
Materials & Design 210 (2021) 110031
Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier .com/locate /matdes
Quadramode materials: Their design method and wave property
https://doi.org/10.1016/j.matdes.2021.110031
0264-1275/� 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: hugeng@bit.edu.cn (G. Hu).
Yu Wei, Xiaoning Liu, Gengkai Hu ⇑
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
h i g h l i g h t s

� Wave characteristics of different
quadramode materials according to
material symmetry are systematically
investigated.

� A quadramode material supporting
any combination of two shear
stresses is proposed and validated for
the first time.

� An out-of-plane shear (SH) wave
polarizer is constructed with the
proposed quadramode material.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 28 May 2021
Revised 19 July 2021
Accepted 5 August 2021
Available online 6 August 2021

Keywords:
Extremal material
Quadramode
Microstructure design
Elastic wave
Waterborne sound isolation
a b s t r a c t

Extremal materials with certain vanishing eigenvalues of their elastic matrix are able to manipulate elas-
tic wave with their extremal static property, the devices designed with such materials can work in a
broad frequency band, which is highly demanded in low frequency applications. A type of extremal mate-
rials with four zero eigenvalues called quadramode (QM) materials is the subject of this investigation.
Wave properties of different QM materials, particularly their capacity on shaping iso-frequency curves,
are firstly examined with homogeneous models. A three-dimensional QMmaterial is then designed using
a truss lattice model. The designed lattice is validated through comparison between the homogeneous
and discrete models on their prediction on iso-frequency curves and polarizations. An out-of-plane shear
(SH) wave polarizer is proposed with the designed QM material, it can effectively prevent the mode con-
version at interface with fluids. This unique property is further explored for waterborne sound isolation, a
prototype of this polarizer is also proposed and demonstrated through numerical simulation. This study
paves the way for exploring the exotic wave properties of QM extremal materials, and opens a new route
to control low frequency elastic wave.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Responses of linear Cauchy elastic materials are characterized
by Hooke’s law with elastic stiffness tensors depending intimately
on their microstructures. Classification of materials according to
the property of their elastic tensors dated back quite early, e.g.,
the symmetry of material microstructure reduces significantly
the number of material constants, from 21 for a general elastic
material to 2 for an isotropic material [1]. More recently, emer-
gence of elastic metamaterials extends available range of elastic
tensor, e.g., from positive elastic moduli to negative ones [2–4],
or relaxes constraints on minor symmetry [5–7] and major sym-
metry [8] of elastic tensor. These extensions enable continuum
mechanics to characterize more complex phenomena surged from
interaction between loading and microstructure.

Another interesting classification of materials was proposed by
Milton and Cherkaev [9] (see also [10]), they classified materials
according to the number of zero eigenvalues of elasticity matrix:
unimode (UM) if there is one zero eigenvalue, successively bimode

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2021.110031&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.matdes.2021.110031
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hugeng@bit.edu.cn
https://doi.org/10.1016/j.matdes.2021.110031
http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes


Y. Wei, X. Liu and G. Hu Materials & Design 210 (2021) 110031
(BM), trimode (TM), quadramode (QM) and pentamode (PM) if there
are five. The eigenvectors corresponding to zero eigenvalues repre-
sent mechanisms of materials, i.e., zero energy modes. Materials
with zero eigenvalues of elasticity matrix are not stable, there
are inherentmechanisms embedded in the materials. These materi-
als are referred to as extremal materials in the following [9]. Due to
the embedded mechanisms, extremal materials may have very spe-
cial mechanical properties, e.g., very hard in some stress states and
very soft for the others, useful for particular engineering applica-
tions. According to this classification, liquids are special kind of
PM materials, supporting only hydrostatic stress and being soft
for any other stress states. We can approximately realize PMmate-
rials with solids [11,12], which can mimic wave properties of liq-
uids. The materials and devices made of solid PM materials are
intrinsically broadband and are of great value in underwater
acoustic wave control [13].

Extremal materials have been recognized as a rapid develop-
ment recently, primarily focusing on PM materials. Norris [14]
demonstrated that acoustic cloak can be designed with PM materi-
als, few years later the first solid PM materials was fabricated by
Kadic et al. [11] based on the diamond lattice proposed by Milton
and Cherkaev [9], these works refueled the research on PM mate-
rials. Layman et al. [15] proposed an oblique honeycomb lattice
to design PM materials with anisotropic properties. Norris [16]
examined the condition of lattice networks to realize PMmaterials.
Based on honeycomb lattice, Chen et al. [12] proposed a new
microstructural configuration of PM materials, which can achieve
a large anisotropic ratio in moduli. A microstructure prototype of
PM material with anisotropic density is also proposed [17]. More
recently, based on topology optimization techniques, many novel
microstructures of PM materials can be put forward [18,19]. With
the development of design and fabrication methods for PM mate-
rials, many functional devices have been proposed, such as static
mechanical cloak [20], underwater sound cloak [13], polarization
tailoring [21], even seismic wave alleviation [22].

Apart from PM materials, only few work was devoted to the
study on other modes of extremal materials. There are some possi-
ble examples of UM materials in both two- [9,23–25] and three-
dimension [9,26]. From these examples, as well as PM material
design, we see that these extremal materials are constructed by
designing the necessary mechanism in periodic pin-jointed trusses
or a composite, quantitative relationship between designed struc-
ture and its elastic property is also necessary and not provided.
Therefore, there is still an urgent need to study this kind of extre-
mal materials and explore their possible engineering applications.

In this paper, we will examine systematically QM materials
with periodic pin-jointed truss model. Classification of QM materi-
als based on material symmetry and their corresponding wave
characteristics are explained in Section 2. A QM material with
transversely isotropic symmetry is described in detail, and a design
method is proposed and validated by both discrete and homoge-
nized models, this will be detailed in Section 3. Section 4 explores
some applications of the QM material. Elastic wave refractions
between QM and ordinary isotropic solid materials as well as liq-
uids are also considered, an application of waterborne sound isola-
tion is investigated. In the end, some conclusions will be drawn.
2. Wave property of quadramode materials

2.1. Classification of QM materials

The elastic tensor of QMmaterials, in form of Kelvin’s decompo-
sition, is expressed by C ¼ K1S1 � S1 þ K2S2 � S2, with Si(i = 1, 2)
2

being a 2nd order symmetric tensor. Ki(i = 1, 2) is the non-zero
eigenvalues of the elastic matrix, implying that the QM material
is stiff to any stress in the subspace spanned by S1 and S2. For con-
venience, the elastic tensor is also written as C ¼ P

Si � Si, where
Ki is absorbed in Si. In the Voigt’s notation, C will be written as a
6 � 6 elastic matrix and S the 6 � 1 stress vector, respectively.
QM materials are completely determined by the two non-zero
eigenvalues (K1 and K2) and its characteristic stresses (S1 and S2).
To check if a material is QM, it suffices to evaluate rank (C) = 2.
However, there are a large number of possible forms of the elastic
matrix to be QM. In the following, we will discuss QM materials
from material symmetry.

Firstly, we consider isotropic materials. The elastic matrix of
isotropic materials has only two independent components C11

and C12 as follows

C ¼

C11

C12

C12

0
0
0

C12

C11

C12
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0

C12

C12

C11
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:

ð1Þ

Now, let’s consider the case that C11–C12, it’s obvious that the
rank (C) is equal to 6, i.e. they are null mode materials. While, if
we consider the case that C11 ¼ C12, there must be only one non-
zero eigenvalue for such elastic matrix, indicating they are PM
materials. As a consequence, a QM material cannot be isotropic.

Secondly, we consider materials with transversely isotropic
symmetry and its elastic matrix has the following form with five
independent components

C ¼
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C13
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: ð2Þ

Obviously, there are many kinds of QM materials with trans-
verse isotropy. Here we will examine an interesting example,
C11 ¼ C33 ¼ C12 ¼ C13 ¼ 0 and C44 ¼ 1 (here 1 means the compo-
nent has the same magnitude and non-zero value, the same for
characteristic stress), which supports only stress states linearly
combined by S1 = [0, 0, 0, 1, 0, 0]T and S2 = [0, 0, 0, 0, 1, 0]T. More
specifically, this QM material can support any stress consisting of
pure shear stress S23 and S13.

The iso-frequency surfaces (IFS) of this type of QM material are
shown in Fig. 1, there are only two IFS in wave vector space, differ-
ent from three for an ordinary solid material. The reason for this
will be clarified in Section 2.2. Fig. 1 (a) and (b) show the shape
of the IFS of the first and the second mode, respectively, the first
is a sphere and the second is two parallel planes. Fig. 1(c) and (e)
illustrate the iso-frequency curves (IFC) sliced on the (100) and
(001) planes, respectively. The orange and purple arrows represent
the polarization of the first and the second mode, respectively.
According to the IFC and their polarization, the material behaves
as an isotropic PM material on (001) plane which can support only
one wave mode with polarization always perpendicular to the
wave vector. This character is very different from a pure isotropic
PMmaterial for which the single wave mode is polarized in parallel
to the wave vector.

Thirdly, we consider orthotropic materials, and their elastic
matrix has the following form with nine independent components:



Fig. 1. IFS of a QM material with S1 = [0, 0, 0, 1, 0, 0]T and S2 = [0, 0, 0, 0, 1, 0]T. (a)-(d) for homogeneous QM: (a) the first mode; (b) the second mode; IFC and the polarization
on (c) (100) and (d) (001) plane; (e)-(f) same as (c)-(d) but the homogeneous QM materials is replaced by its discrete QM lattice.
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With the condition for QM, we can also find many combinations
of these components rendering a QM material with orthotropic
symmetry. Here is given one of such examples with
C11 ¼ C22 ¼ C33 ¼ C12 ¼ C13 ¼ C23 ¼ C66 ¼ 1 and C44 ¼ C55 ¼ 0, cor-
responding to the two characteristic stresses S1 = [1, 1, 1, 0, 0, 0]T

and S2 = [0, 0, 0, 0, 0, 1]T. This QM material is stiff to any stress
in the subspace spanned by a pure shear stress and hydrostatic
pressure.

The IFS of this QM material are shown in Fig. 2. In the figure, (a)
and (b) reveal the characteristic of IFS for the first and the second
mode, respectively. In the first mode, the IFS is a closed surface, its
skeleton is composed of two orthogonal circles (specified by black
solid lines) and its equator is made of a square (specified by blue
solid/dashed lines). And the second consists of intersecting hollow
tubes. The IFC on (100) and (001) planes are also shown in Fig. 2
(c) and (d), and their polarization indicated by orange (the first
mode) and purple (the second mode) arrows, respectively. Inter-
estingly, on the (001) plane as shown in Fig. 2(d), the IFC are com-
posed of segmented straight lines, closed square for the first mode
and open parallel lines intersected with the square for the second
mode.

Finally, we consider monoclinic materials (eg. xoy-plane), their
elastic matrix has the following form with thirteen independent
components.
3

C ¼

C11

C12

C13

0
0
C16

C12

C22

C23

0
0
C26

C13

C23

C33

0
0
C36

0
0
0
C44

C45

0

0
0
0
C45

C55

0

C16

C26

C36

0
0
C66

2
666666664

3
777777775
: ð4Þ

Obviously, there are many combinations of the components to
form a monoclinic QM material. Let us consider the following
example where all the components in Eq. (4) are set to be 1, corre-
sponding to the characteristic stresses S1 = [1, 1, 1, 0, 0, 1]T and
S2 = [0, 0, 0, 1, 1, 0]T.

The IFS of this QM material are shown in Fig. 3. As illustrated in
Fig. 3 (a) and (b), the IFS are a hollow tube for the first mode and
four non-intersect V-shaped planes for the second mode. Fig. 3(c)
and (d) show respectively the IFC on the planes (100) and (001),
and their polarizations indicated respectively by orange and purple
arrows. It’s worth noting that the polarizations of both the first and
the second mode in Fig. 3(c) are neither parallel nor perpendicular
to the crystal plane, whichmeans when considering the wave char-
acteristics on these crystal planes, it cannot be simplified as a two
dimensional plane problem. In addition, the IFC on the (001) plane
are two parallel lines, indicating that the energy of bulk wave can
only propagate within the plane perpendicular to the IFC.

2.2. Number of IFS for extremal materials

It is shown through concrete examples in the previous section
that QM materials possess only two modes, distinct from three
for ordinary solids. In this section, we will establish the connection
between number of IFS (or IFC) and different modes of extremal



Fig. 2. The IFS of a QM material with S1 = [1, 1, 1, 0, 0, 0]T and S2 = [0, 0, 0, 0, 0, 1]T. (a) the first mode; (b) the second mode; IFC and its polarization on (c) (100) and (d) (001)
planes.
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materials. For a plane harmonic solution ui ¼ Aiexp i kjxj �xt
� �� �

(i
is complex number) propagating in an elastic material of elastic
tensor Ciklm, the Christoffel’s equation is given by [27]

Cim � qc2dim
� �

um ¼ 0: ð5Þ
where acoustic tensor Cim ¼ Ciklmnknl, n is the direction cosine of the
wave vector, and c is the phase velocity. Let f ¼ qc2, the character-
istic equation then can be expanded as

f3 � tr Cð Þf2 þ tr C�ð Þf� det Cð Þ ¼ 0: ð6Þ
By defining the function N, the acoustic tensor can be written

as:

C ¼ NCNT ; ð7Þ
where N is defined by

N ¼
n1 0 0
0 n2 0
0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0

2
64

3
75; ð8Þ

For a general solid material, the Eq. (6) always has three non-
zero solutions, i.e. three phase velocities. While, for QM materials,
there are only two non-zero solutions at most. To be more specific,
we have

rank Cð Þ ¼ rank NCNT
� �

� min rank Nð Þ; rank Cð Þ; rank NT
� �� �

ð9Þ

where rank Nð Þ ¼ rank NT
� �

¼ 3, rank Cð Þ ¼ 2: Then we can see that

the rank of U is always no more then 2, i.e. rank Cð Þ � mC � 1, where
mC is the order of symmetric matrix U. Through some linear algebra,
4

it can be shown that for any QM material and any given direction of
n, det Cð Þ is always equal to zero and tr C�ð Þmight be non-zero. Then
the Eq. (6) can be rewritten as

f2 � tr Cð Þfþ tr C�ð Þ� �
f ¼ 0: ð10Þ

In this way, for QM materials, the Eq. (6) can only find two non-
zero solutions at most, that is why there are only two IFS noticed in
the previous section.

Similarly, it can be shown rank Cð Þ � mC � 2 for a given PM
material, indicating that the det Cð Þ and tr C�ð Þ are both equal to
zero for any PM material and any direction of n. So for PM materi-
als, there is only one non-zero solution at most.
3. Design method of quadramode materials

3.1. Design principle

As proposed by Milton and Cherkaev [9], all three-dimensional
materials (including extremal materials) can be assembled from
appropriate PM materials. Following their idea, we will design
the QM materials analyzed in the previous section. In the follow-
ing, we will homogenize PM/QM lattice based on pin-joint truss
model, in which all the rods are only subjected to axial loads and
the effect of 3D stress distribution is neglected. Therefore, the pro-
posed construction methodology only works for low density
regime.

Firstly, we select a PM lattice as shown in Fig. 4(a), which con-
tains 5 nodes and 4 rods. Maxwell’s rule indicates that there are
five independent inextensional mechanisms in such lattice [28–
30]. Moreover, the characteristic stress tensors of the lattice can



Fig. 3. The IFS of a QM material with the characteristic stresses S1 = [1, 1, 1, 0, 0, 1]T and S2 = [0, 0, 0, 1, 1, 0]T. (a) the first mode; (b) the second mode; IFC and its polarization
on (c) (100) and (d) (001) planes.

Fig. 4. Design principle for QM lattice. (a) PM lattice used to build QM lattice, it contains four light red dependent nodes at the cubic boundary and one dark gray independent
node inside; (b) two PM lattices are assembled in one cubic space to build the desired QM lattice.
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be obtained by adjusting the position of the internal joint P1. The
advantage of choosing the lattice of Fig. 4(a) is that only four
non-coplanar nodes on the boundary of a cube with one internal
node are needed to build up a PM lattice. Therefore, only one trian-
gular prism space is enough to provide such a set of nodes for a PM
lattice. While there are two triangular prisms in one cube, so two
such PM lattices can be constructed in one cube to form a QM lat-
tice with desired function as shown in Fig. 4(b). Meanwhile, it’s
worth noting that only when the characteristic stresses of two
PM are orthogonal to each other, the design principle will be
feasible.

To be more specific, in the following we will design a QM mate-
rial supporting an arbitrary stress consisting of pure shear stresses
syz and sxz, which was examined in details in Section 2. For the PM
lattice shown in Fig. 4(a), the equivalent property can be obtained
by the homogenization method proposed by Norris [16]. However
for a QM lattice built up with two PM lattices, numerical method
with Cauchy-Born boundary condition on the unit cell has to be
utilized to evaluate its effective property [31].

In the computation, we set the lattice constant equal to 2, the
Young’s modulus, the cross-sectional area and density of each
rod are respectively equal to 1. Then, the practical component of
elastic matrix is proportional to its corresponding actual one, as
noted by Hutchinson and Fleck [31]. It is found that when the joint
P1 in Fig. 4(a) gradually approaches the boundary node n1 from the
inside, the overall lattice will approach an ideal PM lattice support-
ing only a pure shear stress sxz. When the coordinates of the joint
are P1 = [0.995, 0.995, �0.995]T in the Cartesian coordinate system
with the center of the cube as shown in Fig. 4(a), the homogenized
elastic matrix of the lattice is evaluated as

CPM ¼

0
0
0
0

0:0001
0

0
0
0
0

0:0001
0

0
0
0
0

0:0001
0

0
0
0
0
0
0

0:0001
0:0001
0:0001

0
0:0521

0

0
0
0
0
0
0

2
666666664

3
777777775
:

ð11Þ
with the eigenvalues {kPM} = {0.0521, 0, 0, 0, 0, 0}, and the eigenvec-
tor of the non-zero eigenvalue is
xPM ¼ 0:0019;0:0019;0:0019; 0;1;0½ �T . The overall lattice can be ide-
alized as an ideal PM material with only characteristic stress sxz. In
the same way, when the node n2 moves to node n8, and the internal
joint P2 approaches the node n7, a new PM lattice supporting only a
pure shear stress syz is constructed.

Then, we combine the obtained two PM lattices together in the
way as shown in Fig. 4(b) to build up the desired QM lattice. The
two PM lattices are connected with the nodes n3, n4 and n5 to
become a whole, i.e. they are no longer two unrelated PM lattices.
The homogeneous elastic matrix CQM of this QM lattice is derived
as

CQM ¼

0
0
0

0:0001
0:0001

0

0
0
0

0:0001
0:0001

0

0
0
0

0:0001
0:0001

0

0:0001
0:0001
0:0001
0:0521
�0:0001

0

0:0001
0:0001
0:0001
�0:0001
0:0521

0

0
0
0
0
0
0

2
666666664

3
777777775
ð12Þ

with the eigenvalues of the elastic matrix {kQM} = {0.0522, 0.0520, 0,
0, 0, 0}, and xQM1 ¼ 0; 0;0;�0:7071; 0:7071;0½ �T and

xQM2 ¼ 0:0027;0:0027; 0:0027;0:7071; 0:7071;0½ �T are the eigenvec-
tors of the two non-zero eigenvalues, respectively. It can be found
that the maximum components in either elastic matrix CQM or
6

eigenvectors are two orders of magnitude larger than the second
largest components. Therefore, the built lattice can be idealized as
a QM material supporting an arbitrary stress consisting of the pure
shear stress syz and sxz.

As far as practical realization of the proposed quadramode
materials, benefiting from the development of modern dip-in
three-dimensional DLW optical lithography, the extremal material
can be fabricated feasibly, from micro-scale [11,20] to macro-scale
[13,21,32–34]. There are usually two techniques to approximate an
ideal pin-joint: introducing soft materials in the connection
regions [33] or using a finite connection (or overlap) [11,35]. Both
indicate that the bulk modulus of an isotropic PM lattice (only sup-
port hydrostatic pressure) can be easily made 103 time larger than
shear modulus by adjusting the distribution of soft materials or the
local widths of the connections, in these cases the behavior of the
connection is very close to the ideal pin-joint. An active method
may provide a new dimension to tailor material microstructure,
it is also interesting to explore its possibility for QM design.

3.2. Numerical validation

The dispersion relation of a homogenous QM material can be
obtained by calculating the Christoffel’s equation with its effective
elastic matrix. While for the periodic discrete lattice, the eigen-
value problem of the dynamical matrix will be applied to derive
the dispersion relation [36,37]. For a given pin-joint linkage, we
can always write out its kinematic equations and equilibrium
equation, which in a matrix form read [38]:

Bd ¼ e; ð13Þ
and

At ¼ f ; ð14Þ
where B is the kinematic matrix, d is the displacement of joints, e is
the elongation of rods, A is the equilibrium matrix and A = BT, t is
the tension of rods and f is the force of joints. In a pin-jointed lattice,
the rod and pin-joint can be considered as ‘mass-and-spring’ frames
[30], and each bond is characterized by Hooke’s law spring. Con-
sider spring constant as a diagonal constant matrix kb, then the
elastic energy of the lattice is defined as

ð15Þ

where

ð16Þ

is the stiffness matrix of the considered lattice. Assume that all
mass points have a constant mass m, then the kinetic energy of
the lattice is written as

Ek ¼ 1
2
m _dT _d; ð17Þ

where _d is the velocity vector. The normal modes are eigenvectors
of the dynamical matrix . In order to derive the disper-
sion relation, we need to evaluate the problem in frequency domain
in the first Brillouin zone, implying that

ð18Þ
To obtain the dynamical matrix in periodic pin-jointed struc-

tures, the Bloch’s theorem is applied to the original kinematic
and equilibrium matrices of the unit cell [31,39]. In the primitive
unit cell of the QM periodic lattice, we define a direct lattice trans-
lation vector x = xiai, where xi is any set of integer values and ai is
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the direct translational basis. And introducing the joint basis jk
(k = 1, 2, . . . , J) for J joints in order to define the location of the inde-
pendent joints of the unit cell. Thus, we have

pk ¼ jk þ x ¼ jk þ xiai; ð19Þ
where pk is the direct lattice position vectors of all joints jk. Next,
we assume that the 3D joint displacement is complex,
d pk;kð Þ 2 C3, which is defined over the entire lattice using Bloch’s
theorem for the joint displacement field. Then, Bloch’ theorem
gives:

d pk;kð Þ ¼ d jk þ x;kð Þ ¼ d jk;kð Þexp 2pik 	 xð Þ; ð20Þ
where i represent the complex number i2 = -1. Therefore, consider
the nearest unit cell, the displacements of all the dependent joints
can be expressed by the displacements of the independent nodes:

d jk þ bxk;k
� � ¼ z k; bxk

� �
d jk;kð Þ; ð21Þ

where z k; bxk
� � ¼ exp 2pik 	 bxk

� �
, bx ¼ bxiai, bxi 2 �1;0;1f g. Then sub-

stituting Eq. (21) into Eq. (13) then we obtained:

B
�

kð Þ 	 d
�

kð Þ ¼ e
�

kð Þ: ð22Þ
Finally, the dynamical matrix of the periodic structure is deter-

mined as

D kð Þ ¼ 1
m

B
�y kð Þkb B

�
kð Þ; ð23Þ

and the dispersion relation of the lattice can then be obtained by
solving

D kð Þ 	 d
�

kð Þ ¼ x2 d
�

kð Þ: ð24Þ
Fig. 5. Illustration of QM metamaterial on wave control. (a) the IFC on (001) and its pola
and polarization of wave vectors in any direction on (001); (c) QM material lattice with

7

The dispersion surfaces of the constructed discrete QM lattice as
shown in Fig. 4(b) is exactly the same as the homogeneous QM
material as shown in Fig. 1, which are obtained by solving the
eigenvalue problem of Eq. (24). Only a little discrepancy regarding
to Fig. 1(d) and (f) of polarization at the position where the two
modes are tangent, the reason may come from nonzero small
quantities appeared at off diagonal places of the elastic matrix
(as shown in Eq. (12)).
4. Function design with quadramode material

As discussed in the previous section, if a plane wave is gener-
ated on the crystal plane (001) of the QM material, the particle
polarization is always perpendicular to this plane, as shown in
Fig. 5(a) (also Fig. 1(d) or (f)). The corresponding unit cell and lat-
tice are shown respectively in Fig. 5 (b) and (c). In this section, we
will explore this unique property of the QM material to design an
out-of-plane shear (SH) polarizer. This SH polarizer is expected to
be able to block incoming waterborne sound particularly at low
frequency. The principle of this polarizer is illustrated by Fig. 5
(d). When a general polarized wave defined by spherical coordi-
nate components h and u is propagating along the x-axis from
the left into the QM material, only the part of the incident wave
polarized along the z-axis can be transmitted to the right medium,
since the QM material at this position can only transmit the shear
wave with the polarization as shown by the green double arrows in
Fig. 5(d).

A commercially available finite element analysis (FEA) software,
COMSOL Multiphysics 5.4, was used for all analysis in the follow-
ing numerical simulations. Fig. 6 shows the computed refraction
rization: blue line and orange arrows respectively; (b) the unit cell of the QM lattice
3 � 3 � 3 unit cells; (d) principle of SH wave polarizer by using the QM material.



Fig. 6. (a) The IFC on (001) of isotropic solid (bottom) and QM material (top); (b) out-of-plane displacement field, perfect transmission of an SH-wave Gaussian beam
incident on a QM lattice from its effective homogeneous counterpart; (c) wave propagation for a normally incident wave initiated from an isotropic solid to the homogenous
QMmaterial, c2, c3 and c4 for P-, SV- and SH-wave respectively (the fields are normalized by the incident wave). (d) Same as (c) but the homogeneous QMmaterials is replaced
by its discrete QM lattice.

Y. Wei, X. Liu and G. Hu Materials & Design 210 (2021) 110031
and reflection at interfaces between the homogenized/discrete QM
lattice as well as an isotropic solid, respectively. The dispersion
curves of the two semi-infinite homogeneous materials are illus-
trated in Fig. 6(a) with the following material constants: the isotro-
pic solid (bottom) with elastic constants CISO

11 = 105.2GPa,
CISO
12 = 26.7GPa, density qISO = 2700 kg/m3 (aluminum), and the QM

material (top) with elastic constants CQM
44 = CQM

55 = 26.7GPa, density
qQM = 2000 kg/m3. We see that there would be three types of wave
in the isotropic solid: the reflected P-, SV- and SH-wave (correspond-
ing to RP, RSV and RSH in Fig. 6(a) respectively), and only one type of
wave in the QMmaterial: the transmitted SH-wave (TSH). In order to
check our designed QM lattice, we examine the wave transmission
for a Gaussian SH-wave beam (hinSH ¼ 25



and with a central fre-

quency f = 50 kHz) incident on a QM lattice (with 15 � 50 � 15 unit
cells, 15 layers in thickness direction) from its effective homoge-
neous counterpart, a perfect transmission is observed as shown in
Fig. 6(b), which in fact confirms our design method for the QMmate-
rial. The unit cell is a cube with a side length of 2 mm. Then the total
size of the lattice is 30 mm � 100 mm � 30 mm. Because the homo-
geneous QM material is a kind of linear Cauchy elastic materials, the
perfectly matched layers (PMLs) of Solid Mechanics Module in COM-
SOL Multiphysics software still work. In the simulation, the com-
puted regions are covered by the PMLs to avoid reflectance due to
the finite boundary.

In order to demonstrate the idea to make a SH polarizer with
the QMmaterial, we perform numerical simulations on wave prop-
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agation for a normally incident Gaussian beam initiated from an
isotropic solid to the homogenous or lattice QMmaterials, different
types of wave are considered, including P-wave, SV-wave and SH-
wave, the wave propagations represented by the normalized P-,
SV- and SH-wave fields are provided by Fig. 6(c) and (d). It should
be noted that, in order to show more clearly the characteristics of
wave propagation in our 3D QM material, the PMLs were set to be
invisible and only the middle part was retained. Clearly, the
designed QM material (homogeneous or lattice) blocks both P
and SV waves, only SH-wave is allowed to pass through. This effect
is similar to that of polarized sunglasses, and can be considered as
a ‘polarized glass’ for elastic waves.

As well-known that liquids support only P wave, if we can
design a material which can polarize incoming wave into SH wave,
there will not have mode conversion at the interface between this
material and the liquid, therefore the incoming wave is not able to
transmit into the liquid and will be blocked. To demonstrate this
idea, we examine a QM layer sandwiched by an isotropic solid
and water, the QM layer acts as a SH wave polarizer. A line source
to generate different types of waves (P- and SV-wave) is located in
the isotropic solid. The P- and SV- Gaussian beam with a frequency
50 kHz are generated respectively. The material constants of the
isotropic material and QM material are the same as in the previous
example, and Cliquid

11 = 2.25GPa and qliquid = 1000 kg/m3 for the liquid
(water). Fig. 7 shows clearly that with the QM material layer both
incoming P- and SV-waves (Fig. 7(b) and (d), respectively) are



Fig. 7. Displacement field, colors indicate displacement magnitude uj j ¼ u2 þ v2
� �1=2. P wave incident into liquid without (a) and with QM interlayer (b); (c) and (d) Same as

(a) and (b) but the incident P wave is replaced by incident SV wave.
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stopped, contrary to the cases without the QM layer (Fig. 7(a) and
(c), respectively) where mode conversion at the interface allows
wave to transmit into water. Fig. 6(a) also shows the IFC and the sup-
ported wave in the isotropic solids (bottom), QM layer (top with blue
dashed line) and liquid (top with black solid line). In the QM layer,
the only supported wave is of SH mode, at the interface between
the QM material and water, SH wave is not able to be converted into
P or SV waves so it is blocked. Contrary to the QM material, a tradi-
tion isotropic solid can convert SV wave to P wave at the interface
between water, high transmission is observed as shown in Fig. 7
(c). The shadow along the direction of the normal incidence of SV
wave is due to the zero displacement in wave direction. The great
advantage of above method is that it can function for a broad fre-
quency band, since only static material property is utilized without
resonant mechanism.
5. Conclusions

We have examined systematically a kind of extremal materials,
quadramode materials, which elastic matrix has only two no van-
ishing eigenvalues. The wave properties of some typical QM mate-
rials with different material symmetries have been investigated. It
is found that QM materials cannot be isotropic, and the number of
IFC of QM materials is shown to be less than 2 in agreement of the
simulation. The presence of mechanisms or soft modes in this type
of materials renders a vast variation of the shape of IFC, offers also
unparalleled capacity to control elastic wave. A SH wave polarizer
with the QM material is constructed and its application to isolate
broadband low frequency waterborne sound is also demonstrated
numerically. A corresponding truss model of the QM material sup-
porting any combination of two independent shear stresses is also
forwarded, its effective modulus and IFC are compared quite well
with the homogenized model. This work provides first systematic
study on quadramode material and offer a new possibility to con-
trol low frequency elastic wave.
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