; = —e;;; = 6.1 [Pa m/V], and e,, = 15.7 [Pa m/V]. The excitation frequency is 30 kHz.
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this medium. Here we extended the Stroh formalism to an
odd elastic medium and demonstrated the appearance of a
non-reciprocal Rayleigh wave in such a medium.

For simplicity, we also consider a 2D semi-infinite K,-type
odd elastic medium with a free surface characterized by its
unit normal vector e, and unit tangential vector e,, as de-
picted in Figure 4. The governing equation can be written as:
V-[K: Vu] =pi, (12)
where K denotes the elastic tensor of the odd elastic medium
given by eq. (9), u represents the displacement, and the two
dots stand for a second-order time derivative. The displace-
ment u;, is assumed to be

u, = Ukefiv(ﬁqy*vt)’ (13)

where v denotes the surface wave speed (phase velocity), U,
the amplitude of the displacement u;, p the wave vector of the
Rayleigh wave, and ¢ characterizes the decaying wave in
depth. Substituting this expression into the governing equa-
tion yields

[Ki1k1+q(Ki1k2+Ki2kl) + quakz_Pémvz]Uk =0. (14)

In general, we need to combine eq. (14) with the boundary
condition (7; = o;n; = 0) to determine the surface wave
speed; this leads to a quadratic eigenvalue problem with q.
However, Stroh’s formalism can largely reduce it to a linear

equation. For that, we define a generalized vector:
o=|U, U, ~T,/ip ~T,/ip]". (15)

Together with the governing equation, we obtain a linear
eigenvalue problem with ¢, as given by eq. (16), the detailed
derivation is provided in the Appendix.

2K K _ K+u _ K,
Ko i +p0) Ko u(e+p)  Ko*ru(etp)
1- 2Kp K, H
Ko u(re +u) Koru(e+p) Ko u(c+ )
(K r) o o o 2Kex
Ko p(e+p) Ko tp(etp) Ko™ u(k+p)
0 ) -1 0
?q ?
?»2 ?»s
= . 16
) ?3 1 ?3 (16)
P4 Py

In the frequency domain, the imaginary part of K, re-
presents the phase difference between the mechanical load-
ing and external energy exchange achieved by adjusting the
cadence of the injected energy. We found that only if arg(K,)=
+1/2 (Re[K,] = 0), the wave speed has two real solutions;
otherwise, they must be complex. This point is emphasized at
the end of this section. Presently, we only consider the case
where arg(K,)=+mn/2. Eq. (16) presents the Stroh’s formalism
to determine the surface wave of an odd elastic surface; two
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Figure 4 (Color online) Scheme of Rayleigh wave with velocity v, and v_
in two opposite directions along a free surface, the semi-infinite odd elastic
medium has shear coupling coefficient K,,.

propagation speeds v, (in the positive and negative direc-
tions) are obtained by solving eq. (al0) (see the Appendix).
In traditional Green elastic materials, the two speeds are
equal; however, in a non-conservative system characterized
by the odd elasticity, both speeds may be different; one may
be zero leading to a non-reciprocal Rayleigh wave or even an
unidirectional propagation. In addition, solved speed below a
cutoff velocity v, needs to be maintained [31,32], for the
considered odd elastic medium, written as:

Lo (k+2u)— (K2_4K02)
= o )

a7)

Figure 5(a) depicts the ratio of the two surface wave speeds
|vi/v_| represented by color as a function of two dimension-
less material parameters a=Im[K,]/x and f=u/k. Three dis-
tinct regions are observed. First, the black line where a=0
suggests the reciprocal Rayleigh wave propagations with two
equal speeds but in opposite directions. Second, the colored
region is separated by the reciprocity line and the boundary
defined by the cutoff velocity. In this region, two different
surface wave speeds are found, indicating a non-reciprocal
Rayleigh wave propagation. Third, the region is enclosed by
the boundary of the cutoff velocity and horizontal axis. Since
one wave is prohibited in this region due to the speed solved
by Stroh equation in excess of the cutoff velocity, only a
unidirectional Rayleigh wave is allowed. To be more spe-
cific, the Rayleigh wave propagates only in the negative
direction for <0 and in the positive direction for o>0. The
sign of the odd parameter K, determines the direction of the
edge state.

To realize the non-reciprocal Rayleigh wave predicted by
the homogeneous odd elastic material, we explore its
equivalent piezoelectric counterpart explained previously. To
mimic the complex odd elastic parameter, we modify the
feedback tensor as a pure imaginary number in the frequency
domain. Figure 6 shows Rayleigh waves realized by the
equivalent piezoelectric material with the designed feedback,
which mimics exactly the cases shown in Figure 5(b) and (c).

C
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Figure 5 (Color online) Rayleigh wave in K,-Type odd elastic medium. (a) Ratio of surface speeds |v,/v_| as function of two dimensionless material
parameters. Three regions are observed, reciprocal, non-reciprocal, and unidirectional Rayleigh waves, respectively. Simulation results for unidirectional
surface wave propagations for (b) o=—0.13 and (c) a=0.13. We set the other material parameters as x = 53.8 GPa, p = 2700 kg/m3,

For comparison, the reciprocal Rayleigh wave is also shown
in Figure 6(b) without feedback control. In Figure 6(d) and
(e), we additionally provide the underpinned electric field
pattern necessary for the piezoelectric material to produce
the same phenomena as predicted by the homogeneous odd
elastic material.

So far, we have analyzed the case where the odd elastic
material parameter satisfies the condition arg(K,) = +n/2. For
the case where arg(K,) # m/2, e.g., K,eR, the solution of
eq. (14) yields a complex value for v. Here, the surface wave
vector p is also complex, its real part characterizes a tra-
veling wave, and its imaginary part describes a decaying or
amplifying edge state. This is a striking feature observed in
non-Hermitian systems, referred to as unidirectional in-
visibility [33], i.e., the power of wave increases in one di-
rection and decreases in the opposite. Figure 7 shows
schematically the different edge modes for the value of
arg(Ky), e.g., the evanescent mode for arg(XK,)=0, travelling
mode for arg(K,)=+mn/2, and evanescent or power growth
mode for arg(K,)=0, . The cases indicated by Figure 7(a)
and (c) generally appear in the opposite directions along a
free surface, as shown more clearly in Figure 7(d) and (e) and
calculated with the homogeneous odd elastic material with
the same loading as discussed previously. By adjusting the
feedback phase between the local strain and the electric field,
the same phenomenon can also be achieved using the

equivalent piezoelectric material.

4 Energy scenario of odd elastic materials

As discussed in the previous section, the odd elastic mate-
rials can regulate the external energy exchange during de-
formations. It is, thus, interesting to examine this energy
flow necessary to maintain the odd elastic medium, on which
the interesting phenomena discussed in sect. 3 are based.

Considering a square element of a 2D K-type odd elastic
medium (Ky/x=0.1), the deformation of such element is de-
composed into the basis strain s, and s5 in the space of shear
strains (for example eq. (7)), as shown in Figure 8(a). We
consider one cycle linear strain loading s=s,+s;. Since the
total strain is composed of s, and 53, two loading paths can be
envisaged: path 1, marked by the red circle in Figure 8(a) has
the loading sequence s=0—s,—s,+s;—5;—0 (Figure 8(b)
forward direction); path 2, denoted by the blue circle in
Figure 8(a), has the loading sequence s=0—s;3—s,+
s3—s5,—0 (Figure 8(b) backward direction). The variation
of the strain energy during each loading cycle can be written
as:

1
Wodd = 2 § tadsa' (18)

For the equivalent piezoelectric material, the increment of
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Figure 6 (Color online) Rayleigh wave achieved with equivalent piezoelectric material. Unidirectional Rayleigh wave rightward (a) and leftward (c).
Necessary electric field intensity £, and £, during the feedback rightward case (d), leftward case (e), and reciprocal Rayleigh wave without feedback control
(b). We set material parameters as x=53.8 GPa, #=32.3 GPa, and p = 2700 kg/m3.

arg(K,)=0 arg(Ky)=n/2

Figure 7 (Color online) Different edge modes based on the phase of K|, (a) Evanescent mode, (b) traveling mode, and (c) power growth mode. (d) and (e)
show the unidirectional invisibility in two opposite directions in an odd elastic media (left: K,/x=0.06 and right: Ky/x=—0.06).
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Figure 8 (Color online) Energy variations of an odd elastic medium and the equivalent piezoelectric material during one strain loading cycle. (a) An odd
elastic material element is deformed in one strain loading cycle in strain space. The anticlockwise loading sequence is defined as path 1 (red circle), and the
clockwise loading sequence is defined as path 2 (blue circle). (b) The strain loading sequence for path 1 and path 2, respectively. (c¢) Analytic results (solid
lines) and simulation results (dash lines with circle) of the energy variation in one loading cycle. (d) Energy gain (blue line) or release (red line) via coupling

energy during one loading cycle.

the apparent strain energy is given by dw;e,,=0;dy;, in-
cluding some part of the electric energy due to the feedback
eq. (6). The incremental coupling energy is defined by
Aweouple=—eE4dy;. With such a definition, we can examine
the strain energy scenario of the system in one deformation
cycle. The analytic result (solid lines) of the homogeneous
odd elastic medium and simulation result (dash lines with
circle) of the equivalent piezoelectric material are shown
respectively in Figure 8(c). The red and blue line represent
the energy variations along the path 1 and path 2, respec-
tively. As seen, both the odd elastic and the equivalent pie-
zoelectric materials do not conserve energy. Moreover, they
also depend on the loading path because after a loading cycle
the apparent strain energies do not return to zero. For com-
parison, the black line in the middle represents a classical
isotropic medium with the same x and u as the odd elastic
medium. The strain energy returns to zero after a deforma-
tion cycle as expected.

To illustrate the modulated external energy flow, we cal-
culated the variations of the coupled energy during one de-
formation cycle along different loading paths, shown in
Figure 8(d). The difference between the coupled energy
variation lies in the antisymmetric coupling between two

shear deformations. The s; strain leads to a positive stress 7,,
whereas the s, strain leads to a negative stress #; as shown
below:

5
:

Figure 8(d) demonstrates that the energy is pumped out for
the loading path 1 (red line). To explain this effect, we
consider the work done by ¢, in the deformation cycle firstly.
During the loading process B—C, no work is done by ¢, since
s, 1s constant, as seen in Figure 8(a); however, ¢, increases
because of the positive coupling K, Compared with the
energy gain in the process A— B, the energy released in the
process C—D is greater than the energy gain due to the
increase of ¢, in the loading process B—C. This additional
energy release is provided by the negative work done by the
electric field in the loading process C—D. A similar me-
chanism holds for the negative work done by #;. However, if
there is a phase difference between the energy exchange and
mechanical loading, which equals arg(K,)==n/2, the energy
gain or release is balanced, based on the above analysis. Any
system with this feature is called a PT-symmetry (pseudo-
Hermitian) system [34]. It is also the physical mechanism

o Ky
K, u

S2
S3

: (19)
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governing the existence of a stable non-reciprocal surface
wave, as discussed in the previous section.

The additional electric field only affects the odd material
parameters, but the elastic modulus remains unchanged in
this case. While the feedback is introduced in a system, the
feedback can be decomposed into even parts and odd parts.
In a static deformation cycle, the equivalent medium releases
or gains energy through the odd part, and the even part only
affects the energy amplitude. Finally, since both the odd and
Cauchy elasticities can characterize the energy injected or
released during a mechanical loading cycle, the odd elasticity
may be a special category of Cauchy elasticity. More studies
to prove this observation are necessary and underway.

5 Conclusions

We demonstrated that an odd elastic medium could be mi-
micked using a piezoelectric material with carefully de-
signed linear feedback between the local strain and electric
field. In other words, for a piezoelectric material with linear
feedback, its mechanical response could be characterized by
a homogeneous odd elastic material. The external energy
exchange favored by the odd elasticity is provided by the
modulation of the electric energy. We illustrated these ideas
by designing a non-reciprocal Rayleigh wave exhibiting
unidirectional invisibility using a homogeneous odd elastic
medium and validated them via the equivalent piezoelectric
material. The detailed energy gain and release in the odd
elastic materials during one loading cycle were also ana-
lyzed. Our work offers an easily achievable platform to ex-
plore the odd elasticity and interesting phenomena in non-
Hermitian systems.
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Appendix Stroh formalism for odd elasticity

The main ingredients of Stroh formalism are summarized
here, the details can be found in refs. [11,32]. To solve the
eigenvalue problem of eq. (14), Stroh formalism is utilized.
To proceed, we define

< 2
Q =Ky =pdyv”, Ry= Ky,

(al)
R, =Ky S = Kigo.
The normal traction vector 7;=o;n; can be written as:
T =-ip(R,+¢S)U = —iplL. (a2)
I is a new traction vector, defined as:
1= (qR,+¢’S)U. (a3)
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Using eq. (14), eq. (a3) can be rewritten as:
g1=(-Q+RS 'RJU-RSL (a4)

Combining eqgs. (a3) and (a4), we get the equation for a
generalized eigenvalue problem:

HEH (a5)

—-Q+RS 'R, RS
-S'R, S

The eigenvalue ¢ must satisfy the following balanced
equation:

Det[Q+q(R1+ R2)+q28] =0. (a6)

Then taking the conjugate transpose (denoted by H) on eq.
(a6) (where * means conjugate), we obtain

Det[QH +¢"(R™+R,") + (q*)st] =0. (a7)

If we take the odd parameters as arg(Ko)=n/2, Q, Ri+R,,
and S must be of Hermitian matrices, we have

Det[Q +¢"(R,+R,) +(q*)2s] =0. (a8)
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This equation means that ¢ and q* are both eigenvalues of
the problem, so eq. (a5) must have two conjugate pairs, de-

noted respectively by ¢,* and ¢ (the superscript represents
the sign of the imaginary part), the corresponding eigen-
vectors U’ represent displacements and I represent trac-

tions (j=1, 2). With the traction-free condition, we have
—ip; I;, v>0,

T=y = °

—ip; I, v<0, (a9)

J=12,

which means
Detl,,1;]=0, v>0,

(al0)
Det[I,,1,] =0, v <O0.

Therefore, we get the surface wave condition for the odd
elastic medium, substituting concrete odd parameters into eq.
(al0), we can determine the speeds of the edge wave.



