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Non-Hermitian systems with parity-time (PT)
symmetry reveal rich physics beyond the Hermitian
regime. As the counterpart of conventional PT
symmetry, anti-parity-time (APT) symmetry may lead
to new insights and applications. Complementary
to PT-symmetric systems, non-reciprocal and chiral
mode switching for symmetry-broken modes have
been reported in optics with an exceptional point
dynamically encircled in the parameter space
of an APT-symmetric system. However, it has
remained an open question whether and how the
APT-symmetry-induced chiral mode transfer could
be realized in mechanical systems. This paper
investigates the implementation of APT symmetry in
a three-element mass–spring system. The dynamic
encircling of an APT-symmetric exceptional point
has been implemented using dynamic-modulation
mechanisms with time-driven stiffness. It is found
that the dynamic encircling of an exceptional point
in an APT-symmetric system with the starting point
near the symmetry-broken phase leads to chiral
mode switching. These findings may provide new
opportunities for unprecedented wave manipulation
in mechanical systems.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 D

ec
em

be
r 

20
21

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0641&domain=pdf&date_stamp=2021-12-22
mailto:zhxming@bit.edu.cn
https://doi.org/10.6084/m9.figshare.c.5754125
https://doi.org/10.6084/m9.figshare.c.5754125
http://orcid.org/0000-0002-7725-8814
http://orcid.org/0000-0002-3240-9789


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210641

..........................................................

1. Introduction
Non-Hermitian quantum-mechanics systems protected by parity-time (PT) symmetry have
attracted considerable attention in recent years [1–3]. A purely real energy spectrum can still
be observed in these systems, and there exists a symmetry-breaking threshold point, called
the exceptional point (EP), at which eigenvalues and eigenvectors coalesce simultaneously
[4,5]. A variety of intriguing properties have been found at EPs [6–10], which provide new
schemes for controlling waves using balanced gain and loss. Based on the linkage between
non-Hermitian quantum-mechanical and classical wave systems, the EP phenomenon associated
with PT symmetry has been rapidly extended to acoustic [11–13] and elastodynamic realms
[14–17]. Anomalous wave transport properties induced by EPs, such as asymmetric wave
scattering [14,18,19], unidirectional sound focusing [13] and enhanced sensitivity [16,17], have
been revealed. Another topic of particular interest relates to the eigenvalue topological structure
and unique mode-switching manipulation around an EP. It has been revealed that adiabatically
encircling an EP of degeneracy would result in an eigenstate exchange owing to the unique
topological structure [20–22]. This phenomenon has been demonstrated experimentally in
microwave [22] and acoustic [23] cavities by independently measuring the spectra and eigenfields
at different locations on a parametric loop enclosing an EP. On the other hand, when considering
a dynamic encircling, non-adiabatic transitions (NATs) [24] occur, leading to a robust chiral
behaviour [25] that has great potential for switching protocols and topological energy transfer.
So far, chiral behaviour has been intensively investigated in optical and photonic systems
[26–29] while it has rarely been explored in mechanical systems because of the challenge in
achieving dynamic modulations in parameter space. Until recently, chiral mode switching for
mechanical vibrational modes has been realized in a time-modulated mechanical system [30]. It
has been demonstrated by this study that, for chiral dynamics to occur, the starting point of the
parametric loop should lie near the symmetric phase where the energy is uniformly distributed
in systems. However, the symmetry-broken modes were found to undergo a dynamic evolution
that is non-chiral. We note that the symmetry-broken phase corresponds to the modes with the
localization of energy. Realization of the chirality of symmetry-broken modes may provide new
mechanisms for unusual energy transfer manipulation.

Chiral mode switching for symmetry-broken modes was found to be relevant to the
implementation of anti-parity-time (APT)-symmetric waveguide systems [31]. An APT-
symmetric system, whose Hamiltonian anticommutes with the combined PT operator, represents
an extension of PT-symmetric systems [32,33], and it also possesses the EP and self-intersecting
eigenvalue topological Riemann surface [33–36]. Mathematically, an APT-symmetric Hamiltonian
differs from a PT-symmetric one by a factor of the imaginary unit [32,34]. This results in the
reversed eigenvalue topological structure between them. Such an intriguing effect makes it
possible to achieve chiral mode switching for symmetry-broken modes in an APT-symmetric
system. The physical realization of an APT-symmetric system is very challenging since it
requires purely imaginary coupling between states [37,38]. Recently, an easy-to-implement
scheme for achieving an indirect imaginary coupling was proposed in coupled optical systems
by intersecting two eigenstates with an additional high-loss state [31,33,35]. By adiabatically
eliminating the intermediate state, the APT symmetry has been obtained in an effective two-mode
system. The extension of the idea to mechanical systems requires an exact analogy between the
Schrödinger equation and Newton’s equation of motion, which has not yet been deeply explored.
In addition, it has remained unclear whether the chiral mode transfer of symmetry-broken modes
could be realized in mechanical systems in this manner.

In this work, we investigate the construction of APT symmetry in a three-element coupled
mechanical system, and implement the dynamic encircling of an APT-symmetric EP using
dynamic-modulation mechanisms with time-driven stiffness. The paper is organized as follows.
In §2, we first construct a mathematical analogy between the Schrödinger equation and Newton’s
equation of motion of a three-element system based on the tight-binding approximation. Then,
the adiabatic elimination procedure is performed to create the APT symmetry in an effective
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two-mode system. The APT-symmetric properties and the eigenvalue topological structure in
two-dimensional parameter space are analysed. In §3, the modulating structure with effective
time-varying stiffness is proposed to implement the dynamic encircling of an APT-symmetric EP
in parameter space. Chiral mode switching for symmetry-broken modes will be demonstrated
when an APT-symmetric EP is dynamically encircled along a loop starting from the APT-broken
phase. Concluding remarks are outlined in §4.

2. Construction of an APT-symmetric mechanical system
Consider two undamped oscillators with the same mass m and different spring constants k1 and
k2. To create an imaginary coupling between these two elements, a damped oscillator with mass
m, spring constant k0 and damping coefficient c0 is introduced to connect the undamped elements
with the springs of kL and kR, as depicted in figure 1. Denote the displacements of the two
undamped elements and the intermediate one by u1, u2 and uc, respectively. The dimensionless
equations of motion for each of the elements are given by

d2u1

dτ 2 + κ1u1 + κLu1 − κLuc = 0,

d2uc

dτ 2 + γ0
duc

dτ
+ (1 + κL + κR)uc − κLu1 − κRu2 = 0

and
d2u2

dτ 2 + κ2u2 + κRu2 − κRuc = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where the normalized parameters κ1 = k1/k0, κ2 = k2/k0, κL = kL/k0, κR = kR/k0, γ0 = c0/mω0 have
been used and τ = ω0t with ω0 = √

k0/m. Assume harmonic solutions of the form [u1, uc, u2]T =
U eiλτ , where U = [u1, uc, u2]T is a vector of oscillator amplitudes and λ refers to the eigenvalue.
Equation (2.1) is expressed in matrix notation as

⎡
⎢⎣−λ2 + β1 + 1 + κL −κL 0

−κL −λ2 + iλγ0 + 1 + κL + κR −κR
0 −κR −λ2 + β2 + 1 + κR

⎤
⎥⎦

⎡
⎢⎣u1

uc

u2

⎤
⎥⎦ = 0, (2.2)

where β1 = κ1 − 1 and β2 = κ2 − 1 are quantities that characterize the stiffness contrast. In order
to make a connection to a quantum-mechanics system, equation (2.2) will be reformulated in
a similar form to the Schrödinger equation by using the method of tight-binding approximation
[15]. To this end, the presented three-element system is analysed based on an unperturbed system
comprising three modes with identical oscillating frequency ω0, while the stiffness contrast β1,2,
coupling spring κL, R and damping γ0 are considered as small system perturbations satisfying
|β1,2| � 1, κL, R � 1 and γ0 � 1. Under this approximation, the eigenvalue of the perturbed system
(namely the studied three-element system) can be expressed as λ = 1 + Δ, where Δ represents a
small perturbation applied to the eigenvalue of the unperturbed system and satisfies Δ � 1. In the
small-perturbation limit, 1 − λ2 and iλγ0 are approximated as −2Δ and iγ0, respectively. Then, the
eigenvalue equation for solving Δ can be obtained as

HpU = ΔU, where Hp = 1
2

⎡
⎢⎣β1 + κL −κL 0

−κL iγ0 + κL + κR −κR
0 −κR β2 + κR

⎤
⎥⎦ . (2.3)

We emphasize that the Hamiltonian of the unperturbed system is represented by the 3 × 3
identity matrix I3, and Hp encodes all the differences of the Hamiltonian between the perturbed
system and the unperturbed one [15]. Therefore, the quadratic eigenvalue problem (2.2) can be
rearranged as a generic tight-binding eigenvalue relation HtotalU = λU, where Htotal = I3 + Hp is
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k1 kL kR k2

c0

k0

Figure 1. Schematic diagram of a coupled mass–spring resonator system with a damper attached to the middle oscillator, c.
(Online version in colour.)

the Hamiltonian of the system. Using the Hamiltonian Htotal, the corresponding time-dependent
equation is given by

− i
d

dτ

⎡
⎢⎣v1

vc

v2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

ω1 −κL

2
0

−κL

2
ωc + i

γ0

2
−κR

2

0 −κR

2
ω2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣v1

vc

v2

⎤
⎥⎦ , (2.4)

where the complex variable vi(i = 1, c, 2) is defined such that ui = (vi + v∗
i )/2, which provides

a straightforward illustration of the amplitude and phase configurations of oscillator i. The
modulus |vi| denotes the oscillation amplitude, while Re(vi) represents the instantaneous response
ui. Note that ω1 = 1 + (β1 + κL)/2, ωc = 1 + (κL + κR)/2 and ω2 = 1 + (β2 + κR)/2 refer to the
normalized natural frequencies of the three oscillators after perturbation, and −κL, R/2 denotes
the coupling between adjacent ones.

Next, we perform the adiabatic elimination procedure [39–41] for the lossy oscillator c in
order to construct the APT symmetry in an effective two-mode system. Introduce auxiliary fields
ṽi (i = 1, c, 2), which satisfy vi(τ ) = ṽi(τ ) exp(iωiτ ). Equation (2.4) can be rewritten in terms of the
fields ṽi by

− i
d

dτ

⎡
⎢⎣ṽ1

ṽc

ṽ2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 −κL

2
e−i	ω1τ 0

−κL

2
ei	ω1τ i

γ0

2
−κR

2
ei	ω2τ

0 −κR

2
e−i	ω2τ 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ṽ1

ṽc

ṽ2

⎤
⎥⎦ , (2.5)

where 	ω1 = ω1 − ωc and 	ω2 = ω2 − ωc. Assuming a sufficiently large damping ratio γ0 �
κL, κR, we have dṽc/dτ ≈ −(γ0/2)ṽc � dṽ1/dτ , dṽ2/dτ according to equation (2.5). The inequality
means that the variable ṽc varies in time very rapidly in comparison with ṽ1 and ṽ2. Therefore, ṽc

is categorized as the fast variable and will decrease drastically with decay rate γ0/2. By contrast,
variables ṽ1,2 are slow ones that evolve over a much longer time period before reaching a steady
state. By integrating the second equation in (2.5) with respect to time, the general expression of
the fast variable ṽc is given by [33,41]

ṽc(τ ) = −i
κL

2

∫ τ

0
ṽ1(τ − τ ′)ei	ω1(τ−τ ′)e−(γ0/2)τ ′

dτ ′

− i
κR

2

∫ τ

0
ṽ2(τ − τ ′)ei	ω2(τ−τ ′)e−(γ0/2)τ ′

dτ ′, (2.6)

where we have set ṽc(0) = 0 at the initial time τ = 0. Since γ0/2 is extremely large, the mean lifetime
of the exponentially decaying term exp(−(γ0/2)τ ′) is close to zero. Thereby, slow variables ṽ1
and ṽ2 satisfy the approximate relationship ṽ1,2(τ − τ ′) exp(−(γ0/2)τ ′) ≈ ṽ1,2(τ ) exp(−(γ0/2)τ ′) for
0 ≤ τ ′ ≤ τ . Equation (2.6) is then simplified as

ṽc(τ ) = −i
κL

2
ṽ1(τ )

∫ τ

0
ei	ω1(τ−τ ′)e−(γ0/2)τ ′

dτ ′ − i
κR

2
ṽ2(τ )

∫ τ

0
ei	ω2(τ−τ ′)e−(γ0/2)τ ′

dτ ′. (2.7)
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Considering that τ measures the time scale of slow variables following τ � 2/γ0, equation (2.7) is
further given by

ṽc(τ ) = − iκL

2(i	ω1 + γ0/2)
ṽ1(τ )ei	ω1τ − iκR

2(i	ω2 + γ0/2)
ṽ2(τ )ei	ω2τ . (2.8)

By substituting equation (2.8) into (2.5), the fast variable ṽc(τ ) can be adiabatically eliminated, and
then the equation that governs the evolution of slow variables ṽ1 and ṽ2 is given by

− i
d

dτ

[
ṽ1
ṽ2

]
=

[
iΓ11 iΓ12e−i(ω1−ω2)τ

iΓ21ei(ω1−ω2)τ iΓ22

] [
ṽ1
ṽ2

]
, (2.9)

where

Γ11 = κ2
L

4i	ω1 + 2γ0
, Γ22 = κ2

R
4i	ω2 + 2γ0

, Γ12 = κLκR

4i	ω2 + 2γ0
, Γ21 = κLκR

4i	ω1 + 2γ0
.

In terms of the complex variable vi, equation (2.9) is rewritten as

− i
d

dτ

[
v1
v2

]
=

[
ω1 + iΓ11 iΓ12

iΓ21 ω2 + iΓ22

] [
v1
v2

]
, (2.10)

where Γ11, Γ22 characterize the loss rate of two oscillators and Γ12, Γ21 refer to the mode coupling
coefficient. We further assume that |	ω1,2| � γ0/2 and κL = κR = κ . Under this condition, the
coupled mode equation (2.10) is given by

− i
d

dτ

[
v1
v2

]
=

[
αave + αdif + iΓ iΓ

iΓ αave − αdif + iΓ

][
v1
v2

]
, (2.11)

where αave = (ω1 + ω2)/2, αdif = (ω1 − ω2)/2 and Γ = κ2/(2γ0). Equation (2.11) gives the evolution
over time of slow variables pertaining to two undamped oscillators. To confirm that the
effective two-mode system described by equation (2.11) is APT-symmetric, we perform the gauge
transformation ϕ = e−iαaveτ [v1, v2]T for equation (2.11), obtaining that

− i
dϕ
dτ

= HAPTϕ, where HAPT =
[
αdif + iΓ iΓ

iΓ −αdif + iΓ

]
. (2.12)

Equation (2.12) is similar in form to the Schrödinger equation in quantum-mechanics systems.
The Hamiltonian HAPT of this two-level system is characterized by the fact that two oscillators
attenuate at equal decay rate Γ , but differ in their natural frequencies by 2αdif. Meanwhile, the
coupling constant iΓ of these two modes is purely imaginary. It is known that the time-reversal
operator T flips the direction of time evolution and returns its complex conjugation when acting
on the Hamiltonian [42]. The parity operator P refers to the space inversion operation described
by the Pauli matrix σx = [ 0 1

1 0 ] [3,43]. Under the combined P and T operation, it is readily found
that the Hamiltonian HAPT of the form (2.12) satisfies the APT-symmetric relationship

(PT)HAPT(PT)−1 = −HAPT. (2.13)

By contrast, a PT-symmetric Hamiltonian HPT with the relation of HAPT = iHPT is invariant under
the combined parity and time-reversal operation, satisfying (PT)HPT(PT)−1 = HPT.

Now let us revisit equation (2.11) and denote the system’s eigenvector by ψ = [v1, v2]T and the
corresponding eigenvalue by λ. By solving the model Hamiltonian in equation (2.11), we can get
two sets of eigenstate solutions

λ1,2 = αave + iΓ ∓
√

α2
dif − Γ 2, ψ1,2 =

⎡
⎢⎢⎣−i

(
αdif ∓

√
α2

dif − Γ 2
)

Γ
, 1

⎤
⎥⎥⎦ . (2.14)

In the case of Γ/αdif > 1, we see from equation (2.14) that the real parts of two eigenvalues coalesce
while the imaginary parts are split. In addition, each eigenvector is invariant under simultaneous
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Figure 2. The eigenvalue and modal amplitude ratio of the effective two-mode system (a–c) and original three-element
system (d–f ). The real parts (a,d) and imaginary parts (b,e) of the eigenvalues; (c,f ) the amplitude ratio of the eigenmodes.
The insets show the results of mode 3. (Online version in colour.)

P and T operations, i.e. PTψ1,2 =ψ1,2, and exhibits the balanced field profiles |v1/v2|1,2 = 1.
These are the important characteristics of the APT-symmetric phase. When Γ/αdif < 1, the two
eigenvalues have the same imaginary parts but different real parts instead. In this regime, the
PT operation transforms one eigenvector into the other as given by PTψ1,2 =ψ2,1. This leads
to an asymmetric amplitude ratio distribution (|v1/v2|1 = |v2/v1|2 > 1), which means that the
eigenmode field is always localized to one oscillator. This is the landmark effect of the APT-broken
phase. In between these two phases, there is a threshold condition, Γ/αdif = 1, at which both
eigenvalues and the corresponding eigenvectors become degenerate. Here, this non-Hermitian
degenerate point is termed the APT-symmetric EP in order to distinguish itself from the EP
occurring in PT-symmetric systems.

Figure 2a–c shows the quantitative results of the evolution of the eigenvalues and modal
amplitude ratio against Γ/αdif by varying the coupling strength κ , which are calculated according
to equation (2.14) using parameters κ1 = 1.015, κ2 = 1.012 and γ0 = 0.12. In the region beyond
Γ/αdif = 1 is the APT-symmetric phase, which predicts the uniform motion distribution in the
stationary state of systems. For further illustration, taking Γ/αdif = 1.5 and initial conditions
[v1, v2] = [0, 1] at τ = 0, the time-dependent responses of field amplitudes |v1| and |v2| are
computed by solving equation (2.11), as shown in figure 3a. Oscillator 2 quickly transfers its
energy to oscillator 1, and they later tend to move with nearly equal amplitude |v1/v2| 	 1 as
protected by the APT symmetry. In another example, we choose Γ/αdif = 0.5, which falls within
the regime of the APT-broken phase. The corresponding time evolutions of the field amplitudes
under the same initial conditions are shown in figure 3b. The energy cyclically flows back and
forth between two oscillators, and does not tend to be evenly distributed owing to the fluctuation
of |v1/v2|. This is consistent with the prediction by the APT-broken phase.

It is worthy of note that the field responses of the effective two-mode system would be
predicted to coincide with those retrieved from the original three-element system, as guaranteed
by the adiabatic elimination concept. For verification, using equation (2.4) we calculate the
eigenvalues and modal amplitude ratio of the three-element system as plotted in figure 2d–f.
Excellent agreement can be observed when compared with the results in figure 2a–c. Figure 3c,d
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Figure 3. Time-dependent field responses of the effective two-mode system (a,b) and original three-element system (c,d).
Field responses of the APT-symmetric phase with Γ/αdif = 1.5 (a,c) and the symmetry-broken phase with Γ/αdif = 0.5
(b,d). (Online version in colour.)

presents the time-dependent field responses of the original system under the same conditions as
figure 3a,b. The effectiveness of the adiabatic elimination can again be verified by the coincidence
of the temporal responses between the two systems. In the insets of figure 2d–f, a decoupled
mode with localized fields at lossy oscillator c (|vc/v1,2|3 � 1) is shown to possess a significantly
larger damping factor than the other eigenmodes. As a result, the oscillating amplitude of
oscillator c cannot build up significantly and thus remains as its initial value (|vc(τ )| ≈ |vc(τ =
0)|), as demonstrated in figure 3c,d. Thereby, the intermediate oscillator c can be adiabatically
eliminated without significantly altering the dynamics of the outer oscillators. The above results
show that the dynamic evolution of the symmetric and symmetry-broken phases in the original
three-element system can be accurately captured by the effective two-mode system with the
help of adiabatic elimination, which can then be used to provide a precise prediction of the
APT-symmetric EP. This is critical to the construction of the APT-symmetric mechanical system.

3. Mode switching by dynamically encircling the APT-symmetric EP
Let us examine the topological structure of eigenvalues in the two-dimensional parameter space
(κL, κR) for the three-element system with parameters κ1 = 1.015, κ2 = 1.012 and γ0 = 0.12. The EP
occurs at Γ/αdif = 1, which predicts the point of κL = κR = 0.0134, which we denote by κEP. In the
vicinity of the EP, the real and imaginary parts of eigenvalues against the variation of κL and κR are
shown in figure 4a,b, respectively. The system is shown to possesses three eigenstates; according
to the magnitude of mode damping (i.e. imaginary parts of eigenvalues), they are termed here
as modes 1, 2 and 3 with low, high and extremely high losses, respectively. Constrained by the
adiabatic elimination, mode 3 localized at the lossy oscillator c has been successfully removed
away from the other modes. As a result, one can observe clearly the self-intersecting Riemann
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distribution of the amplitude ratio of modal fields for modes 1 and 2 on the lines of the APT-symmetric phase and APT-broken
phase. (Online version in colour.)

sheets relevant to the low-loss and high-loss states. The eigenmode evolution around the EP on
the Riemann sheets will be covered in this section.

Figure 4c shows the amplitude ratio of the modal fields of modes 1 and 2 on the line where
either real or imaginary parts of eigenvalues coalesce. Consistent with the observation in figure 2,
it is found that the APT-broken phase occurs at the branch cut (BC) line where the imaginary
parts of the eigenvalues coalesce (solid line) while the real parts of the eigenvalues bifurcate,
resulting in the fact that mode 1 is mostly localized in oscillator 2 and mode 2 in oscillator 1. The
coalescing of real parts of eigenvalues (dashed line) corresponds to the APT-symmetric phase,
which ensures the nearly equal distribution of energy between two oscillators. We emphasize
that the topological structure of eigenvalues near the APT-symmetric EP has been reversed in
contrast to the PT-symmetric system. In the latter, the imaginary parts of eigenvalues coalesce for
the PT-symmetric phase while the real parts coalesce for the broken PT-symmetric phase [2,3].
According to this reversed symmetry effect, we may expect that the chiral mode switching by the
dynamic encircling of the EP, which in PT-symmetric systems appears for symmetric and anti-
symmetric modes [30], would be observed for symmetry-broken modes in the APT-symmetric
systems.

When we consider the dynamic encircling of an EP, the non-Hermitian Hamiltonian should be
modulated as being time-dependent to generate the time evolution of eigenstates. This requires
the continuous changing of κL and κR with time along a controlled path encircling the EP. In our
previous study [30], the dynamic-mechanism metamaterials were employed for time modulation
of the ground stiffness and viscosity, and they allowed for easy tuning of the starting/end points
and encircling direction of the parametric loop. Here, the concept of the dynamic-modulation
mechanism is used again to design the time-varying stiffness κL and κR. Figure 5a shows the
modulating structure that is capable of dynamic encircling of an EP, where adjacent rigid bodies
are connected with a pair of perpendicularly arranged springs that rotate about an axis vertical
to the main track. The two mechanisms rotate with the same angular frequency Ωr from initial
biasing angles Φ0 and Ψ0. Through the homogenization analysis [30,44], the two rotary-spring
mechanisms can be effectively represented by springs with time-varying stiffness κL(τ ) and κR(τ ),
as given by

κL(τ ) = κ0
L + κ1

L cos 2Φ(τ ) and κR(τ ) = κ0
R + κ1

R cos 2Ψ (τ ), (3.1)

where κ0
L = (k3 + k5 + k6)/k0, κ1

L = (k5 − k6)/k0, κ0
R = (k4 + k7 + k8)/k0 and κ1

R = (k7 − k8)/k0. Φ(τ ) =
Φ0 ± ωrτ and Ψ (τ ) = Ψ0 ± ωrτ are phase angles at a certain time τ with ωr = Ωr/ω0, and the ‘+’
and ‘−’ notation denotes the anti-clockwise and clockwise rotation of rotary-spring mechanisms,
respectively. By incorporating time-varying parameters κL(τ ) and κR(τ ) into equation (2.4), the
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Figure 5. (a) Schematic diagram of the modulated structure containing dynamic mechanisms; (b) Parametric loop enclosing
the EP parameterized by equation (3.1). The circle and star symbols mark the starting point and EP, respectively. (Online version
in colour.)

formulation that predicts the time evolution of eigenstates is written as

− i
d

dτ

⎡
⎢⎣v1

vc

v2

⎤
⎥⎦ = Htotal(τ )

⎡
⎢⎣v1

vc

v2

⎤
⎥⎦ , (3.2)

where the time-dependent Hamiltonian is given by

Htotal(τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + β1 + κL(τ )
2

−κL(τ )
2

0

−κL(τ )
2

1 + iγ0 + κL(τ ) + κR(τ )
2

−κR(τ )
2

0 −κR(τ )
2

1 + β2 + κR(τ )
2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.3)

To evaluate the eigenmode evolution in the process of the dynamic encircling of an APT-
symmetric EP, we first solve the time-dependent equation (3.2) under initial conditions, then we
expand the displacement response v(τ ) = [v1, vc, v2]T at each time τ as a sum of the instantaneous
eigenvectors, i.e. v(τ ) = p1z1 + p2z2 + p3z3. Note that pi refers to the instantaneous modal
amplitude of mode i, and zi is the right eigenvector of the eigenvalue problem Htotalzi = λizi. Since
Htotal is non-Hermitian, the right eigenvectors are typically not orthogonal, namely z†

i zj 
= δi,j,
where † represents the Hermitian conjugate operation and δi,j is the Kronecker delta. However,
by constructing the left eigenvectors li as defined by H†

totalli = λ∗
i li, we have the biorthogonal

relationship l†
i zj = δi,j [45]. Finally, the unknown amplitude pi can be determined by pi = l†

i v(τ )
[46], and can be used to disclose the eigenmode evolution behaviour [29,31].

Consider parameters κ0
L = κ0

R = κEP, κ1
L = κ1

R = 0.8κEP and ωr = 0.002. To excite the evolution
of the symmetry-broken state, we set the starting point near the APT-broken phase by choosing
initial phase angles Φ0 = 2π/3 and Ψ0 = 5π/12. The loop trajectory formed from phase functions
Φ(τ ) = 2π/3 ± ωrτ and Ψ (τ ) = 5π/12 ± ωrτ has been shown in figure 5b, where the spinning
direction ‘+’ (‘−’) of rotary mechanisms determines the anti-clockwise (clockwise) evolution
along the parametric loop. When a pure mode 1 or mode 2 is injected into the system as the initial
excitation, we are now interested in which one of the modes would dominate after a complete
evolution along the loop in various cases of input states and encircling directions. Chiral dynamics
of symmetry-broken states can then be identified in this way.

Figure 6e plots the variation in the modal amplitudes of all three modes when we input mode 1
and examine the anticlockwise encircling of the EP. The corresponding evolution trajectories are
drawn on the Riemann sheets, as shown in figure 6a. Mode 1 is seen to experience a stable and
adiabatic evolution on the low-loss Riemann sheet, and it always dominates until going across
the BC where the imaginary parts of eigenvalues coalesce, resulting in the exchange of mode
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of the input state and loop orientation: (a,e)mode 1 input and anti-clockwise orientation; (b,f )mode 2 input and anti-clockwise
orientation; (c,g) mode 1 input and clockwise orientation; (d,h) mode 2 input and clockwise orientation. (Online version in
colour.)

identity. Eventually, the system outputs mode 2 owing to the fact that |p2| > |p1| > |p3|. Figure 6b,f
shows the corresponding results for mode 2 as the input state. The mode 2 that propagates on
the high-loss Riemann sheet is seen to excite the low-loss mode 1 because of the non-adiabatic
coupling [25,47]. Mode 1 would become dominant after passing through the crossing point of
amplitude curves in figure 6f. On the Riemann surface (figure 6b), this point is characterized by
an abrupt jump from the high-loss sheet to the low-loss sheet [30], which is known as the NAT.
Note that the occurrence of the NAT is required by the system stability, and it is related to the more
general phenomenon of stability loss delay in dynamical bifurcations [46,48]. After experiencing
the NAT, the dominant state would return to mode 2 owing to the BC, which keeps dominating
until the end of the evolution.To sum up, the system always outputs mode 2 for the anti-clockwise
encircling, regardless of the input states. For the clockwise encircling case, mode 1, when inputted
into the system, will be transformed to the high-loss mode 2 by the BC, as shown in figure 6c,g.
After some delay the NAT occurs, resulting in the eigenstate returning the low-loss sheet, and
mode 1 dominates until the end of the loop. When mode 2 is injected, figure 6d,h shows that the
dominant state is soon changed to mode 1 owing to the BC, which later evolves stably on the
low-loss Riemann sheet without the occurrence of the NAT. In these two cases, the output state
is always mode 1. In all cases mentioned above, the modal amplitude of mode 3 has also been
shown, and it is two orders of magnitude smaller than that of the dominant states. Thus, its effect
on the evolution of the other two modes is minor.

Based on the above observation, we can conclude that the chiral mode switching, which
states that the output state is controlled mainly by the encircling direction while it is irrelevant
to the input states, has been achieved for symmetry-broken states. In fact, the chiral dynamics
of eigenmodes originates from the special topology of eigenvalue Riemann surfaces, and is
a general feature in non-Hermitian systems. To create the chirality, the parametric loop must
start from a point where the two eigenmodes carry nearly the same losses (imaginary parts
of eigenvalues). In PT-symmetric systems, the PT-symmetric phase locates at the line where
imaginary parts of eigenvalues coalesce, therefore the symmetric-phase mode exhibits the chiral
switching behaviour [29,30], whereas in the APT-symmetric systems studied here that line
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is the symmetry-broken phase, as has been illustrated in figure 2. Hence, the evolution of
symmetry-broken states becomes chiral.

We may question the evolution behaviour of symmetric-phase modes in APT-symmetric
systems. To clarify this issue, we investigate the state evolution for encircling loops with starting
points at the symmetric phase by setting phase functions as Φ(τ ) = π/8 ± ωrτ and Ψ (τ ) =
7π/8 ± ωrτ , as shown in figure 5b for the corresponding loop trajectory. For the low-loss mode
1 injection, figure 7a,e shows the anti-clockwise encircling case, where it is seen that mode 1
undergoes stable evolution on the low-loss Riemann sheet until entering the high-loss Riemann
sheet upon passing through the BC line. The NAT then occurs, causing the state to jump back
to the low-loss sheet; later, the state evolution becomes stable for the rest of the loop. The
dynamical process is more complicated for mode 2 injection (figure 7b,f ). The system undergoes
the NAT twice and the BC-induced mode switching once, and finally outputs mode 1. For the
clockwise encircling case, the evolution behaviour under different input states is quite similar to
the scenario of anti-clockwise loops. For all four cases shown in figure 7, the output state is always
the low-loss mode 1 regardless of the input states and encircling direction. Here, the system
reveals the non-chiral behaviour, which is completely different from the chiral dynamics
appearing when the APT-symmetric EP is encircled with the starting point lying near the
symmetry-broken phase. The underlying mechanism can be attributed to the distinct topological
structure of the eigenvalue Riemann surfaces in different parametric regions.

4. Conclusion
In this paper, we investigate the mode-switching effect achieved by dynamic encircling of an EP
in an APT-symmetric mechanical system consisting of three oscillators with a damper attached to
the middle one. The APT symmetry is obtained in the effective two-mode system by performing
an adiabatic elimination procedure for the intermediate lossy oscillator. As guaranteed by the
adiabatic elimination, the field responses of the effective two-mode system are demonstrated to
coincide excellently with those retrieved from the original three-element system. In the effective
two-mode system, we have observed the APT-symmetric EP, and the topological structure of
eigenvalues near the EP has been reversed in contrast to the PT-symmetric system.
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The dynamic encircling of the APT-symmetric EP is realized in the dynamic-modulation
system, which consists of three sets of mass–spring resonators that are coupled through two
rotating spring mechanisms. We show that the rotary mechanisms can be effectively represented
by springs with time-varying stiffness, which could drive the time evolution of eigenstates along a
path encircling the EP in the parameter space. Based on the proposed time-modulating structure,
we have observed the chiral dynamics of symmetry-broken modes when the APT-symmetric
EP is dynamically encircled along a parametric loop with the starting point lying near the
symmetry-broken phase, while the non-chiral behaviour is found for APT-symmetric modes.
These dynamic behaviours have been reversed in comparison with PT-symmetric systems. The
underlying mechanism originates from distinct topological structures of eigenvalue Riemann
surfaces between PT-symmetric and APT-symmetric systems. The present study is expected to
open up new schemes towards unprecedented manipulation of coupled wave and vibrational
modes in mechanical systems with APT-symmetric EPs.
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