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Abstract
Asymptotic expansion based homogenization has been widely used to predict the effective macroscopic properties of periodic 
unit cells (PUCs). In this work, we show that the homogenization process can be done in a much more elegant manner for both 
continuum and discrete PUCs by taking advantage of the Cauchy–Born’s hypothesis, which is a widely used rule in the area 
of solid physics to relate the position of the atoms in a crystal lattice and the overall strain of the medium. It is shown that in 
the proposed method, the derivation process of the effective elasticity tensor is quite easy and can rely entirely on commercial 
CAE software (e.g., ANSYS, ABAQUS, etc.) to accomplish the homogenization task. In detail, after the discretization of 
the unit cell with finite elements, one only needs to apply affine boundary conditions at the exterior boundaries of the unit 
cell and then call the FEA solver to find the static displacement field under such affine boundary conditions. The entries of 
the elasticity tensor can then be expressed using the stain energy of the unit cell. After deriving the sensitivity information 
of the Cauchy–Born hypothesis based homogenization process, the inverse homogenization process, which attempts to find 
the optimal layout exhibiting pre-determined desirable material properties, can be implemented in a straightforward way 
as well. Some numerical examples are tested and compared with the results in the literature. It is showed that the results of 
both the homogenization and inverse homogenization examples obtained by our method agree very well with the ones in the 
literature, demonstrating the validity of the Cauchy–Born hypothesis based numerical homogenization method.

Keywords  Cauchy–Born hypothesis · Numerical homogenization · Inverse homogenization · Topology optimization

1  Introduction

Composites have found extensive applications in all kinds 
of engineering branches since they have superior mechani-
cal, thermal, or electromagnetic properties that cannot be 
achieved by any of the constituent materials acting alone 
(Gibson 2016). Directly calculating the response of a mac-
roscopic engineering structure composed of micro-hetero-
geneous materials, incorporating all of the micro-scale fea-
tures is beyond the ability of even the fastest computer at 
this time. The homogenization theory, which is used to find 
the effective homogeneous properties of composites so that 

the micro-scale heterogeneities can be neglected if only the 
macro-scale response is of interest, is therefore extremely 
advantageous since the computation burden can be reduced 
to a great extent. On the other hand, the homogenization 
theory also makes it possible to predict the properties of a 
composite material even before it is engineered (Bakhvalov 
and Panasenko 1984) and consequently to virtually design 
a composite with predetermined or extremum properties 
(Sigmund 1994b; Andreassen et al. 2014) by manipulating 
its microstructure. In the literature, this procedure is usu-
ally termed as the inverse homogenization process (Sigmund 
1994b).

Generally there are two kinds of composites (Zohdi and 
Wriggers 2008), the one composed of randomly distrib-
uted constituents and the one composed of periodically 
tessellated constituents. The former is called as a random 
medium while the latter is called as a periodic medium. 
We emphasize that these two concepts are not the same 
although they have close relationships. The basis element 
of the random medium is called as the representative 
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volume element (RVE) while that of the periodic medium 
is called as the periodic unit cell (PUC). In this paper we 
concentrate on the periodic medium, i.e., the composites 
with PUCs (see Fig. 1). The periodicity feature implies 
that under macroscopic loads all physical quantities (e.g. 
displacement, strain, stress, etc.) should have the same 
period with the geometry. Therefore, it is possible to 
take advantage of mathematical tools to calculate quan-
titatively the exact values of the effective characteristics. 
Take mechanic properties as an example, exact values of 
the effective elasticity tensor can be obtained for periodic 
media; but for random media, only upper and lower bounds 
can be available for relatively simple microstructures (e.g., 
isotropic continuum or transversely isotropic continuum).

Asymptotic expansion based homogenization (AH) 
(Hassani and Hinton 1998a, b; Kalamkarov and Georgia-
des 2004) is a powerful and well-known tool to calculate 
the effective elastic moduli of PUCs. Its basic idea is to 
take the asymptotic expansion of the solution in terms of 
a small parameter � , which is the ratio of the period of the 
unit cell to the characteristic length of the whole structure. 
By substitution the asymptotic expansion of the solution 
into the state equation, a series of homogenized equations 
can be obtained, from which the effective coefficients 
describing the macroscopic properties of the medium can 
then be derived. Since AH can guarantee the periodicity 
of both the displacement and traction (Xia et al. 2003), it 
can find accurate effective moduli when compared with the 
commonly used method of RVE in the community of com-
posite mechanics. In the RVE method, however, it is gener-
ally acknowledged that the homogeneous displacement or 
traction boundary condition cannot ensure the periodicity 
of displacement and traction at the same time (Xia et al. 
2003). Due to its accuracy, the AH has been widely used to 
predict the effective moduli of periodic unit cells (Hassani 

and Hinton 1998a) and to design microstructures with pre-
determined mechanic (Sigmund 1994b, 1995; Andreassen 
et al. 2014) or thermal properties (Sigmund and Torquato 
1996).

The AH has a solid mathematical foundation, but the 
derivation and implementation process is cumbersome. 
To derive the effective parameters, one needs to obtain a 
set of characteristic functions which are periodic solutions 
under a set of uniform initial strain exerted on the unit cell. 
In practice, the above uniform initial strain is equivalently 
converted to nodal forces with the assistance of virtual work 
principle. The nodal force takes the form of F = ∫

Y
B⊤D dy , 

thus the strain–displacement matrix B , which is usually not 
available from commercial FEA software (e.g. ABAQUS, 
ANSYS, COMSOL, etc.), plays a key role in the numeri-
cal implementation of the AH method. This fact makes it 
not easy to implement the AH based on the functionalities 
of commercial FEA software. Some open-source codes are 
available in the literature (Andreassen and Andreasen 2014; 
Dong et al. 2019; Christoff et al. 2020), this may help ease 
the difficulty of using the AH method, but such codes can-
not make full use of the geometry modelling, meshing and 
efficient solving capabilities of commercial FEA software. 
This problem can be circumvented by converting the uni-
form strain into corresponding nodal displacement vector 
(Cheng et al. 2013). Another possible remedy is to apply the 
uniform strain field by means of pre-strain caused by heat 
source (Yuan and Fish 2008), but this would in turn trans-
form the original problem into a thermal–mechanic coupling 
problem and increase the computational complexity. In sum-
mary, all these techniques are tricky and not straightforward.

Periodic media formed by tessellating unit cells, which are 
composed of corner nodes and linking elements (rods, beams, 
or continuum body), behave similar to the crystals. Nodes are 
analogous to atoms and linking elements are analogous to 
chemical bonds. The Cauchy–Born hypothesis, a widely used 
rule in the area of solid physics, relates the position of the 
atoms in a crystal lattice and the overall strain of the medium. 
By using the Cauchy–Born hypothesis (Ericksen 2008), there 
is no need to resort to the double-scale expansion in order 
to set up the transitional relationship between macroscopic 
scale and microscopic scale, making the homogenization pro-
cess extremely easy to understand and implement. Therefore, 
there have been some researches (Hutchinson and Fleck 2006; 
Vigliotti and Pasini 2012a, b; Gasparetto and ElSayed 2021) 
attempting to find the effective elastic moduli of truss-like or 
beam-like periodic discrete structures. Using Cauchy–Born 
periodic condition and matrix analyzing method, Hutchinson 
and Fleck (2006) calculated the effective elasticity tensor of 
two pin-jointed lattices, which can further correctly reflect the 
zero-energy deformation modes of the lattices. Vigliotti and 
Pasini (2012a, b) applied the Cauchy–Born periodic condition 
to periodic rigid-jointed frames. These works show that the 

Fig. 1   Periodic unit cells. The left side shows the periodic media 
composed of tessellations of unit cells, the right shows one basis of 
the unit cell. Red dots denote the corner nodes defining the lattice, 
yellow dots denote the boundary nodes other than the corner nodes. 
(Color figure online)
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Cauchy–Born periodic condition is very suitable to carry out 
the homogenization of truss-like or beam-like periodic discrete 
structures.

In this article, we formally establish a uniform framework 
to calculate the effective elastic moduli of periodic media com-
posed of either continuum or discrete constituents, or even 
combination of them. It will be shown that the whole homog-
enization process based on the Cauchy–Born hypothesis 
are easy and straightforward to understand. In the proposed 
method, one only needs to apply the Cauchy–Born periodic 
condition on the exterior boundary nodes and request the out-
put of strain energy. The effective elastic moduli can then be 
expressed using the strain energy of the unit cell. It follows that 
the implementation of the proposed method can totally rely on 
commercial FEA software in a simple manner. The sensitivity 
analysis shows that the inverse homogenization process can 
also rely entirely on commercial FEA software, making the 
proposed method suitable for both the analysis and optimiza-
tion of microstructures.

The remaining parts of this paper are arranged as follows. 
Section 2 gives a brief review on the asymptotic expansion 
based homogenization and its numerical implementation pro-
cedure. Section 3 elaborates the work flow of the Cauchy–Born 
hypothesis based numerical homogenization. Distinctions with 
the RVE method and the sensitivity analysis are also covered 
in this section. Sections 4 and 5 demonstrates the effectiveness 
of the proposed method in the analysis and optimization of all 
kinds of microstructures, respectively. Section 6 gives some 
discussions on the scale-invariance of the proposed CBNH 
method. Section 7 concludes this paper.

2 � A brief introduction on asymptotic 
expansion based homogenization

Rigorous mathematical derivation of AH is both tricky and 
lengthy, so it is not practical to cover all the details on AH. 
Instead, we outline some key steps here. Readers are recom-
mended to relevant references (Bakhvalov and Panasenko 
1984; Hassani and Hinton 1998a, b; Kalamkarov and Geor-
giades 2004; Bensoussan et al. 1978) for more details.

2.1 � Derivation of the effective elastic moduli

The basic hypothesis of AH is that the continuum is the peri-
odic repetition of unit cells. The relation between macroscopic 
scale and microscopic scale can thus be given by y = x∕� , 
where � is a small number. Asymptotic expansion of the dis-
placement ui can be given by

(1)u�
i
= u

(0)

i
(x) + �u

(1)

i
(x, y) + �2u

(2)

i
(x, y) +⋯

Notice that in (1) it is assumed that the zero-order approx-
imation term u(0)

i
 depends only on the macroscopic scale 

since it represents the average of macroscopic displacement. 
This assumption can indeed be proved true mathematically 
(Hassani and Hinton 1999), but are omitted here for simplic-
ity. We use the superscript � to emphasize that a variable is 
related to both the macroscopic and microscopic scale. The 
infinitesimal strain tensor is the symmetric gradient of the 
displacement, i.e.,

The elasticity tensor is homogeneous in macroscopic scale 
but heterogeneous in the microscopic scale, i.e., 
D�

ijkl
= Dijkl(y) . By using the Hooke’s theorem, the stress ten-

sor can be given by

The equilibrium equation of the continuum reads as

Substitute (3) into (4) and keep in mind that the equation 
should be satisfied for arbitrary small values of � , we have 
the state equation of the AH method,

Now we introduce a characteristic function to relate the 
macroscopic displacement with the first order microscopic 
displacement,

Substitute (6) into (5), we have the equilibrium equation for 
the characteristic function,

Substitute (6) into the expression of �(0)

ij
 and integrate over 

the unit cell, we have

where the average macroscopic stress is defined as

(2)��
ij
(x) = �0�

(0)

ij
(x, y) + �1�

(1)

ij
(x, y) +⋯

(3)
��

ij
(x) = D�

ijkl
��
kl

= �0�
(0)

ij
(x, y) + �1�

(1)

ij
(x, y) +⋯

(4)��

ij,j
+ fi = 0, in �.

(5)
�

�yj
D�

ijkl

(
�u

(0)

k

�xl
+

�u
(1)

k

�yl

)
= 0.

(6)u
(1)

k
= −�(y)

pq

k

�u(0)
p

�xq
.

(7)
�

�yj
D�

ijpq

(
�kp�lq −

��kl
p

�yq

)
= 0.

(8)�
(0)

ij
= D♡

ijkl

�u
(0)

k

�xl
,
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the equivalent elasticity tensor is defined as

and �0(kl)
pq

 , ��(kl)
pq

 are given by 

 In (9) and (10), Y = [Y1, Y2, Y3]
⊤ in three-dimensional case 

denotes the period vector of the unit cell, |Y| is thus the vol-
ume of the unit cell in three-dimensional case and the area 
in two-dimensional case.

2.2 � Finite element solution of the equivalent 
elasticity tensor

The weak form of the equilibrium equation (7) can be stated 
as follows.

where the admissible functional space � is given by

H1(Y) denotes the Sobolev space, �0(kl)
pq

 and ��(kl)
pq

 have been 
defined in (11) and �v

ij
 is given by

After standard finite element discretization, the equilibrium 
equation (7) (as well as its weak form (12)) transforms into

where � is Y-periodic, K is the well-known global stiff-
ness matrix in traditional finite element method for solid 
mechanics,

and F is the pseudo nodal load given by

(9)�
(0)

ij
=

1

|Y| ∫Y

�
(0)

ij
(x, y) dy,

(10)D♡

ijkl
=

1

|Y| ∫Y

D�

ijpq

(
�0(kl)
pq

− ��(kl)
pq

)
dy,

(11a)�0(kl)
pq

=
1

2

(
�kp�lq + �kq�lp

)
,

(11b)��(kl)
pq

=
1

2

(
��kl

p

�yq
+

��kl
q

�yp

)
.

(12)
∀v ∈ � , find �kl

p
∈ �, such that

∫Y

�v
ij
D�

ijpq
��(kl)
pq

dy = ∫Y

�v
ij
D�

ijpq
�0(kl)
pq

dy,

(13)� =
{
u|ui ∈ H1(Y);ui(r + nY) ≡ ui(r)

}
.

(14)�v
ij
=

1

2

(
�vi

�yj
+

�vj

�yi

)
.

(15)K� = F,

(16)K =
∑
e
∫Ye

B⊤DB dy,

Upon solution of the characteristic function � , the effective 
elasticity tensor can be given by

From (15) to (18), one can find that the strain–displacement 
matrix B should be used to form the pseudo nodal loads F 
and to calculate the effective elastic moduli D♡ . Throughout 
this paper we use the heart suit icon ♡ as a superscript to 
stand for the homogenized parameters. In general-purpose 
commercial finite element software, the strain–displacement 
matrix is usually not available, so it is not easy to calculate 
the effective elastic moduli by directly taking the commer-
cial finite element software as a black box.

3 � Cauchy–Born hypothesis based numerical 
homogenization

As illustrated in the previous section, the derivation of AH 
is complicated. In this section we will carry out the detailed 
work flow of Cauchy–Born rule based numerical homog-
enization (CBNH for short), which is easy and straightfor-
ward to understand and implement. The whole work flow 
of the CBNH can rely totally on commercial FEA software. 
On solution of the effective elastic moduli, the deformation 
modes of the unit cell under different kinds of prescribed 
strain field can also be obtained at the same time.

3.1 � Finding the effective elastic moduli by Cauchy–
Born rule based numerical homogenization

Different from the AH method, the CBNH method is based 
on a geometrically intuitive viewpoint of the periodic struc-
tures. Using the terminology of solid state physics (Kittel 
2005), periodic structures are constructed by the infinite 
repetition of identical building blocks (see Fig. 1). A build-
ing block is called the basis. The corner nodes of the basis 
define the lattice, and the lattice is said to be primitive if it is 
the smallest building block of the periodic structures.

The Cauchy–Born rule in solid state physics (Ericksen 
2008) states that the position of the atoms in a crystal lattice 
follow the overall strain of the medium. Refer to Fig. 2, let 
a(�) be the deformed primitive translational vector1 and A(�) 
the undeformed one, here � = 1, 2 for two-dimensional case 

(17)F =
∑
e
∫Ye

B⊤D dy.

(18)D♡ =
1

|Y|
∑
e
∫Ye

D(I − B�) dy.

1  There are alternative names for the vectors a(1), a(2) in the literature, 
e.g., bond vector, lattice vector, tessellation vector etc.
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and � = 1, 2, 3 for three-dimensional case. For simplicity 
all the equations will be given in terms of two-dimensional 
case, but can be freely generalized to three-dimensional case 
without any difficulty. Applying the Cauchy–Born rule to the 
bond vectors leads to (Chandraseker et al. 2006)

where Fij is the prescribed deformation gradient exerted on 
the medium. In small deformation regime, Eq. (19) can be 
rewritten as

where � is the prescribed infinitesimal strain tensor exerted 
on the medium,

It follows from (20) that the deformation of the primitive 
translational vector, denoted by d�

i
 , can be written as

Equation (19) reveals that the bond vectors are regarded 
as infinitesimal line segments in the continuum under the 
Cauchy–Born rule.

Take the rectangular unit cell as shown in Fig. 2 as an 
example, it has two orthogonal bond vectors A(1) and A(2) 
in its undeformed state. The undeformed and deformed 
bond vectors can be respectively written as

and

(19)a
(�)

i
= FijA

(�)

j
,

(20)a
(�)

i
= (�ij + �ij)A

(�)

j
= A

(�)

i
+ �ijA

(�)

j
,

(21)� =

[
�11 �12
�12 �22

]
.

(22)d
(�)

i
= a

(�)

i
− A

(�)

i
= �ijA

(�)

j
.

(23)

{
A(1) = X2 − X1 = X6 − X8 = X3 − X4,

A(2) = X4 − X1 = X7 − X5 = X3 − X2,

where Xk and xk are the position vectors of kth boundary 
node in undeformed and deformed state, respectively.

Subtracting (24) from (23) leads to the deformation of the 
primitive translational vector,

where uk = xk − Xk is the displacement of kth node, d(�) is 
the deformation of the primitive translational vector. Com-
bining (25) and (22) gives the boundary condition of the unit 
cell under prescribed strain,

As an example, Fig. 2b–d illustrate the deformed shape of 
the unit cell under different kinds of prescribed strain field.

Equation (26) acts as the boundary condition of the PUC. 
The deformation state of the unit cell under a prescribed 
stain field � can be found by solving a static equilibrium 
problem together with the boundary condition (26), which 
can be done easily in all the commercial finite element soft-
ware where the boundary condition can be applied through 
multiple point constraint (MPC for short). Upon solution of 
the unit cell’s displacement field, the strain energy of the 
unit cell can be expressed as

where u ∈ ℝ
ndof  is the global displacement vector, 

K ∈ ℝ
ndof×ndof is the global stiffness matrix, ndof is the number 

(24)

{
a(1) = x2 − x1 = x6 − x8 = x3 − x4,

a(2) = x4 − x1 = x7 − x5 = x3 − x2,

(25)

{
d(1) = u2 − u1 = u3 − u4 = u6 − u8,

d(2) = u4 − u1 = u3 − u2 = u7 − u5,

(26)

{
u2 − u1 = u3 − u4 = u6 − u8 = �A(1),

u4 − u1 = u3 − u2 = u7 − u5 = �A(2).

(27)𝛱 =
1

2
u⊤Ku,

(a) (b) (c) (d) 

1A

2A

1 5

6

7

8

2

34

1a

2a

1a
1a

2a
2a

Fig. 2   The unit cell in undeformed and deformed state. a undeformed shape. b One possible deformed shape for � =

[
�11 0

0 0

]
 . c One possible 

deformed shape for � =

[
0 0

0 �22

]
 . d One possible deformed shape for � =

[
0 �12
�12 0

]
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of dofs in the finite element model. In all the commercial 
finite element software, the strain energy � can be desig-
nated as an output variable.

On the other hand, by regarding the PUCs as a homoge-
neous medium, the strain energy of the unit cell can also be 
expressed as,

where w =
1

2
D♡

ijkl
�ij�kl is the strain energy density, V is the 

volume of the unit cell, �ij is the prescribed strain compo-
nent, � is the Voigt notion of the prescribed strain field

note that in the Cauchy–Born rule the prescribed strain �ij 
is assumed to be applied on the medium in the macroscopic 
level; D♡ is the matrix notion of the effective elastic moduli,

Since the prescribed strain field � is known in advance, by 
equating (27) and (28) the entries of the effective elastic 
moduli can be calculated through special arrangement of the 
entries in � . For example, by setting � = [1, 0, 0]⊤ , we have

where �[1,0,0] denotes the strain energy under prescribed 
strain field � = [1, 0, 0]⊤ . Similarly we can also find the other 
entries of the effective elastic moduli,

Under the boundary condition (26) the displacement field of 
the unit cell cannot be uniquely determined since the rigid-
body displacement has not be constrained. Fortunately the 
rigid-body displacement makes no contribution to the strain 
energy (since no strain or stress occurs due to the rigid-body 

(28)
𝛱 = ∫Y

w d𝛺 = ∫Y

1

2
D♡

ijkl
𝜀ij𝜀kl d𝛺

= ∫Y

1

2
�
⊤
D♡� d𝛺 =

V

2
�
⊤
D♡�,

(29)� =

⎡⎢⎢⎣

�1
�2
2�6

⎤⎥⎥⎦
=

⎡⎢⎢⎣

�11
�22
2�12

⎤⎥⎥⎦
,

(30)D♡ =

⎡⎢⎢⎣

D♡

11
D♡

12
D♡

16

D♡

12
D♡

22
D♡

26

D♡

16
D♡

26
D♡

66

⎤⎥⎥⎦
=

⎡⎢⎢⎣

D♡

1111
D♡

1122
D♡

1112

D♡

1122
D♡

2222
D♡

2212

D♡

1112
D♡

2212
D♡

1212

⎤⎥⎥⎦
.

(31)D♡

11
=

2

V
�[1,0,0],

(32)

D♡

22
=

2

V
�[0,1,0],

D♡

66
=

2

V
�[0,0,1],

D♡

12
=

1

V
�[1,1,0] −

1

2

(
D♡

11
+ D♡

22

)
,

D♡

16
=

1

V
�[1,0,1] −

1

2

(
D♡

11
+ D♡

66

)
,

D♡

26
=

1

V
�[0,1,1] −

1

2

(
D♡

22
+ D♡

66

)
.

displacement), thus all possible solutions of the unit cell 
lead to exactly the same effective elastic moduli. It is also 
possible to fix any node (but only one node can be fixed) so 
that the displacement field of the unit cell can be uniquely 
determined.

Now we can summarize the procedure to calculate the 
effective elastic moduli by means of Cauchy–Born rule 
based numerical homogenization as follows. 

(1)	 Set up the finite element model (including geometry 
building, finite element discretization and configuration 
of the material properties) of the unit cell in the FEA 
software.

(2)	 Let � = [1, 0, 0]⊤ , or equivalently let � =

[
1 0

0 0

]
 , apply 

the boundary condition (26) by MPC within the FEA 
software. Calculate the displacement field, and output 
the strain energy �[1,0,0] . Then D♡

11
=

2

V
�[1,0,0].

(3)	 Let � = [0, 1, 0]⊤ , or equivalently let � =

[
0 0

0 1

]
 , repeat 

(2) to obtain �[0,1,0] . Then D♡

22
=

2

V
�[0,1,0].

(4)	 Let � = [0, 0, 1]⊤ , or equivalently let � =

[
0 0.5

0.5 0

]
 , 

repeat (2) to obtain �[0,0,1] . Then D♡

66
=

2

V
�[0,0,1].

(5)	 Let � = [1, 1, 0]⊤ , or equivalently let � =

[
1 0

0 1

]
 , repeat 

( 2 )  t o  o b t a i n  �[1,1,0]  .  T h e n 
D♡

12
=

1

V
�[1,1,0] −

1

2
(D♡

11
+ D♡

22
).

(6)	 Let � = [1, 0, 1]⊤ , or equivalently let � =

[
1 0.5

0.5 0

]
 , 

r e p e a t  ( 2 )  t o  o b t a i n  �[1,0,1]  .  T h e n 
D♡

16
=

1

V
�[1,0,1] −

1

2
(D♡

11
+ D♡

66
).

(7)	 Let � = [0, 1, 1]⊤ , or equivalently let � =

[
0 0.5

0.5 1

]
 , 

r e p e a t  ( 2 )  t o  o b t a i n  �[0,1,1]  .  T h e n 
D♡

26
=

1

V
�[0,1,1] −

1

2
(D♡

22
+ D♡

66
).

As can be found from the procedure shown above, all 
the steps can be executed within commercial FEA soft-
ware’s built-in functionality. This is the advantage of the 
Cauchy–Born rule based numerical homogenization method.

3.2 � Distinctions between the methods of CBNH 
and RVE

The concept of RVE plays a vital role in the composite 
mechanics. The well-known Hill theorem (Aboudi 1991) in 
composite mechanics states that the homogeneous displace-
ment and traction boundary conditions in the RVE method 
lead to the upper and lower bounds of the effective moduli, 
respectively. In composite mechanics textbooks, the upper 
bound and lower bound are usually called as the Voigt bound 
and Reuss bound, respectively. Take the Voigt bound as an 
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example, the homogeneous displacement boundary condi-
tion is given by

where �ij is the prescribed constant strains. The homogene-
ous displacement boundary condition is applied to the exte-
rior boundary of the RVE. According to the average strain 
theorem, the average strain in the RVE is equal to the pre-
scribed constant strain.

As shown in Fig. 3, take the square unit cell as an exam-
ple. Let A1 = [1, 0]⊤ , A2 = [0, 1]⊤ denote the primitive trans-
lational vectors, and assume that the origin is located at node 

1. Consider the prescribed shear strain � =

[
0 1

1 0

]
 , the homo-

geneous boundary condition (33) for all the boundary nodes 
can be given by

where ui and vi are the horizontal and vertical displacements 
of ith node, respectively. In CBNH, the affine boundary con-
dition (26) can be given by

Compare (34) and (35), one can find that the affine bound-
ary condition in CBNH is in fact a relaxation version of the 
homogeneous boundary condition in the sense that the latter 
constrains the absolute value of the displacement of each 

(33)ui(y) = �ijyj, ∀y ∈ �Y,

(34)

[
u1
v1

]
=

[
0

0

]
,

[
u2
v2

]
=

[
0

1

]
,

[
u3
v3

]
=

[
1

1

]
,

[
u4
v4

]
=

[
1

0

]
,

[
u5
v5

]
=

[
0

0.5

]
,

[
u6
v6

]
=

[
0.5

1

]
,

[
u7
v7

]
=

[
1

0.5

]
,

[
u8
v8

]
=

[
0.5

0

]
,

(35)

[
u2 − u1
v2 − v1

]
=

[
u3 − u4
v3 − v4

]
=

[
u6 − u8
v6 − v8

]
=

[
0

1

]
,

[
u4 − u1
v4 − v1

]
=

[
u3 − u2
v3 − v2

]
=

[
u7 − u5
v7 − v5

]
=

[
1

0

]
.

boundary node while the former only requires the relative 
displacement values of each node pair on opposite sides to 
be consistent with the prescribed strain field. In other words, 
all the deformation modes satisfying (34) would definitely 
satisfy (35), but not vise versa. As shown in Fig.  3, the 
deformation modes (b)–(d) all satisfy the affine boundary 
condition in CBNH, but only (b) satisfies the homogene-
ous boundary condition. In (b), the originally straight edges 
still remain straight in the deformation state; in (c) and (d), 
however, all the edges are curved in the deformation state. 
It should be noted here that the straight-remains-straight 
boundary conditions in two-dimensional case and plane-
remains-plane boundary conditions in three-dimensional 
case are over-constrained, especially under shear loading 
cases (Xia et al. 2003).

An important remark is that the homogeneous dis-
placement boundary conditions can only lead to the upper 
bound of the effective moduli. In order to obtain tight 
bounds of the effective moduli using the homogeneous dis-
placement boundary conditions, the RVE should include 
as many unit cells as possible (Aboudi 1991), thus render-
ing the RVE concept not a good choice to calculate the 
effective moduli of the PUCs when the detailed geometry 
and material information of the constituents is available 
(Yan et al. 2006), which is exactly the cases we tackle 
with in this paper. The comparison between our method 
and the RVE with homogeneous displacement boundary 
condition will further be explained by numerical examples 
in Sect. 4.1.

3.3 � Sensitivity analysis

In this subsection we carry out the sensitivity analysis of 
the Cauchy–Born rule based numerical homogenization 
procedure, which is needed in inverse homogenization 
applications. All the equations will be expressed using 

(a) (b) (c) (d) 
1 5

6

7

8

2

34

Fig. 3   Different deformation modes under prescribed strain field � =

[
0 �12
�12 0

]
 . a Original undeformed shape, and b–d three possible deformed 

shape. In CBNH, all the modes b–d are possible, while in the homogeneous displacement boundary condition, only b is admissible
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matrix notion for convenience. First of all, we need to 
formulate the affine boundary condition (26) in a more 
compact form,

Note that since ui are of dimension 2 × 1 , the submatrices I 
and O in (36) are of dimension 2 × 2,

For short, we rewrite (36) as

where the meaning of PE , uE and q are obvious by compar-
ing (36) and (38). uE = [u1, u2,… , u8]

⊤ corresponds to the 
displacement of the exterior boundary nodes, so it can be 
expressed using the global displacement vector u ∈ ℝ

ndof as

where L is a mapping matrix with Lij = 1 when the uEi coin-
cides with uj and Lij = 0 otherwise. Let nE denote the number 
of exterior boundary nodes and nC denote the number of 
constraints in (36), then in two-dimensional case uE ∈ ℝ

2nE , 
q ∈ ℝ

nC , PE ∈ ℝ
nC×2nE and L ∈ [0, 1]2nE×ndof.

Substituting (39) into (38) leads to

where P = PEL ∈ ℝ
nC×ndof . It is obvious that only a small 

portion of entries in P are nonzero, thus P may be conveni-
ently written as a sparse matrix. We note here that P depends 
on the layout of the unit cell, so should be specified by the 
users during the sensitivity analysis.

In order to find the displacement field of the unit cell 
under a prescribed strain field, the static equilibrium equa-
tion should be solved along with the boundary condition 
(40). We use the Lagrange multiplier approach to deal with 
the boundary condition. The potential energy (which is 
equal to the strain energy since no body force or surface 
traction is considered) of the unit cell is given by

where K ∈ ℝ
ndof×ndof is the global stiffness matrix, � ∈ ℝ

ndof is 
an arbitrarily chosen Lagrange multiplier. According to the 

(36)

⎡
⎢⎢⎢⎢⎢⎢⎣

−I I O O O O O O

O O I − I O O O O

O O O O O I O − I

−I O O I O O O O

O − I I O O O O O

O O O O − I O I O

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6
u7
u8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�A(1)

�A(1)

�A(1)

�A(2)

�A(2)

�A(2)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(37)I =

[
1 0

0 1

]
, O =

[
0 0

0 0

]
.

(38)PEuE = q,

(39)uE = Lu,

(40)Pu = q,

(41)𝛱 =
1

2
u⊤Ku + �⊤(Pu − q),

minimum total strain energy principle, the true displacement 
of a system would minimizes the total potential. Thus to find 
the true displacement field, we seek to solve the extremum 
condition,

Equation (42) can be written in a more compact form,

where

Equation (43) is the state equation of the Cauchy–Born rule 
based numerical homogenization procedure.

Now we use the adjoint approach to calculate the sensitiv-
ity of the strain energy. Let � denote the design variable, then 
the strain energy can be expressed as

where �u ∈ ℝ
ndof and �� ∈ ℝ

nC are the Lagrange multipliers 
corresponding to �u and �� , respectively. Differentiating 
� (u,�, �) w.r.t. �i gives,

In the light of the adjoint approach, Eq. (45) can be simpli-
fied if it is required that

which can be rewritten as

(42)𝛿𝛱 = 0 ⇒

{
𝛱u = Ku + P⊤� = 0,

𝛱� = Pu − q = 0.

(43)K̃Ũ = F̃,

�K =

[
K P⊤

P 0

]
, �U =

[
u

�

]
, �F =

[
0

q

]
.

(44)
𝛹 (u,�, �) =

1

2
u⊤K(�)u + �⊤

u

[
K(�)u + P⊤�

]

+ �⊤

�
(Pu − q),

(45)

𝜕𝛹

𝜕𝜉i
=

1

2
u⊤

𝜕K

𝜕𝜉i
u + u⊤K

𝜕u

𝜕𝜉i

+ �⊤

u

(
𝜕K

𝜕𝜉i
u + K

𝜕u

𝜕𝜉i
+ P⊤ 𝜕�

𝜕𝜉i

)

+ �⊤

�
P
𝜕u

𝜕𝜉i

=

(
1

2
u⊤

𝜕K

𝜕𝜉i
u + �⊤

u

𝜕K

𝜕𝜉i
u

)

+
(
u⊤K + �⊤

u
K + �⊤

�
P
) 𝜕u
𝜕𝜉i

+ �⊤

u
P⊤ 𝜕�

𝜕𝜉i
.

(46)

{
K�u + P⊤�� = −Ku,

P�u = 0,

(47)
[
K P⊤

P 0

] [
�u

��

]
=

[
−Ku

0

]
.
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Thus the Lagrange multiplier � can be found by solving the 
linear system

where

It is interesting to find that the left hand side matrix K̃ coin-
cides with that in the state equation (43), implying that (48) 
can also be solved within commercial FEA software by 

(48)�K� = F̂,

(49)� =

[
�u

��

]
, F̂ =

[
−Ku

0

]
.

specifying b = −Ku as the nodal force and resetting all the 
MPCs with q = 0.

Substituting (46) into (45) leads to the desired sensitivity 
result,

where �u can be obtained from (47) or (48), �K∕��i is deter-
mined by the topology optimization method.

(50)
𝜕𝛹

𝜕𝜉i
=

1

2
u⊤

𝜕K

𝜕𝜉i
u + �⊤

u

𝜕K

𝜕𝜉i
u,

Fig. 4   Flowchart of the inverse homogenization process
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3.4 � Summary of the CBNH method

In Fig. 4 we show the flowchart of the whole inverse homog-
enization process. The left parts (i.e., steps within pink 
lines) refer to the work done by FEA solver (e.g. ABAQUS) 
while the right parts (i.e., steps within blue lines) refer to 
the work done by optimization solver (e.g. MATLAB). The 
detailed workflow of the CBNH method for solving the 
inverse homogenization problems is outlined as follows. 
Here we take ABAQUS as the FEA solver and MATLAB 
as the optimization solver, other choices are possible. Also, 
for simplicity, we assume that the objective function is only 
related to D♡

11
 . 

(1)	 In ABAQUS, sequentially execute the following steps. 

(i)	 Build the geometry model and discretize it with finite 
element meshes, specify material properties. In den-
sity based topology optimization methods, usually the 
elemental fictitious density will be taken as the design 
variable � and the Young’s modulus of ith element Ei , 
would be directly influenced by the ith design variable 
�i . Cf. Eq. (79) for detailed explanation.

(ii)	 Formulate elemental stiffness matrices ki and assemble 
the global stiffness matrix K . Note that this step will 
automatically be done by ABAQUS during the solving 
procedure.

(iii)	 Apply affine boundary conditions Pu = q by MPCs [cf. 
Eqs. (26), (36) to (40)]. In ABAQUS this can be done 
with the keyword Equation.

(iv)	 Solve the static equilibrium problem K̃Ũ = F̃ [cf. Eq. 
(43)]. Here K is a function of the design variable while 
the affine boundary condition is considered in F̃ . After 
solution of the static equilibrium problem, output the 
displacement field u , elemental stiffness matrices ki to 
a text file so that such information can be read into 
MATLAB for the computation of objective function 
value.

(v)	 In preparation of sensitivity analysis, another adjoint 
simulation should be executed within ABAQUS. Spec-
ify nodal force vector b = −Ku , and reset the affine 
boundary conditions with q = 0 . Solve the equilibrium 
problem �K� = F̂ [cf. Eq. (48)] to obtain the adjoint 
solution �u . Output the �u to a text file.

(2)	 In MATLAB, sequentially execute the following steps. 

	 (i)	 Read u,�u and ki from the text files into MAT-
LAB.

	 (ii)	 Calculate strain energy 𝛱 =
1

2
u⊤Ku , or equiva-

lently 𝛱 =
1

2

∑n

i=1
u⊤
i
kiui . Here n is the number 

of finite elements, ui is the displacement vec-

tor of ith element, ki is the elemental stiffness 
matrix of ith element.

	 (iii)	 Calculate the effective modulus D♡

11
=

1

V
�  . 

Here only D♡

11
 is considered for saving space, 

the extension to other moduli is trivial.
	 (iv)	 Calculate the objective function and constraint 

values, fobj = fobj(D
♡

11
) , fcon = fcon(D

♡

11
).

	 (v)	 Calculate the sensitivity of fobj and fcon by the 
chaining rule, 

	 (vi)	 Check if the stopping criteria are satisfied. 
Here two kinds of stopping criteria are consid-
ered. First, the rule of maximum iterations is 
checked. If the number of iterations exceed the 
maximum allowable iterations, the optimization 
process would stop. Second, the KKT tolerance 
is checked. If the KKT condition (Nocedal and 
Wright 2006), a widely used condition to judge 
whether the current design variables get close 
the local optimum, is satisfied within prescribed 
precision, the optimization process would stop. 
We note here that, the KKT condition in general 
involves the gradient of the objective function 
and Jacobian of the constraint, so should be sub-
sequent to the sensitivity analysis.

	 (vii)	 If either the rule of maximum iterations or the 
KKT condition is satisfied, the inverse design 
process stops. Otherwise, a new design �(k+1) is 
generated by the optimization algorithm (e.g. 
the fmincom function in MATLAB).

	 (viii)	 Go to Step (1).

As can be seen from Fig. 4, in the Cauchy–Born rule based 
inverse homogenization process all the information can be 
available from commercial FEA software, making it much 
easier to implement when compared with traditional asymp-
totic expansion based inverse homogenization process where 
B matrix plays a key role. In order to facilitate the readers with 
the usage of the proposed CBNH method, we offer some sam-
ple codes as the Supplementary Material. In the sample codes, 
we use ABAQUS as the FEA solver and the fmincon function 
in MATLAB is used as the optimization solver. More specifi-
cally, we use the interior-point algorithm in the fmincon func-
tion as the optimization algorithm. Data exchange between 
ABAQUS and MATLAB is accomplished with text files.

�fobj

��i
=

2

V

�fobj

�D♡

11

��

��i
,

�fcon

��i
=

2

V

�fcon

�D♡

11

��

��i
.
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4 � Numerical examples for homogenization 
of periodic unit cells

In this section we illustrate the accuracy of the proposed 
Cauchy–Born rule based numerical homogenization (CBNH 
for short) method for the calculation of effective elastic 
moduli. Several examples will be presented successively 
including both continuum and discrete unit cells. We use 
linear quadrilateral (two-dimensional cases) or hexagonal 
(three-dimensional cases) elements with Wilson’s incompat-
ible interpolation terms (Ibrahimbegovic and Wilson 1991) 
to discretize the continuum, this kind of elements are found 
to be accurate and efficient in our past studies. In Sect. 4.4, 
linear truss elements will be used. In all the two-dimensional 
examples, plane stress assumptions are made.

4.1 � Rank‑1 layered composite

As shown in Fig. 5, we consider a rank-1 composite material 
comprising of two different isotropic materials. The primi-
tive translational vectors in this case are

where m can be an arbitrary positive number since in y2 
direction both constituents extend to infinity. The volume 
fraction of the first (with Young’s modulus E1 and Poisson’s 
ratio � ) and second constituent ( E2 and � ) are � and 1 − � , 
respectively. The affine boundary condition in this example 
are given as follows,

(51)a(1) =

[
1

0

]
, a(2) =

[
0

m

]
,

where (BC) stands for the node set including all the nodes 
in the interior of edge BC (without the corner nodes B and 
C); (AD), (DC) and (AB) follow the same way. In order 
to apply the affine boundary condition (52), the number of 
nodes on edges AD and BC should be the same, so should 
edges AB and DC. Among all the boundary nodes, only the 
corner node A, edge nodes (AB) and (AD) are independ-
ent, the displacement of all the other boundary nodes can 
be calculated through the boundary condition (52). In FEA 
software the affine boundary condition (52) can be easily 
applied using the functionality of Multi-point constraints, 
in home-made codes the boundary condition can be imple-
mented with Lagrange multiplier approach.

The effective elastic moduli for rank-1 composite 
material has analytical expressions (Hassani and Hinton 
1998a),

where

Let E1 = 100 , E2 = 1 , � = 0.3 , Fig. 6 compares the nonzero 
components of the effective elastic moduli calculated by the 
proposed CBNH method, the analytical expression (53), and 
the RVE method with homogeneous displacement boundary 
condition for different values of � . As can be found from 
Fig. 6, the results calculated by the proposed CBNH method 
agree perfectly with that by analytical expression, demon-
strating the effectiveness of the proposed method. On the 
other hand, the RVE method with homogeneous displace-
ment boundary condition cannot give accurate prediction 
on all the elastic moduli except for D22 . For all the calcu-
lated elastic moduli, the results by RVE method are larger 
than the ones by CBNH and analytical expressions, which is 
reasonable due to the fact that homogeneous displacement 
boundary condition leads to upper bounds of elastic moduli 
(Aboudi 1991). More specifically, Table 1 gives the calcu-
lated effective elastic moduli when � = 0.5 , which clearly 

(52)

uB = uA + �a(1),

uD = uA + �a(2),

uC = uA + �(a(1) + a(2)),

u(BC) = u(AD) + �a(1),

u(DC) = u(AB) + �a(2),

(53)D♡ =

⎡⎢⎢⎣

I1 �I1 0

�I1 I2 + �2I1 0

0 0
1−�

2
I1

⎤⎥⎥⎦
,

(54)
I1 =

1

1 − �2

E1E2

�E2 + (1 − �)E1

,

I2 = �E1 + (1 − �)E2.

γ 1 γ−

1,E ν
2 ,E ν

1y

2y

A B

CD

Fig. 5   A rank-1 composite material
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shows the perfect matching between the results calculated 
by CBNH and the analytical expression. On the contrary, 
the D♡

11
 , D♡

66
 , D♡

12
 calculated by RVE method deviates a lot 

from the known analytical results. Figures 7 and  8 depict 
the deformed shape of the unit cell under different kinds of 
prescribed strain field in the proposed CBNH method and 
the RVE method, respectively. It can be found that the defor-
mation of the unit cell is obviously not linearly dependent on 
the coordinates under prescribed shear strain in the proposed 

CBNH method (see the upper and lower edges in Fig. 7c, e, 
f), but the relative displacements between nodes on opposite 
sides are always consistent with the prescribed strain field. 
In the RVE method, however, the deformation of the RVE is 
required to be linearly dependent on the coordinates. It fol-
lows that the RVE method with homogeneous displacement 
boundary condition seems to be stiffer than the affine bound-
ary condition in the proposed CBNH method, this complies 
with the larger calculated effective elastic moduli.
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0

20

40

60

80

100

120
CBNH
analytical result
RVE
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(a) D11 as a function of γ (b). D22 as a function of γ.
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Fig. 6   Comparisons between CBNH and analytical results

Table 1   Effective elastic moduli 
of the rank-1 composite material D

♡

11
D

♡

22
D

♡

66
D

♡

26
D

♡

16
D

♡

12

CBNH 2.1760 50.6958 0.7616 0 0 0.6528
Equation (53) 2.1760 50.6958 0.7616 0 0 0.6528
RVE 16.4357 51.9792 13.2067 0 0 4.9307
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Fig. 7   Deformed shape of the unit cell under different kinds of prescribed strain field in the proposed CBNH method

Fig. 8   Deformed shape of the unit cell under different kinds of prescribed strain field in the RVE method
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4.2 � Square base cell with rectangular hole

As shown in Fig. 9, in this example we consider a unit 
square base cell with a 0.4 × 0.6 rectangular hole. The solid 
phase is filled with orthotropic material, D11 = D22 = 30 , 
D12 = D66 = 10 , other components are all zero. In this case 
the primitive translational vectors are

The boundary condition in this example is exactly the same 
as that in Sect. 4.1, so will be omitted here.

In Table 2 we compare the effective elastic moduli calcu-
lated by CBNH and AH, where AH-1 (Bendsoe and Kikuchi 
1988) and AH-2 (Hassani and Hinton 1998a) are the results 
coming from the literature while AH-3 comes from our 
home-made asymptotic expansion based homogenization 
code. In CBNH and AH-3, the FEA model parameters (e.g., 
number of elements, element type, element size, etc.) are 
all the same. It is interesting to find that, the effective elas-
tic moduli calculated by CBNH and AH-3 agree very well, 
while both of them differ a little bit from AH-1 and AH-2 
coming from the literature. This implies that the minor dis-
crepancies between our results and that in the literature are 
possibly caused by the different choices of element shape 

(55)a(1) =

[
1

0

]
, a(2) =

[
0

1

]
.

functions and the number of finite elements to discretize the 
material domain.

4.3 � Hexagonal base cell with voids

As shown in Fig. 10 we consider the honeycomb-like hex-
agonal unit cell in this example. The edge length is m = 6 , 
the thickness is t =

√
3 . Note that the thickness of each 

unit cell is only half the thickness of the honeycomb. The 
primitive translational vectors are

If we choose corner nodes A and F, edge nodes (AB), (AF) 
and (FE) as the independent nodes, the boundary conditions 
can be written as

(56)a(1) =
m

2

�
3√
3

�
, a(2) =

m

2

�
3

−
√
3

�
.

(57)

uB = uF + �a(2),

uC = uA + �a(1),

uD = uF + �a(1),

uE = uA + �(a(1) − a(2)),

0.4

0.
6

1

1

1y

2y

Fig. 9   Unit square base cell with a rectangular hole

Table 2   Effective elastic moduli 
of the perforated square unit cell 
as shown in Fig. 9

D
♡

11
D

♡

22
D

♡

66
D

♡

26
D

♡

16
D

♡

12

CBNH 12.858 17.435 2.663 0 0 3.149
AH-1 (Bendsoe and 

Kikuchi 1988)
12.844 17.421 2.668 0 0 3.131

AH-2 (Hassani and 
Hinton 1998a)

12.839 17.422 2.648 0 0 3.139

AH-3 12.858 17.435 2.663 0 0 3.149

(a) (b) 

1a

2
a

m

/ 2t

A B

C

DE

F

Fig. 10   Hexagonal base shell with voids. a Periodic tessellation of 
unit cells, and b one unit cell
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In Table 3 we compare the effective elastic moduli calcu-
lated by the proposed CBNH method and the traditional AH 
method, where AH-1 (Guedes and Kikuchi 1990) and AH-2 
(Hassani and Hinton 1998a) are the results coming from the 
literature. The three rows in Table 3 agree very well, reveal-
ing that the proposed CBNH method can safely act as an 
alternative to the currently prevailing AH method. By the 
way, we mention here that the honeycomb-like PUCs belong 
to the macroscopically isotropic material, so if computed 
correctly, the components of the effective elastic moduli 
should satisfy the isotropy constraint,

The readers can check this constraint to verify that the 
computed effective elastic moduli do satisfy the isotropy 
constraint. It should also be noted here that in traditional 
AH method, rectangular unit cells are preferred in that they 
are easier to apply the periodic boundary condition. In the 
proposed CBNH method, however, any reasonable shape 
(rectangle, triangle or hexagon) of the unit cells are handled 
exactly in the same manner. This can be one of the advan-
tages of the proposed CBNH method.

4.4 � Kagome lattice

In this example we consider the Kagome-like beam struc-
ture as shown in Fig. 11. Traditional AH method cannot be 
directly applied to calculate the effective elastic moduli of 
beam-like or truss-like PUCs since their B matrices are not 
consistent with the D matrix of continuum, making the eval-
uation of (17) and (18) not possible. In detail, the stiffness 
matrices of beam or truss elements are calculated in local 
coordinate system, but the assembly of pseudo nodal loads 
(17) and effective elastic moduli (18) relies on the B and 
D in global coordinate system. For example, in the planar 

(58)

u(BC) = u(FE) + �a(2),

u(CD) = u(AF) + �a(1),

u(ED) = u(AB) + �(a(1) − a(2)).

(59)

D♡

11
= D♡

22
,

D♡

12
= D♡

11
− 2D♡

66
,

D♡

16
= D♡

26
= 0.

linear truss element, B is of dimension 1 × 2 while D is of 
dimension 3 × 3 , making it impossible to calculate B⊤D . 
Sigmund (1994a, 1994b) proposes to regard the truss ele-
ment as a special continuum element with two nodes so that 
an equivalent B matrix of dimension 3 × 4 can be defined. 
But this trick is not general in the sense that it is not easy 
to find the corresponding formulation for beam, plate and 
shell elements.

In our CBNH method, however, there is no difficulties in 
dealing with the Kagome-like beam structures as shown in 
Fig.  11, the working procedure is exactly the same as that 
of continua structures. Refer to Fig. 11, let L denote the edge 
length, then the primitive translational vectors are

Note that in this example there are only four boundary 
nodes A, E, C and D. Among these nodes only A and E 
are independent, the displacement of the other nodes can 
be expressed using nodes A and E with the affine boundary 
condition,

(60)a(1) = L

�
1√
3

�
, a(2) = L

�
−1√
3

�
.

(61)
uC = uA + �a(1),

uD = uE + �a(2).

Table 3   Effective elastic moduli 
of the perforated hexagonal unit 
cell as shown in Fig. 10

D
♡

11
D

♡

22
D

♡

66
D

♡

26
D

♡

16
D

♡

12

CBNH 0.0969 0.0969 0.0125 0 0 0.0720
AH-1 (Guedes and 

Kikuchi 1990)
0.0968 0.0968 0.0124 0 0 0.0720

AH-2 (Hassani and 
Hinton 1998a)

0.0966 0.0966 0.0123 0 0 0.0720

1a2a

A

B

CD

E

(a) (b) 

Fig. 11   Kagome structure. a Periodic tessellation of unit cells, and b 
one unit cell
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The effective elastic moduli of the Kagome-like beam struc-
ture has analytical results (Vigliotti and Pasini 2012a) as 
follows,

where Es is the Young’s modulus of base material, A and Izz 
are the cross-sectional area and the polar moment of iner-
tia, respectively. For circular cross-section bars, let r be the 
radius, the cross-sectional area and polar moment of inertia 
can be given by

It can be verified that Eq. (62) also satisfies the isotropy 
constraint (59), thus the Kagome structure also belongs the 
isotropic material in macroscopic scale.

In Table 4 we compare the effective elastic moduli calcu-
lated by CBNH and Eq. (62). As can be found from Table 4, 
our results agree very well with the analytical ones, demon-
strating the effectiveness of the proposed CBNH method to 
deal with PUCs comprising of discrete structural elements.

4.5 � Three‑dimensional example: unidirectional 
boron/aluminum laminate

As shown in Fig. 12, in this example we calculate the effec-
tive moduli of the unidirectional laminate composed of the 
aluminum matrix (yellow region) and boron fiber (green 
region). Material properties of the aluminum matrix are: 
E = 6.83 × 104 MPa, � = 0.3 . Material properties of the boron 
fiber are: 3.793 × 105 MPa, � = 0.1 . The unit cell is of dimen-
sion 1 × 1 × 1 . The radius of the fiber is 0.3868, making the 
volume fraction of the fiber inclusion to be 47% . The affine 
boundary conditions of the box-like unit cell are similar to 
that of the square unit cells as illustrated abovementioned, but 
now node pairs of corner nodes, edge nodes, and face nodes 
need to be taken into account. Let L denote the edge length, 
the primitive translational vectors are

(62)

D♡ =

√
3Es

8L3

×

⎡⎢⎢⎣

3
�
AL2 + 2Izz

�
AL2 − 6Izz 0

AL2 − 6Izz 3
�
AL2 + 2Izz

�
0

0 0 AL2 + 6Izz

⎤⎥⎥⎦
,

(63)A = �r2, Izz =
1

2
�r4.

Select the corner node D, the edge nodes (DA), (DC), (DH), 
and the surface nodes (ABCD), (ADHE), (DCGH) as the 
independent nodes, then the affine boundary conditions can 
be given by the following sets of equations.

(64)a(1) = L

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦
, a(2) = L

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦
, a(3) = L

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
.

(65)

⎧
⎪⎨⎪⎩

u(AB) = u(CD) + �a1,

u(GH) = u(CD) + �a3,

u(EF) = u(CD) + �(a1 + a3),

(66)

⎧⎪⎨⎪⎩

u(BC) = u(AD) + �a2,

u(EH) = u(AD) + �a3,

u(FG) = u(AD) + �(a2 + a3),

Table 4   Effective elastic moduli 
of the Kagome-like beam 
structure

D
♡

11
D

♡

22
D

♡

66
D

♡

26
D

♡

16
D

♡

12

CBNH 14.2848 14.2848 4.7621 0 0 4.7601
Equation (62) 14.2844 14.2844 4.7619 0 0 4.7605

x

x

y

y

z

z

A
E

F

E

F

G

G

H

B

A

B

C

C

D

Fig. 12   Unit cell of unidirectional composite
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Obviously the unit cell as shown in Fig. 12 belongs to the 
orthotropic continuum, so its effective elasticity matrix can 
be written as

and its inverse, the compliance matrix is given by

(67)

⎧
⎪⎨⎪⎩

u(AE) = u(DH) + �a1,

u(CG) = u(DH) + �a2,

u(BF) = u(DH) + �(a1 + a2),

(68)

⎧⎪⎨⎪⎩

uEFGH = uABCD + �a3,

uBCGF = uADHE + �a2,

uABFE = uDCGH + �a1,

(69)

⎧⎪⎨⎪⎩

uA = uD + �a1,

uB = uD + �(a1 + a2),

uC = uD + �a2,

(70)

⎧⎪⎪⎨⎪⎪⎩

uE = uD + �(a1 + a3),

uF = uD + �(a1 + a2 + a3),

uG = uD + �(a2 + a3),

uH = uD + �a3.

(71)D =

⎡⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

⎤⎥⎥⎥⎥⎥⎥⎦

,

(72)S =

⎡⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

⎤⎥⎥⎥⎥⎥⎥⎦

.

The entries of the compliance matrix are closely related to 
some engineering constants,

where Ei , Gij , �ij are engineering constants of the orthotropic 
continuum that can be tested experimentally.

Final calculated effective elastic moduli are given by

This example has been tested for several times in the 
literature, where the results are expressed as the engineer-
ing constants. In addition, experimental data are also avail-
able (Kenaga et al. 1987), making it possible to verify the 
applicability of the numerical homogenization methods 
to practical engineering composite materials. In Table 5 
we compare the engineering elastic constants obtained by 
the proposed CBNH method and the ones in the literature. 
From this table it can be found that our results agree pretty 
well with the other numerical methods and the experiment 
results, demonstrating the effectiveness of the proposed 
method.

4.6 � Cubic + octet foam: the stiffest isotropic 
microstructure

Recently, it is showed that (Berger et al. 2017) the cubic 
+ octet foam (as shown in Fig. 13) is one of the stiffest 
isotropic microstructure in the sense that its Young’s mod-
ulus, shear modulus and bulk modulus converge to the 
Hashin–Shtrikman upper bounds in the low relative den-
sity limit. Here we verify this fact by the proposed CBNH 

(73)
S11 =

1

E1

, S22 =
1

E2

, S33 =
1

E3

S12 = −
�12

E2

, S13 = −
�13

E3

, S23 = −
�23

E3

,

(74)

D
♡

11
= 230.6434, D

♡

22
= 160.8435,

D
♡

33
= 160.8197, D

♡

23
= 46.2532,

D
♡

13
= 40.3384, D

♡

12
= 40.3387,

D
♡

44
= 45.7929, D

♡

55
= 54.2883,

D
♡

66
= 54.3029.

Table 5   Engineering elastic 
constants of unidirectional 
boron/aluminum laminate

Elastic constants CBNH Xia Sun Chamis Test data
(Xia et al. 2003) (Sun and 

Vaidya 1996)
(Chamis 
et al. 1983)

(Kenaga et al. 1987)

E1 (GPa) 215 214 215 214 216
E2 (GPa) 144 143 144 156 140
G12 (GPa) 54.3 54.2 57.2 62.6 52
G23 (GPa) 45.8 45.7 45.9 43.6 –
�12 0.195 0.195 0.19 0.20 0.29
�23 0.255 0.253 0.29 0.31 –
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method. For simplicity we assume that the edge length is 1, 
then primitive translational vectors can be given by

The periodic boundary conditions are exactly the same 
as that shown in (65) to (70), so will be omitted. The 
Hashin–Shtrikman upper bounds for single phase micro-
structure are given by (Berger et al. 2017)

where Khsu , Ghsu and Ehsu denote the Hashin–Shtrikman 
upper bounds of bulk modulus, shear modulus, and Young’s 
modulus, respectively, Ks , Gs , Es and �s denote the bulk 
modulus, shear modulus, Young’s modulus, and density of 
constituent solid material, respectively, � denotes the aver-
age density of the microstructure; �∕�s denote the volume 
fraction of the microstructure, which can be tuned by vary-
ing the thickness of each plate.

According to Berger et al. (2017), the thickness of the 
octet plates and the cubic plates are not the same, we con-
struct the microstructure using tc∕to = 8

√
3∕9 , here tc is 

the thickness of the walls forming the cubic foam while to 
is the thickness of the walls forming the octet foam.

(75)a(1) =

⎡⎢⎢⎣

1

0

0

⎤⎥⎥⎦
, a(2) =

⎡⎢⎢⎣

0

1

0

⎤⎥⎥⎦
, a(3) =

⎡⎢⎢⎣

0

0

1

⎤⎥⎥⎦
.

(76)

Khsu

Ks

=
4Gs

(
�∕�s

)

4Gs + 3Ks

(
1 − �∕�s

) ,

Ghsu

Gs

=

(
9Ks + 8Gs

)(
�∕�s

)

20Gs + 15Ks − 6
(
Ks + 2Gs

)(
�∕�s

) ,

Ehsu =
9GhsuKhsu

3Khsu + Ghsu

,

In order to appropriately deal with the joints of the 
web members we use second-order tetrahedron elements 
to discretion the microstructure. In Fig. 14 we show the 
computed bulk, shear and Young’s moduli of the cubic 
+ octet foam. The Hashin–Shtrikman upper bounds of 
these moduli for an isotropic continuum are also shown 
for purpose of comparison. All the moduli are given in a 
dimensionless fashion so that the results are independent 
of the material properties of the constituent solid material. 
As shown in Fig. 14, the combined cubic + octet foam per-
forms very well in the low-density limit and the computed 
bulk, shear and Young’s moduli coincide with that of the 
Hashin–Shtrikman upper bounds.

5 � Numerical examples for inverse 
homogenization problems

In this section we test the applicability of the proposed 
CBNH method to the inverse design problems of micro-
structures. Both discrete and continuum microstructures are 
considered. As mentioned in Sect. 3.4, the stopping crite-
ria of the inverse design process are in two folds, i.e., the 
rule of maximum iterations and the KKT condition. Take 
the MATLAB function fmincon as an example, the rule of 
maximum iterations can be controlled by setting the option 
“MaxIterations” to a user-defined positive integer, the KKT 
tolerance can be controlled by setting the option “Optimali-
tyTolerance” to a user-defined small positive real number. 
Throughout this section, we set “MaxIterations” to 1000, 
and “OptimalityTolerance” to 1 × 10−6.

Fig. 13   Cubic + octet foam

Fig. 14   Bulk, shear and Young’s moduli
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5.1 � Design of microstructure with maximum bulk 
modulus

In this example we attempt to find the microstructure that 
exhibits maximum bulk modulus, here the bulk modulus 
is defined as the mean value of D11,D12,D21 , and D22 . The 
microstructure is composed of two phases, the first one is 
an isotropic material with E = 1000, � = 0.3 ; the second one 
is void. Prescribed material volume fraction is � = 0.5 . The 
mathematical model can be given by

where Vi is the volume of ith element, the continuous design 
variable �i ∈ [0, 1] is the elemental fictitious density of ith 
element.

Two kinds of base cells are considered, one is of square 
shape (see Fig. 15a) and the other is of hexagonal shape (see 
Fig. 15b). The affine boundary conditions for these two base 
cells are the same with that presented in Sects. 4.1 and 4.3, 
respectively. The whole work flow of the inverse homogeni-
zation process is shown in Fig. 4. For this specific example, 
the sensitivity of the objective function is given by

In this paper we use the density-based method to do the 
topology optimization, i.e., the Young’s modulus of ith ele-
ment is interpolated using the ith design variable as

(77)

find � = [𝜉1, 𝜉2,… , 𝜉n]
⊤,

maximize 𝜅♡ =
1

4

�
D♡

11
+ D♡

12
+ D♡

21
+ D♡

22

�
,

subject to
nnele∑
i=1

𝜉iVi ≤ 𝛾
∑nnele

i=1
Vi,

(78)
��♡

��i
=

1

4

(
�D♡

11

��i
+

�D♡

12

��i
+

�D♡

21

��i
+

�D♡

22

��i

)
.

(79)Ei = �3
i
E0 +

(
1 − �3

i

)
Emin,

where �i ∈ [0, 1] is the design variable, E0 is the Young’s 
modulus of the ith element when it is filled with solid 

1 1

1

1y

2y

1y

2y

A A B

DE

F

B

C

CD

(a) (b)

Fig. 15   Design domain of the inverse homogenization problems. a 
Square base cell. b Hexagonal base cell

(a) square base cell (b) hexagonal base cell

Fig. 16   Final optimized microstructure with maximum bulk modulus. 
The objective function value �♡ is 167.1147 for the square base cell, 
and 177.5923 for the hexagonal base cell

(a) square base cell

(b) hexagonal base cell

Fig. 17   Periodic tessellation of unit cells



3930	 K. Wang et al.

1 3

material while Emin is the Young’s modulus of the element 
when it is void. We set Emin = 1 × 10−6E0 . By the way, we 
mention that the design variable should undergo the com-
monly used filter process and projection process before it 
can be used to interpolate the elemental stiffness matrix, the 
details can be found in our past work (Zhou et al. 2018a, b, 
2019, 2021) and will be omitted here.

Final optimized microstructure is shown in Fig. 16, the 
corresponding effective elastic moduli and bulk modulus of 
the square base cell is

and that of the hexagonal base cell is

By checking the isotropy constraint (59) on the expressions 
of the effective elastic moduli (80) and (81), one can find 
that the optimized square microstructure belongs to the 
(macroscopically) orthotropic continuum while the opti-
mized hexagonal microstructure belongs to the isotropic 
material. The bulk modulus of the hexagonal microstruc-
ture (177.5923, Fig. 16a) is a little larger than that of the 
square microstructure (167.1147, Fig. 16b). Assuming that 
the weak phase is purely void, the famous Hashin–Shtrik-
man bounds of the bulk modulus can be explicitly calculated 
as (Sigmund 2000)

where � =
E

2(1−�)
= 714.2857 , � =

E

2(1+�)
= 384.6154 are the 

bulk modulus and shear modulus of the base material, 
respectively, �HS

l
 and �HS

u
 are the lower and upper bounds, 

respectively. From (82) it can be found that the microstruc-
tures we design do get close to the theoretical upper bound 
of the bulk modulus. �♡∕�HS

u
 is 90.24% for the square cell 

while 95.90% for the hexagonal cell, thus demonstrating the 
effectiveness of the proposed inverse homogenization pro-
cedure. In Fig. 17 we show the periodic materials composed 
of the base cells in Fig. 16.

(80)
D♡

sq
=

⎡
⎢⎢⎣

290.9945 43.2350 0.0006

43.2350 290.9945 − 0.0006

0.0006 − 0.0006 12.9736

⎤
⎥⎥⎦
,

�♡ = 167.1147;

(81)
D♡

hex
=

⎡
⎢⎢⎣

246.3857 108.6639 − 0.0002

108.6639 246.3617 − 0.0001

−0.0002 − 0.0001 68.8632

⎤
⎥⎥⎦
,

�♡ = 177.5923.

(82)
�HS
l

= 0,

�HS
u

=
���

(1 − �)� + �
= 185.1852,

5.2 � Design of microstructure with negative 
Poisson’s ratio

In this example we attempt to find the layout of isotropic 
microstructures having negative Poisson’s ratio, which is 
defined as �♡ = D♡

12
∕D♡

11
 . Properties of the constituent mate-

rials are the same as that in Sect. 5.1. Construction of materials 
exhibiting negative Poisson’s ratio using continuum constitu-
ent materials is known to be difficult (Sigmund 1994b; Xia and 
Breitkopf 2015; Andreassen et al. 2014). In order to make the 
design process successful, some additional constraints should 
be applied to render the problem well-posed. The mathemati-
cal model used in this paper is given as

The constraints used in (83) warrants some explanations. 
The first constraint restricts the material usage of the solid 
material. The second constraint requires that the bulk modu-
lus of the optimized microstructure cannot be lower than a 
prescribed value so that the unwanted node hinges would not 
be presented in the final optimized design. The third con-
straint implies that the isotropic microstructure is preferred, 
Diso

ij
 denotes the elastic tensor of the corresponding isotropic 

continuum and its components are defined as

(83)

find � = [𝜉1, 𝜉2,… , 𝜉n]
⊤,

minimize 𝜈♡ = D♡

12
∕D♡

11
,

subject to

⎧⎪⎪⎨⎪⎪⎩

�nnele

i=1
𝜉iVi ≤ 𝛾

�nnele

i=1
Vi,

D♡

11
+ D♡

12
+ D♡

21
+ D♡

22
≥ 0.01E,

∑3

i,j=1

�
Diso

ij
− D♡

ij

�2

�
Diso

11

�2 ≤ 1 × 10−5.

(84)

Diso
11

= Diso
22

=
1

2

(
D♡

11
+ D♡

22

)
,

Diso
12

= Diso
21

= D♡

12
,

Diso
66

=
Diso

11
− Diso

12

2
,

Diso
16

= Diso
26

= 0.

(a) square base cell (b) hexagonal base cell

Fig. 18   Final optimized microstructure with negative Poisson’s ratio. 
The objective function value �♡ is −0.8587 for the square base cell, 
and −0.8583 for the hexagonal base cell
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As in Sect. 5.1, both the square and hexagonal cells are con-
sidered as the design domain. Final optimized microstruc-
tures are shown in Fig. 18 while the periodic tessellation of 
these microstructures are shown in Fig. 19. The correspond-
ing effective elastic moduli and Poisson’s ratio of the square 
base cell is

and the hexagonal base cell is

Due to stability constraint, the Poisson’s ratio of an isotropic 
material should be in the range [−1, 1] in plane stress case. 

(85)
D♡

sq
=

⎡
⎢⎢⎣

34.8389 − 29.9156 0.0028

−29.9156 34.9923 0.0075

0.0028 0.0075 32.3959

⎤
⎥⎥⎦
,

�♡
sq
= −0.8587,

(86)
D♡

hex
=

⎡
⎢⎢⎣

34.7372 − 29.8144 0.0003

−29.8144 34.8919 0.0013

0.0003 0.0013 32.3031

⎤
⎥⎥⎦
,

�
♡

hex
= −0.8583.

Thus the microstructures we design in this example do get 
close to the lower bound. Since no symmetry pre-assumptions 
are made when solving (83), the microstructures shown in 
Fig. 18 do not exhibit obvious symmetry, though the isotropy 
constraint [see the third constraint in (83)] is applied. In order 
to find optimized microstructure satisfying symmetry property, 
we manually requires that the design variables corresponding 
to the symmetric elements in the upper half and lower half 
have exactly the same values, this way the microstructure as 
shown in Fig. 20 is obtained. As remarked by Milton and Cher-
kaev (1995), the microstructure with negative Poisson’s ratio 
can unfold in some senses when subject to stretching loads. 
In Figs. 19 and 20 one can find many joint-like delicate con-
nections which contributes to the unfolding behavior under 
stretching loads. The microstructure in Fig. 20 looks similar to 
the ones in the literature (Milton and Cherkaev 1995; Andreas-
sen et al. 2014; Sigmund 2000) but has more slim bars.

(a) square base cell

(b) hexagonal base cell

Fig. 19   Periodic tessellation of unit cells

(a) Final optimized microstructure.

(b) Periodic tessellation of unit cells.

Fig. 20   Final optimized microstructure with negative Poisson’s ratio 
considering symmetry pre-assumptions. The objective function value 
is �♡ = −0.8587
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5.3 � Design of truss‑like isotropic material 
with unitary Poisson’s ratio

As mentioned in the previous example, the Poisson’s ratio of 
an isotropic material should be in the range [−1, 1] in plane 
stress case. In this example we attempt to find the truss-like 
microstructure with Poisson’s ratio to be 1.

In plane stress case, the Poisson’s ratio of isotropic con-
tinuum is defined as

Thus the microstructure with unitary Poisson’s ratio is 
equivalent to the one with zero shear modulus (i.e., D66 = 0 ). 
The mathematical model for this problem can therefore can 
written as

(87)� =
D12

D11

=
D11 − 2D66

D11

= 1 −
2D66

D11

.

(88)

find � = [𝜉1, 𝜉2,… , 𝜉n]
⊤

maximize 𝜅♡

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D11 ≥ 0.01E

D22 ≥ 0.01E

D12 ≥ 0.01E

D66 = 0

�
i,j

�
D♡

ij
− Diso

ij

�2

�
Diso

11

�2 ≤ 1 × 10−5

�n

i=1
𝜉i ≤ 8,

where the continuous design variable �i ∈ [0, 1] denotes the 
topological variable of ith bar and reveals the existence of 
this bar, the first three constraints restrict the lower bounds 
of D11 , D22 , and D12 , respectively, the fourth constraint 
requires the shear modulus to be zero, the fifth constraint 
demands that the designed microstructure should belong to 
the macroscopically isotropic continuum, Diso

ij
 has been 

defined in (84), the last constraint sets the upper limit of 
material usage.

The topology optimization of truss-like microstructures 
can still rely on the idea of the density method, i.e., the 
interpolation scheme (79) can still be used here. The 
design domain is a ground structure as shown in Fig. 21. 
If �i = 0 then ith element would disappear in the final opti-
mized design; if �i = 1 then ith element would be retained 
in the final optimized design. There are in total 16 nodes 

in Fig. 21, so there will be 
(
16

2

)
= 120 design variables. 

Apparently some bars would partially be coincident, and 
some bars would come across with each other. In order to 
get rid of the coincidence and crossing of the bars, a spe-
cial penalty term r�⊤P� is added to the objective function. 
Here P ∈ {0, 1}120×120 is a logical matrix, Pij = 1 if ith bar 
and jth bar are partially coincident or intersecting with 
each other, otherwise Pij = 0 ; r is a parameter to control 
the strength of the penalty term.

Two possible final optimized microstructures are shown 
in Fig. 22 and the periodic tessellation of these micro-
structures are shown in Fig. 23. Note that in Case (b) of 
Fig. 23, the vertical and horizontal bars are twice as thick 
as the inclined bars since they are on the borders of the 
unit cell. Interestingly, the effective elasticity tensor of the 
two microstructures in Fig. 22 are exactly the same,

(89)D♡ = 0.2612

⎡⎢⎢⎣

1 1 0

1 1 0

0 0 0

⎤⎥⎥⎦
.

Fig. 21   The ground structure of the microstructure

(b)esaC(a)esaC

Fig. 22   Two possible final optimized microstructure with unitary 
Poisson’s ratio. The objective function value �♡ = 0.2612 for both 
cases
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In two-dimensional case, unitary Poisson’s ratio means that 
under longitude compression loads, the lateral expansion 
displacement is equal to the longitude compression displace-
ment for a square shape material. Investigating the periodic 
tessellations as shown in Fig. 23, one can find that both 
materials are composed of square and hexagonal microstruc-
tures with exactly equal edge lengths, which is consistent 
with the unitary Poisson’s ratio.

We mention here that since the number of design vari-
ables is not large, and the evaluation of the objection 
function and constraint is not time-consuming, it is also 
possible to use non-gradient algorithm, e.g., Khatir et al. 
(2019, 2020) and Khatir and Abdel Wahab (2019), to 
solve this example. But throughout this section, we use 

gradient-based interior-point algorithm to solve the opti-
mization problems.

6 � Discussion

6.1 � Scale‑invariance of the Cauchy–Born rule based 
numerical homogenization method

In this section we verify the scale-invariance of the proposed 
CBNH method. A well-established numerical homogeniza-
tion method should hold the property of scale-invariance, 
i.e., the computed effective elastic moduli must be the same 
for all possible choice of basic unit cells. In this example we 
test the scale-invariance of the proposed CBNH method by 
computing the effective elastic moduli of all the six kinds of 
unit cells as shown in Fig. 24. In Table 6 we list the computed 
effective elastic moduli of all the six unit cells, it can be found 
from this table that the proposed CBNH method does hold the 
scale-invariance property. Meanwhile, the RVE method is also 
tested on these six unit cells, the results are listed in Table 7, 
from which the scale dependency of the RVE method can be 
clearly seen. When more unit cells are included in the RVE 
method, the computed elastic moduli gradually converge to 
the ones by the proposed CBNH method from above.

Case (a)

Case (b)

Fig. 23   Periodic tessellation of the unit cells in Fig. 22

Case (1)

Case (4)

Case (5)

Case (6)

Case (2)

Case (3)

Fig. 24   Unit cells of different shapes and sizes
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7 � Conclusion

In this paper the Cauchy–Born hypothesis based numerical 
homogenization method is proposed to calculate the effec-
tive elastic moduli of PUCs. Due to its simplicity, it can 
be easily implemented using commercial FEA software. In 
comparison with the method of representative volume ele-
ment, which is commonly used in the community of com-
posite mechanics, the proposed method holds the property 
of scale-invariance, so is much more accurate. In compari-
son with the asymptotic expansion based homogenization 
method, which is commonly used in the community of topol-
ogy optimization, the proposed method can be freely applied 
to both continuum and discrete (e.g., truss, beam, plate and 
shell) unit cells without any modification to the FEA codes. 
In addition, the proposed method can easily handle the unit 
cells with complex geometries (e.g., hexagonal, Kagome-
like, or triangular unit cells) since the affine boundary condi-
tions in the proposed method have naturally considered the 
primitive translational vectors. Owing to these advantages, 
the proposed method can definitely be applied to the prob-
lems of inverse homogenization, and it turns out that the 
whole inverse homogenization process, including both the 
homogenization procedure and the sensitivity analysis pro-
cedure, can be implemented using commercial FEA software 
in an easy manner.
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