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Abstract
This paper proposes a general method to design multi-resonant piezoelectric metamaterials.
Such metamaterials contain periodically distributed piezoelectric patches bonded on the
surfaces of a host structure. The patches are shunted with digital circuits and working on
self-sensing mode. A transfer function to be implemented in the digital circiots is designed to
realize multi-resonance. The transfer function is derived only using the parameters of the
patches. Consequently, it can be used to realize any type of multi-resonant metamaterial
structures, like beams, plates and shells. The mechanism of generating multi-bandgaps by the
transfer function is explained by analytically studying the effective bending stiffness of a
multi-resonant piezo-metamaterial plate. It is shown that the transfer function induces multiple
frequency ranges in which the effective bending stiffness becomes negative, consequently
results in multiple bandgaps. The characteristics of these bandgaps are investigated, coupling
and merging phenomena between them are observed and analyzed. Isolation effects of vibration
transmission (elastic wave) in the metamaterials at multiple line frequencies or within a broad
frequency band are numerically verified in frequency domain. Further time domain simulations
accounting for the full dynamics of the metamaterials with digital circuits are also performed,
stability and functionality of the metamaterials are demonstrated. The proposed multi-resonant
piezoelectric metamaterials may open new opportunities in vibration mitigation of transport
vehicles and underwater equipment.

Keywords: metamaterials, piezoelectric materials, multi-resonance, bandgap, elastic wave
isolation

(Some figures may appear in colour only in the online journal)

1. Introduction

Elastic waves in structures are strongly linked to the struc-
tural vibration and the consequent noise radiation. Isolating
the transmission of elastic waves from sources to other parts of
the structures could be an effective method to reduce vibration

∗
Author to whom any correspondence should be addressed.

and noise. In recent years, elastic metamaterials with local res-
onators provide new ways to deal with elastic waves, thanks
to their subwavelength bandgaps which can prohibit wave
propagation. However, the bandgaps of most metamaterials
are quite narrow, which cannot meet the engineering require-
ments in many situations.

An efficient way to extend the overall width of bandgaps
in metamaterials are using multiple resonators with differ-
ent resonant frequencies. In single resonator metamaterials,
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each unit cell only has one degree-of-freedom resonating at
a unique frequency. Therefore, only one bandgap is created
in such metamaterials [1, 2]. For multi-resonator metamateri-
als, they are composed of unit cells with multiple resonators,
the resonance of each resonator could induce one bandgap.
This phenomenon is demonstrated by Huang and Sun [3].
They studied a multi-resonator mass-in mass metamaterial,
each unit cell of it has two resonance frequencies. Analyt-
ical results demonstrate that two bandgaps are observed in
the metamaterial. Further investigation reveal that the effect-
ive mass of the multi-resonator metamaterials is negative
within the two bandgaps. Therefore, by optimizing the para-
meters of multi-resonator metamaterials to achieve broadband
effective mass negativity, broad bandgap can be obtained [4],
which is very useful in mitigating blast waves [5, 6]. Gen-
erally, increase the number of resonators in the unit cells
of multi-resonator metamaterials will obtain wider overall
bandgaps. Zhu et al [7] designed a layer-in-layer metama-
terial, each unit cell has three resonance frequencies, con-
sequently three separated bandgaps are observed. The over-
all width of bandgaps in multi-resonator metamaterials can
be further increased by using damped resonators. Chen et al
studied a dissipative multi-resonator metamaterial, based on
a homogenized model, it is found that the metamaterial util-
izes interactions between resonant motions and viscoelastic
effects of the damping materials to obtain broadband wave
mitigation effects. Effects of such dissipative multi-resonator
metamaterial are verified through experimental studies [8].
Introducing internal coupling between different local resonat-
ors can also generate multiple resonances to broaden the over-
all bandgap size. Hu et al [9] proposed a modified metama-
terial, in which every two unit cells form a group and the
two masses in each group are connected by a spring. Multiple
bandgaps were generated without adding extra masses due to
the interactions between the inner masses. Hu and Tang [10]
further used a negative stiffness string to couple the two reson-
ators in a group, ultra-low frequency bandgaps were generated
in their research. In summary, multi-resonator metamaterials
have wider bandgaps than single resonator metamaterials, they
are more practical in mitigating structural vibrations [11–14]
or isolating sound transmission [15]. However, currently most
of the studied multi-resonator metamaterials are composed of
passive resonators. Such passive metamaterials are not adapt-
ive to different working conditions because they are hardly
changeable once fabricated.

To overcome the aforementioned limitations of pass-
ive metamaterials, piezoelectric metamaterials with tunable
effective properties are proposed and attract plenty of study
interests. Due to their special electromechanical coupling
properties, band gap characteristics of piezoelectric metama-
terials, such as size and location, can be tuned by just modi-
fying the shunting circuits. Piezoelectric patches shunted with
circuits are first proposed by Forward [16] to damp mechan-
ical vibration. Hagood and Flotow [17] used an inductance
in the shunting circuit, it is shown that the inductance and
the intrinsic capacitance of the patch form a resonant shunt.
Motivated by this finding, Thorp et al [18] proposed to peri-
odically place piezoelectric patches shunted with inductance

along a rod. Longitudinal wave bandgap is observed near the
resonance frequency of the shunt and can be tuned by chan-
ging the inductance value. Airoldi and Ruzzene [19] studied
the effective stiffness of a periodic piezoelectric beam shunted
with resonant circuits. They found that the effective stiff-
ness shows resonant behaviors near the shunt’s resonance fre-
quency, this resonant feature results in bandgaps. Therefore,
they proposed that the periodic piezoelectric beam shunted
with resonant circuits is a kind of resonant electro-mechanical
coupling metamaterials. Following this concept, resonant
piezoelectric metamaterials are extended to plates [20–24].
However, due to the nature, resonant piezoelectric metamater-
ials still have narrow bandgaps. To overcome this drawback,
many strategies have been proposed to enlarge the bandgaps.
Wang et al [25, 26] proposed to add amplifiers into reson-
ant circuits to broaden bandgaps. Gradually varying shunt-
ing parameters in space domain to obtain ‘rainbow trap’ is
also used to obtain wave attenuation effect at wider frequency
band [27]. Li et al [28] designed a self-adaptive circuit to con-
trol the resonance frequencies of passive resonator, leading to
enlarged low-frequency bandgap. Like passivemulti-resonator
metamaterials, piezoelectric metamaterials with multiple res-
onance frequencies are also explored. Airoldi and Ruzzene
[29] designed multi-resonant circuits to generate multiple
band gaps in a beam. However, these multi-resonant piezo-
electric metamaterials are made of analog circuits, which can-
not be tuned in real-time and could be very complicated when
more than three resonant frequencies are needed.

A recent trend in designing piezoelectric metamaterials is
using digital synthetic impedance circuits. Usually, the digital
circuit is shunted between the two terminals of a piezoelec-
tric patch. It measures the voltage of the patch and feeds cur-
rent back to the same patch. The current is feeding according
to the transfer function implemented in the digital signal pro-
cessor. Therefore, a desired impedance between the two ter-
minals of the connected patch is establish, which is equal to
the inverse of the implemented transfer function. By tuning the
implemented transfer function, one can control in real-time the
size, location and even number of bandgaps in a piezoelectric
metamaterial. Yi et al [30] designed programmable metama-
terials based on such digital circuits, their simulations and
experiments demonstrate that the transfer functions in digital
circuits can be programmed in real-time to place bandgaps
at locations of different targeted vibration modes. Recently,
Sugino et al [31] also studied a similar programmablemetama-
terial beam and verified the tunability of bandgap location via
the transfer function. To broaden the overall bandgap size,
Sugino et al [32] proposed a transfer function to realize mul-
tiple resonances in a piezoelectric metamaterial beam. How-
ever, their transfer function is only restricted to some spe-
cific situation, because it is derived based on beam theory and
assuming that the beam is fully covered by the piezoelectric
patches. Except the above mentioned digital circuits which
use the same patch as sensor and actuator (namely, the patch
is working on self-sensing mode), Wang et al [33] designed
digital circuits using separated patches as sensor and actu-
ator to realize multiple resonances in a piezoelectric metama-
terial beam, nonetheless the derived transfer function is also
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restricted to beam structures, and may bring instability due to
the configurations of separated sensors and actuators.

In this paper, based on self-sensing piezoelectric patches
and digital circuits, an appropriate transfer function is derived
only using the parameters of the shunted piezoelectric patch,
to realize multi-resonant piezoelectric metamaterials with
broadened overall bandgap size. Since the transfer function is
obtained without using any knowledge of the base structure,
to which the shunted piezoelectric patches are bonded, the
proposed multi-resonant piezo-metamaterials could be used to
design any type of structures, like beams, plates, shells and
etc. In this paper, without loss any generality, piezoelectric
metamaterial plates are studied to present the design method,
analyze the properties of such multi-resonant metamaterials
and verify the broadband elastic wave isolation effects. The
rest of this paper is organized as follows: in section 2, the
transfer function for generating multiple bandgaps is pro-
posed and modified to create bandgaps precisely near the
targeted frequencies. section 3 discusses the mechanism of
generating multiple bandgaps via the designed transfer func-
tion. In section 4, characteristics of bandgaps in the proposed
multi-resonant piezo-metamaterials are analyzed. In section 5,
broadband isolation of elastic wave propagation is verified
based on numerical simulations. In section 6, simulations
of metamaterials with digital circuits are performed in time
domain to verify the stability. Finally, section 7 presents con-
clusions of this work.

2. Design of multi-resonant piezoelectric
metamaterials

In this section, a piezoelectric metamaterial plate is used
as an example to show how the multi-resonant piezoelectric
metamaterials are designed. It should be emphasized again
that the design method presented using plate-type structure in
this section can be directly used to design other type of multi-
resonant metamaterial structures, since the designed transfer
function for realizing multi-resonance is derived only based
on the parameters of piezoelectric patches.

2.1. Physical model of the multi-resonant piezoelectric
metamaterial plate

Figure 1 shows the sketch of the designed multi-resonant
piezoelectric metamaterial plate. The unit cell of the metama-
terial plate is composed of piezoelectric patches bonded on
the upper and lower surfaces of a host plate. The polariza-
tion of the patches is along the z axis. The patches work as
a whole and are assumed to be connected to a digital syn-
thetic impedance circuit, represented by G in figure 1. The
surfaces of the patches bonded to the base plate are grounded.
Voltage V in the figure is the voltage on the patches’ termin-
als. I means the current flows back to the patches controlled by
the digital circuit G. In the digital circuit, a transfer function
G(s) is implemented. To make the unit cell generate multiple
resonant frequencies at subwavelength scale, the expression of
transfer function G(s) is derived in the next section. Geometry
and material parameters of the designed unit cell are shown in
table 1.

Figure 1. (a) The sketch of the designed piezoelectric metamaterial
plate; (b) top view and (c) side view of the unit cell.

Table 1. Geometry and material parameters of the unit cell.

Plate Piezoelectric patch

Material
Length
Width
Thickness
Young’s modulus
Density
Coupling constant
Relative permittivity
under constant stress

Aluminum
lb= 33.6 mm
wb= 33.6 mm
hb= 4mm
Yb= 70GPa
ρb= 2700kgm−3

—
—

PZT-5 H
lp= 30.1 mm
wp= 30.1 mm
hp= 1mm
Yp= 58.8 GPa
ρp= 7700kgm - 3

d31= −1.7e10 C/N
εσ3 = 1800

2.2. Transfer function for generating multiple resonances

As introduced in appendix A, when piezoelectric patches are
shunted with inductance (L), the equivalent in-plane Young’s
modulus of the patches Ep has a pole (see figure A2). The
resonance of Ep consequently results in resonance of the
equivalent bending stiffness of the piezoelectric metamater-
ial plate, creating a bandgap. Inspired by this finding, a trans-
fer function is designed to make Ep resonate at multiple fre-
quencies, namely, have multiple poles. It is expected that the
multi-resonances of Ep will generate multiple bandgaps in the
metamaterial.

According to the pole assignment method commonly used
in the control theory, typically, Ep with multiple poles can be
written as

Ep = k

n∏
i=1

(
s2 + 2βiωz,is+ω2

z,i

)
n∏
i=1

(
s2 + 2βiωp,is+ω2

p,i

) (1)

in which, k,βi,ωz,i,ωp.i are the gain, damping factor, zeros and
poles of the system represented by Ep, respectively. n determ-
ines the number of poles and zeros. The poles can be writ-
ten as ωp.i = 2πfi, in which fi are the resonance frequencies.
It is desired that each resonance frequency will induce one
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bandgap around itself, therefore, Ep with n assigned poles
may generate n poles at designed locations.

To make the equivalent Young’s modulus of a piezoelec-
tric patch has the expression in equation (1), the shunted
impedance of the patch must be carefully designed. For a
patch shunted with a circuit, whose impedance is expressed as
1/G(s), the equivalent Young’s modulus of it can be written as

Ep = Escp
sCTP3 + G(s)

G(s)+ sCTP
(
1− k231

) (2)

in which, k31 = d31
/√

SE11ε
σ
3 is the extensional coupling

factor of the patch, Escp = 1
/
SE11 is the Young’s modulus of

the patch under short-circuit condition, CTp = Apεσ/hp is the
intrinsic capacitance of the piezoelectric material at constant
stress, Ap is the area of the patch.

According to equations (1) and (2), the transfer function can
be derived as

G(s) = sCTp3

n∏
i=1

(
s2 + 2βiωp,is+ω2

p,i

)
−

n∏
i=1

(
s2 + 2βiωz,is+ω2

z,i

)
1

1−k231

n∏
i=1

(
s2 + 2βiωz,is+ω2

z,i

)
−

n∏
i=1

(
s2 + 2βiωp,is+ω2

p,i

) . (3)

Note that, in the derivation of equation (3), the gain k in
equation (1) is chosen to be k= Eshp

/(
1− k231

)
in order to

ensure that the order of the numerator is not greater than that
of the denominator in the transfer function. Besides, the poles
of the transfer function must all be in the left half plane of the
complex domain, which drops the constrictions in equation (4)
on the assigned zeros and poles

ωz,i < ωp,i <

(
1

1− k231

) 1
2n

ωz,i, i= 1,2, . . . ,n. (4)

The transfer function G(s) in equation (3) is enough to gen-
erate multiple bandgaps in piezoelectric metamaterials. How-
ever, the bandgap locations will deviate from the placed poles.
A modification to the transfer function is made in section 2.3
to eliminate this deviation.

2.3. Modification of the transfer function

In practical applications, usually the frequencies at where
the vibration needs to be controlled are known. The trans-
fer function should be designed to precisely create bandgaps
at these resonant frequencies. Therefore, it is highly desired

that the bandgap locations are just around the assigned
poles in the transfer function. As introduced in appendix
B, a numerical method is used to predict the bandgap
regions. It is observed that when the original transfer func-
tion in equation (3) is used, the generated bandgaps loc-
ate away from the designed poles (see figures 2(a) and
(b)), a modification procedure is performed to improve its
accuracy.

Figures 2 (a) and (b) shows the bandgaps generated by
the original transfer function. In figure 2(a), the transfer func-
tion only has one pole (indicated by the dot–dash line in the
figure), a single bandgap is observed at frequency higher than
the assigned pole. In figure 2(b), two poles are assigned in the
transfer function, therefore two bandgaps are observed from
the dispersion curves, they are also higher than the corres-
ponding assigned poles. From figures 2 (a) and (b), it can be
concluded that the designed transfer function in equation (3)
can actually generate multiple bandgaps. However, there are
deviations exist between the obtained bandgap locations and
assigned poles.

To eliminate these deviations, the transfer function in
equation (3) is multiplied by a gain γ, the modified transfer
function is expressed as

G(s) = sγCTp3

n∏
i=1

(
s2 + 2βiωp,is+ω2

p,i

)
−

n∏
i=1

(
s2 + 2βiωz,is+ω2

z,i

)
1

1−k231

n∏
i=1

(
s2 + 2βiωz,is+ω2

z,i

)
−

n∏
i=1

(
s2 + 2βiωp,is+ω2

p,i

) (5)

by varying the gain γ, the locations of bandgaps can be adjus-
ted. Therefore, if a suitable γ is chosen, the bandgaps can be
placed around the assigned poles.

For a piezoelectric metamaterial plate whose parameters
are all known, the gain γ is chosen through the following
procedure. A single pole is assigned in the transfer function,
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Figure 2. The bandgaps obtained from the original transfer function. (a), (b): single bandgap and multiple bandgaps generated by the
original transfer function. The shadowed areas indicate the bandgap regions, the black dot–dash line indicates the normalized poles used in
the transfer functions.

Figure 3. (a) The bandgap location varies with gain γ, the blue line indicates the bandgap center at different γ. (b) Multiple bandgaps
precisely generated by the modified transfer function.

varying γ to adjust the location of the bandgap, chose the γ
for the modified transfer function when the pole is at the cen-
ter of the bandgap, as illustrated in figure 3(a). In figure 3(b),
it is verified that even though the value of γ is chosen using
one pole in the transfer function, the modified transfer func-
tion can precisely generate multiple bandgaps just around the
designed poles.

If the geometry or material parameters of a metamaterial
plate are changed, the gain γ in the modified transfer func-
tion must be re-chosen. Figure 4 shows the required gain
γfor different covering ratio χand thickness ratio hr, in which
χ= (lp/lb)

2 is the coverage ratio of the patch in the unit cell,
and hr = hp/hb is the thickness ratio between the patch and
the host plate. One can clearly see that γ strongly depends on
these geometry parameters. If varying the material parameters,
gain γ correspondingly will also change.

3. Mechanism of generating multiple bandgaps

For passive resonant metamaterials or piezoelectric metama-
terials with inductance, the bandgaps are caused by neg-
ative effective parameters of the metamaterials [34, 35].
To explain how the proposed transfer function can create
multiple bandgaps, the effective bending stiffness of the
multi-resonant piezo-metamaterial plate is studied in this
section.

3.1. Analytical expression of the effective bending stiffness of
the metamaterial plate

Equivalent bending stiffness of the unit cell shown in figure 1
can be written as [19]
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Figure 4. The effects of geometry parameters on gain γ in the modified transfer function. (a) gain γ varies with coverage ratio χ when
hr = 0.25; (b) gain γ varies with thickness ratio hr when χ= 0.8.

Deff =
DADb

(1−χ)DA+χDb
(6)

in which, Db = Ebh3b
/
12

(
1− ν2b

)
is the bending stiffness of

the bare plate, and DA represents the equivalent bending stiff-
ness of the middle sandwich part of the unit cell, expression of
it is

DA = Db+
2Ep

3
(
1− ν2p

) [(hb
2
+ hp

)3

−
(
hb
2

)3
]
. (7)

In equation (7), νp is the equivalent Poisson’s ratio of the
shunted piezoelectric patch, it is expressed as

νp = vscp
G(s)+ sCTP

(
1+ k231

/
vscp

)
G(s)+ sCTP

(
1− k231

) (8)

in which, νscp =−SE12
/
SE11 is the Poisson’s ratio of the patch

under short-circuit condition.
According to equations (2), (6)–(8), one can deduce the

detailed expression of the equivalent bending stiffness of the
unit cell, which is

Deff =

Db

[
Db+Dsc

p +Dsc
p

sCspk
2
31

(
1+ νscp

)(
1− k231

)(
1− νscp

)[
G(s) + sCsp

]
− sCspk

2
31

(
1+ νscp

)]

Db+(1−χ)Dsc
p

[
1+

sCspk
2
31

(
1+ νscp

)(
1− k231

)(
1− νscp

)[
G(s) + sCsp

]
− sCspk

2
31

(
1+ νscp

)] (9)

in which, Dsc
p = Escp

[
(hb+ 2hp)

3 − h3b

]/
24

(
1− νscp

2) is the

equivalent bending stiffness of the piezoelectric sandwich
structure under short-circuit condition. Csp = CTp

(
1− k231

)
is

the intrinsic capacitance of the patch under constant strain.

3.2. Comparison between the bandgap and negative
bending stiffness regions

Figures 5(a) and (b) compare the negative bending stiffness
regions obtained using equation (9) with bandgap regions pre-
dicted using the numerical method for single-pole and multi-
poles cases. It can be observed that there is a consistent one-
to-one match between each negative bending stiffness region
and each bandgap. However, these two regions are not well
overlapped, the negative bending stiffness regions are at higher
frequencies than the numerically predicted bandgaps. If these
differences can be eliminated, one can conclude without doubt
that the multiple bandgaps are generated because the designed

transfer function make the effective bending stiffness of the
metamaterial plate be negative at multiple frequency bands.

Previous studies demonstrate that the analytical model will
misestimate the intrinsic capacitance of a piezoelectric patch
compared with the numerical model. Therefore, one can try to
eliminate the deviations shown in figures 5(a) and (b) by cor-
recting the analytical capacitance. When the analytical capa-
citance is corrected to be Cs∗p = 0.958Csp, the analytical negat-
ive bending stiffness regions and the numerical bandgaps are
well consistent with each other, as illustrated in figures 5(c)
and (d). Therefore, the conclusion considering the mechanism
of generating multi-bandgaps by the proposed transfer func-
tion drew at the end of the previous paragraph is solid.

4. Characteristics of multiple bandgaps

In this section, characteristics of the multiple bandgaps gen-
erated by the transfer function are studied. These bandgaps
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Figure 5. Comparison between the analytical negative bending stiffness regions and the bandgaps predicted using the numerical method.
(a), (b): before correcting the analytical intrinsic capacitance; (c), (d): after correcting the analytical intrinsic capacitance. In each figure, the
blue shadowed areas indicate the negative bending stiffness regions, the red shadowed areas indicate the bandgap regions, the horizontal
dot–dash lines are the assigned poles.

are predicted by the negative bending stiffness regions using
equation (9) with the corrected intrinsic capacitance Csp∗. Two
phenomena are observed when distances between bandgaps
varies, they are presented and discussed below.

4.1. Bandgap coupling phenomenon

When the distance between two bandgaps decreases, interac-
tion effects between them are observed, which indicates that
these bandgaps are coupled with each other. To study such
coupling phenomena, a transfer function with two poles is
used, the first pole is ω0, the second one is ω1 here, ω1 =
(1+α)ω0 and α is a constant, it is used to adjust the distance
between these two poles. The transfer function will generate
two bandgaps in the metamaterial plate, the first one will be
around ω0, and the second one will be around ω1. On the other
hand, in order to demonstrate the coupling phenomena, the
bandgap generated by a transfer function with a single pole
ω0 or ω1 is used as reference.

Variations of the first and second bandgap widths when α
increases from 0 to 0.25 are studied in figure 6. When the
transfer function has a single pole ω0 and ω1, respectively,
the generated two bandgaps have no interaction with each
other, namely they are uncoupled. When the transfer function
has two poles ω0 and ω1 simultaneously, the generated two
bandgaps affect each other, namely they are coupled. By com-
paring the coupled bandgapswith the uncoupled ones, it can be
seen from figure 6 that, as the distance between the two poles
decreases, the first bandgap generated by the two-pole transfer

Figure 6. Variations of the widths of the first and second bandgaps
generated by the two-pole transfer function when α increases from
0 to 0.25. Bandgap widths of the uncoupled case are also illustrated
in the figure as references.

function shrinks, on the contrary, the second bandgap gener-
ated by the two-pole transfer function enlarges. The shrinking
and enlarging trends becomemore obvious when the two poles
are closer, which indicates that the coupling effects between
bandgaps become stronger.

Since the coupling phenomenon narrows the first bandgap
and broadens the second one, it is worth to find out how the
total bandwidth is influenced by the coupling effect. Besides,
the total bandwidth is a very important index when metama-
terials are designed for broadband elastic wave isolation. The
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Figure 7. Variation of the total bandwidth of the bandgaps generated by the two-pole transfer function with (a) covering ratio χ when
hr = 0.25 and (b) thickness ratio hr when χ= 0.8. The α= 0.05 in the simulations. In these figures, variation of the widths of the two
uncoupled bandgaps are also illustrated as references.

total bandwidth of the two bandgaps generated by the two-
pole transfer function is compared with the sum of the two
uncoupled bandgaps for different geometry parameters, the
results are illustrated in figure 7. In this case, the distance
between the two poles is α= 0.05. It can be seen that the
coupled bandgaps as a whole is almost as large as the sum
of the corresponding uncoupled bandgaps. These results also
make clear that our multi-bandgap metamaterials have signi-
ficant advantages compared with those obtained using ‘rain-
bow’ strategy [30]. In the ‘rainbow’ design, to generate mul-
tiple bandgaps, one need to connect the patches in different
unit cells to shunt with different resonance frequencies. In
such a manner, each unit cell will generate one bandgap, and
these bandgaps could be considered as uncoupled. However,
the required number of unit cells will significantly increase
in order to obtain multiple bandgaps. For the metamateri-
als proposed in this paper, the multiple bandgaps are gener-
ated by digital shunts with specially designed transfer func-
tion, namely, each unit cell is participating in creating all the
bandgaps. Therefore, the number of unit cell do not need to be
increased. In addition, the total bandwidth of the bandgaps is
almost the same as those obtained using the ‘rainbow’ design.

4.2. Bandgap merging phenomenon

As introduced in the above section, when the bandgaps
get closer to each other, the coupling effect between them
becomes more obvious, which narrows the first bandgap and
broadens the second one. An interesting phenomenon occurs
when the bandgaps are close enough, the two bandgaps merge
into one, resulting in a bandgap which could be wider than
both the two original bandgaps. This bandgap merging phe-
nomenon is studied in this section.

Bandgaps will merge into one when the distances between
the poles in the transfer function are smaller than a critical
value. To demonstrate such phenomenon, a two-pole transfer

function is used to generate two bandgaps. The poles are ω0

andω1 as aforementioned. Figure 8(a) demonstrates that, when
α is relatively large, two separated bandgaps I and II are gen-
erated; when α is smaller than a critical value 0.021, the two
bandgaps merge into a single one. Figure 8(b) compares the
band width of the merged bandgap with the widths of the sep-
arated two, it is observed that when α is equal to or just a little
bit smaller than the critical value 0.021, the merged bandgap
is almost as wide as the sum of the two separated bandgaps.

Bandgaps generated by transfer functions with more than
two poles will also coalesce as long as the distance between
any two of these poles is equal to or smaller than the crit-
ical value. Therefore, one can use this merging phenomenon
to obtain a broad bandgap. Figure 9 compares the width of
the merged bandgaps when different numbers of poles are
involved. It is observed that the bandgap becomes wider when
the number of involved poles increases.

The critical distances between poles in the transfer func-
tion determines when bandgaps merge into one, such val-
ues depend on the geometry and material parameters of the
metamaterial unit cell. Figures 10(a) and (b) illustrates the
influences of the geometry parameters on the critical value of
α. It can be seen that the critical value is almost the same when
χ⩾ 0.7 and hr ⩽ 0.5, when χ < 0.7, one need to recalculate
the critical value if the covering ratio is changed. Besides,
when hr > 0.5, the critical value needs to be re-corrected if
the thickness ratio is changed as well.

5. Numerical verification of the broadband elastic
wave isolation effects

In this section, the broadband elastic wave isolation effects
of the multi-resonant piezoelectric metamaterials are numer-
ically verified. Figure 11 shows the studied piezoelectric
metamaterial plate modeled in COMSOL. The metamaterial
plate is composed of 12∗12 unit cells. Geometry and material

8
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Figure 8. (a) Illustration of the bandgap merging phenomenon as two poles get close. (b) Comparison between the widths of the merged
bandgap and the separated ones.

Figure 9. Influences of the number of poles in the transfer function
on the width of the merged bandgap.

parameters of one unit cell are the same as those in table 1.
A harmonic load F is applied at point A to mimic a source of
disturbance. The transverse vibration responses at a far-field
point B in frequency domain are measured, they are divided by
the amplitude of the excitation force, results in the frequency-
response function of point B, which characterizes the trans-
mission of vibration from the source to the remote part of the
plate in frequency domain.

5.1. Elastic wave isolation effects of multiple separated
bandgaps

In many practical situations, the vibration is caused by unbal-
anced rotators. The spectrum of such disturbance has dis-
tinct lines. Besides, the locations of these lines depend on
the rotate speed, which varies in different working conditions.
Therefore, it is required not only that the structural vibra-
tion transmission at multiple line frequencies should be isol-
ated, and also the isolating effects can be tuned according
to working conditions. Our proposed multi-resonant piezo-
electric metamaterials can meet such demands. To demon-
strate the vibration (wave) transmission isolation effects in

the metamaterial plate, three cases are studied with different
transfer functions. In each case, particular line frequencies are
chosen as targeted frequencies, these frequencies are used as
poles to design the corresponding transfer function. Paramet-
ers of the designed transfer functions in these three cases are
summarized in table 2. The vibration transmission properties
between the sourceA and the observation point B in these three
cases are illustrated in figure 12. It is clearly demonstrated that
by properly design the transfer function, transmission of vibra-
tion at targeted line frequencies can be effectively prohibited
in the structure.

It should be noted that, the distances between the bandgaps
in the three cases illustrated in figure 12 are far, the coupling
effects between them are week. When targeted line frequen-
cies are close, the designed bandgaps will be close to each
other, the coupling effect between bandgaps may make the
lower one shrink, a probable consequence could be that this
bandgap is too narrow to isolate the vibration transmission. In
such situations, the coupling effects between bandgaps should
be considered when designing the transfer function.

5.2. Elastic wave isolation effects of merged broad
bandgaps

In other situations, the external stimulations have wide spec-
trums, to isolate the structural vibration caused by them, a
broad bandgap is demanded. Exploring the bandgap merging
phenomenon, it is possible to generate a wide bandgap. To
verify the broadband vibration transmission isolation effects
of the merged bandgaps, cases 4 and 5 are studied, poles of
the used transfer function are listed in table 2. Figure 13 shows
the vibration transmission properties between the sourceA and
the observation point B in these 2 cases. It can be seen that the
bandgap generated by one pole can only isolate the vibration
of one mode (case 4). When multiple poles are assigned and
carefully designed to obtain a merged broad bandgap, vibra-
tion of two modes can be isolated (case 5). One can further
add poles into the transfer function to increase the effective
frequency band.

9
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Figure 10. Variation of the critical value along with the (a) covering ratio χ when hr = 0.25 and (b) thickness ratio hr when χ= 0.8.

Figure 11. The sketch of the metamaterial plate in the numerical simulation.

Table 2. Poles of the transfer functions used in different cases,
ωp,i = 2πfi.

Poles
number n

Resonant
frequencies fi (Hz)

Multiple
separate
bandgaps

Case 1
Case 2
Case 3

2
3
5

1056, 1756
1056, 1756, 2148
764, 1056, 1756,
1868, 2148

Merged broad
bandgaps

Case 4
Case 5

1
5

1756
1750, 1755,
1760, 1770,
1780

6. Time domain simulations of multi-resonant
piezoelectric metamaterials with digital circuits

To further prove the stability and functionality of the pro-
posed multi-resonant metamaterials, in this section, time
domain simulations accounting for the full dynamics of

the metamaterials with digital circuits are done in Sim-
ulink. The digital circuit originally proposed by Fleming
et al [36] is used here, it can be modelled in Simulink
using Simscape Electronics, as shown in figure 14. The pro-
posed transfer function G(s) for generating multi-resonances
is implemented in the digital circuit during time domain
simulations.

Since the proposed transfer function can be used to design
any type of multi-resonant metamaterials, in this section, a
two-step piezoelectric metamaterial beam shown in figure 15
is considered instead of the metamaterial plate used in
section 5. The beam is composed of 10 and a half cells, the
geometry parameters of one unit cell are listed in table 3.
There are two segments with different thickness in each unit
cell, and the patches for control are glued on the thin seg-
ment, they are connected to the digital circuit (represented by
G in figure 15), which measures the voltage Vc as input signal
and feedbacks current Ic as output signal. The beam is excited
by the patches in the half cell with applied voltageVe. The
acceleration along z axis at the red point in the right end is
studied.

10
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Figure 12. Frequency-response curves at point B in simulated cases
1–3.

The two-step metamaterial beam is first modeled using the
finite element method, then, the model is reduced applying the
modal synthesis method. The reduced model is:

Mq̈+Cdq̇+Kq+Hdv

[
Ve
Vc

]
= f

−HT
dvq̇+Cp

{
V̇e
V̇c

}
=−

{
Ie
Ic

}
(10)

in which, q is a vector contains the modal coordinates, which
is associated with the mechanical displacements d through
d=Φq, with Φ being a matrix composed of column vec-
tors representing the modes of the two-step beam when all
the patches are short circuited; Ve and Vc represents voltages
of the patches for excitation and voltages of the patches for
control, respectively; M,Cd and K are the modal mass mat-
rix, damping matrix and stiffness matrix, respectively; Hdv =
[Hdve Hdvc] is the modal coupling matrix, the diagonal ele-

ments of Cp =
[
Cpee 0
0 Cpcc

]
represent the intrinsic capacit-

ances of the patches for excitation or for control; f represents
the modal mechanical excitation, which is zero in this study;
Ie and Ic are the currents flow into the patches for excitation
and patches for control, respectively.

To model the two-step metamaterial beam in Simulink, the
governing equations in Equation are further re-written into the
state-space form as:

Figure 13. Frequency-response curves at point B in simulated cases
4 and 5.

ẋ= Ax+Bu

y= Cx+Du (11)

in which, x= [q̇ q Vc]
T is the state variable vector, u=[

f Ve V̇e Ic
]T

and y= [q Vc]
T are the input vector and out-

put vector of the system, respectively; A,B,C and D are four
matrices, details of them are:

A=

 −M−1Cd −M−1K −M−1Hdvc

1 0 0
C−1
pccH

T
dvc 0 0

 ,

C=

[
0 1 0
0 0 1

]

B=

 M−1 −M−1Hdve 0 0
0 0 0 0
0 0 0 −C−1

pcc

 ,

D=

[
0 0 0 0
0 0 0 0

]
. (12)

The primary block diagram in Simulink is shown in figure 16.
The highlighted block contains ten identical subsystems
representing the digital circuits connected to the two-step
metamaterial beam. Note that, details of the subsystems are
illustrated in figure 14.

In all the simulations, the remained number of modes is 20
to ensure convergence of the reduced model in equation (10).
A white noise signal is used as the input (namely the excitation
voltage). Transverse acceleration of the selected point (the red
point in figure 15) can be obtained from the output. A transfer
function designed to generate 5 bandgaps are implemented.
The excitation voltage and the calculated acceleration signal

11
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Figure 14. Block diagram showing the digital circuit. The input to the circuit is the voltage across the piezoelectric patches for control, Vc;
the output is the current flow to the patches, Ic.

Figure 15. Schematics of the two-step piezoelectric metamaterial beam with digital circuits.

Table 3. Geometrical parameters of one unit cell.

Parameter Variable

Length of the patch
Thickness of the patch
Width
Length of segment 1
Length of segment 2
Thickness of segment 1
Thickness of segment 2
Total length of the beam

lp= 45mm
hp= 0.5 mm
b= 60mm
l1= 52.1 mm
l2= 49.3 mm
h1= 10.1 mm
h2= 2.2 mm
ltot= 1065.3 mm
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Figure 16. Simulink block diagram for metamaterial with digital circuits in modal coordinates.

Figure 17. (a) The white noise voltage used for excitation. (b) The
calculated transverse acceleration of the selected point. (c) FRFs
relating the excitation voltage and acceleration response, shadowed
areas indicate the designed bandgaps.

in time domain are shown in figures 17(a) and (b), respect-
ively. By using a Hanning window and the fast Fourier trans-
form, the frequency response function (FRF) relating the excit-
ation voltage and the acceleration is obtained, which is shown
in figure 17(c). Results in figure 17 clearly demonstrate that
the proposed multi-resonant metamaterials are stable in time
domain and work well in the way they are designed to be.

7. Conclusions

In this paper, a general transfer function is designed to real-
ize multi-resonant piezoelectric metamaterials based on self-
sensing piezoelectric patches and digital circuits. The transfer

function is designed by only using the parameters of patches,
therefore, it can be used to realize any type of multi-resonant
metamaterial structures, like beams, plates and shells. By ana-
lytically studying the effective bending stiffness of a multi-
resonant piezo-metamaterial plate, it is shown that the transfer
function makes the effective bending stiffness be negative in
multiple frequency ranges, leading to multiple bandgaps. The
characteristics of these multiple bandgaps are further investig-
ated. As the distances between the bandgaps decrease, coup-
ling phenomena between the bandgaps are observed.When the
distances are less than a critical value, the bandgaps will merge
into one, results in a broad bandgap. Next, the structural vibra-
tion transmission (namely, elastic wave) isolation effects in the
multi-resonant piezo-metamaterials are studied, it is demon-
strated that, by designing the transfer function, transmission
of vibration at multiple line frequencies or within a broad
frequency band can be efficiently prohibited in the structure.
Finally, the simulations of metamaterials with digital circuits
are performed in time domain, good stability and functionality
of the proposedmetamaterials are verified. Hopefully, this new
type of multi-resonant piezoelectric metamaterials could open
new opportunities in vibration mitigation of transport vehicles
and underwater equipment. Next step work will focus on the
influences of damping induced by the transfer function on the
bandgaps and vibration isolation effects, such influences are
ignored in this paper.
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Appendix A. Intrinsic connection between the
bandgap of a piezoelectric metamaterial plate
shunted with inductance and the equivalent
Young’s modulus of the shunted piezoelectric patch

When a piezoelectric patch is shunted with only inductance L,
the equivalent bending stiffness of the unit cell in figure 1 is
written as

Deff=

Db

[
Db+Dsc

p −Dsc
p

ω2k231(1+ν
sc
p )

(1−k231)(1−νscp )(ω2
LC−ω2)+ω2k231(1+νscp )

]
Db+(1−χ)Dsc

p

[
1− ω2Cspk

2
31(1+νscp )

(1−k231)(1−νscp )(ω2
LC−ω2)+ω2k231(1+νscp )

]
(A.1)

in which, ωLC = 1
/√

LCsp is the resonance frequency of the

shunt.
Figure A1 shows the variation of the equivalent bend-

ing stiffness when the frequency changes. In the figure, f0 =
ωLC/2π. It can be seen that the equivalent bending stiffness
shows resonant feature near the resonance frequency of the
shunt, leading to a frequency region with negative bending
stiffness, as indicated in figure A1. It is well known that the
negative bending stiffness region corresponds to a bandgap.

Now, consider the equivalent Young’s modulus of a piezo-
electric patch shunted with only inductance, it is expressed as

Ep = Escp
ω2
LC−ω2/

(
1− k231

)
ω2
LC−ω2

. (A.2)

Figure A2 shows the variation of Ep when the frequency
changes. It can also be seen that a resonance occurs at f0, in
other words, Ep has a pole at the resonance frequency of the
shunt.

From the above results, one can conclude that, in a reson-
ant piezoelectric metamaterial, the occurrence of a bandgap is
associated with a pole of the equivalent Young’s modulus of
the shunted patches (namely, Ep).

Appendix B. Numerical prediction of bandgaps

To predict the bandgaps obtained from the transfer function,
a numerical method based on the Bloch wave expansion and
finite element method are used. This numerical method is
briefly introduced hereinafter, more details of this method can
be found in [37].

The studied unit cell with shunted piezo-patches (PZT)
in the numerical method is shown in figure B1. Ωm and Ωe

indicate the domains of host structure and patches, respect-
ively. St, Sb and Sl denote the top electrodes (connected to the
shunts), bottom electrodes (grounded) and lateral surfaces of
the patches, respectively.

Figure A1. Variation of the equivalent bending stiffness of the unit
cell when the frequency changes. Patches in the unit cell are shunted
with only inductance and f0 = ωLC/2π.

Figure A2. Variation of the equivalent Young’s modulus of a
piezoelectric patch shunted with a single inductance when the
frequency changes, f0 = ωLC/2π.

The governing equations of the unit cell in time domain can
be written as

ρẅ(x, t)−∇ ·σ (x, t) = 0

−∇ ·D(x, t) = 0 (B.1)

in which,w(x, t) is the displacement,D is the electric displace-
ment, ρ is the density, σ (x, t) is the Cauchy stress tensor and
σ = C : ε, C is the elasticity tensor, in the host structure, it
is Cmand in the patches it is CE, the Green strain tensor is
ε=∇symw= 1/2

(
∇wT+w∇T

)
.
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Figure B1. A representation of the studied unit cell.

The constitutive equations of piezoelectric materials can be
written as:

σ = CE (x) : ε− eT (x) ·E
D= e(x) : ε+ εs (x) ·E (B.2)

in which, the electric field is E=−∇V, e is the coupling
tensor, εs is the permittivity tensor under constant strain,
(·)Tmeans transpose.

Based on equations (B.1) and (B.2), the governing
equations of the unit cell are rewritten in frequency domain:

ρω2w(x,ω)+∇·C :∇symw(x,ω)+∇· eT ·∇V(x,ω) = 0

−∇ · e :∇symw(x,ω)+∇· εs ·∇V(x,ω) = 0
(B.3)

and the electrical boundary conditions on each cell are as fol-
low:

D ·n= 0,∀x ∈ Sl
V= 0,∀x ∈ Sb
V= V0,∀x ∈ St (B.4)

in which V0 is the voltage applied on the upper terminal of the
patch. The relation between V0 and the charges q0 (t) (current
is defined as I=−∂q0(t)/∂t) fed into patches is

V0 (ω) =−iωq0 (ω)Zsu (ω) (B.5)

Zsu is the impedance of the shunt.
The solution of equation (B.3) can be written as

u(x,ω) =
[
w
V

]
= un,keik·x (B.6)

un,k =
[
wn,k
Vn.k

]
is the Bloch amplitude vector, it is composed

of periodic functions, which means:

wn,k(x−mP) = wn,k(x)

Vn,k(x−mP) = Vn,k(x)
(B.7)

here, P= [P1 P2]
T is the periodicity vector of the unit cell, m

is an integer. This assumption imposes a mechanical boundary
condition on the unit cell:

wn,k(xr) = wn,k(xl)

wn,k(xt) = wn,k(xb)
(B.8)

xl,xr,xb,xt are positions on the left, right, bottom and top
boundaries of the unit cell, respectively, as shown in figure B2.

Substituting equation (B.6) into equation (B.3) leading to

0= ρω2wn,k+∇·C :∇symwn,k+∇· eT ·∇Vn,k
+ ik(Θ ·C :∇symwn,k+∇·C : Ξn,k)

+ ik(∇· eT ·ΘVn,k+Θ · eT ·∇Vn,k)
− k2

(
Θ ·C : Ξn,k+Θ · eT ·ΘVn,k

)
0=−∇ · e :∇symwn,k+∇· εs ·∇Vn,k

− ik(Θ · e :∇symwn,k+∇· e : Ξn,k)

+ ik(∇· εs ·ΘVn,k+Θ · εs ·∇Vn,k)
+ k2 (Θ · e : Ξn,k−Θ · εs ·ΘVn,k) (B.9)

in which, k= k[cos(θ) sin(θ) 0]T = kΘ, θ is the angle
between wave vector k and the x axis. Ξn,k(x) =
1/2

(
wn,kΘ

T+ΘwTn,k
)
is a symmetric dyadic tensor.

In order to calculate the 2D dispersion curves, weak formu-
lations are obtained by integrating Equation (B.9) projected
onto any test function ũn.k, they are expressed as

0=
ˆ
Ω

[
ρω2w̃n,k ·wn.k−

(
ε̃n,k− ikΞ̃n,k

)
: C : (εn,k+ ikΞn,k)

−
(
ε̃n,k− ikΞ̃n,k

)
: eT · (∇Vn,k+ ikΘVn,k)

]
dΩ

0=
ˆ
Ω

[(
∇Ṽn,k− ikΘṼn,k

)
· e : (εn,k+ ikΞn,k)

−
(
∇Ṽn,k− ikΘṼn,k

)
· εs · (∇Vn,k+ ikΘVn,k)

]
dΩ

−
Ṽ0
n,kV

0
n,k

iωZsu
(B.10)

in which boundary conditions in equations (B.4), (B.5) and
(B.8) are used.

Using the finite element method, equation (B.10) leading to
an assembled matrix equation

[
K(Zsu)−ω2M+λ(ω,θ)L−λ2 (ω,θ)H

]
u(ω,θ) = 0

(B.11)

note that, the eigenvalue λ= ik, the eigenvector u= [w V]T

represents the Bloch amplitude, M, H and K are symmetric, L
is skew-symmetric λ and u can be solved when ω and θ are
given.

The dispersion curves calculated by the aforementioned
numerical method are shown in figure. A pole ω0 = 2πf0 is
assigned in the transfer function. Figures B3(a) and (b) show
the real part and imaginary part of the wave number in fre-
quency domain, respectively. The nonzero region of Im(k) is
corresponding to a bandgap.
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Figure B2. Boundary mechanical DOFs of the unit cell.

Figure B3. The dispersion curves calculated by the numerical method: (a) real part and (b) imaginary part. The shadowed areas indicate
bandgap regions.
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