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Vibratory energy harvesting, that is, capturing the energy of environmental vibrations and transforming into
electric forms, has flourished as an important research field for micro‐power generation. As a means of mechan-
ical amplification, a subtly designed parametrically excited energy harvester could produce more power output
than a corresponding directly excited energy harvester. In this paper, a simple but effective composite structure
for realizing parametrically excited piezoelectric energy harvesting is first introduced, and analyzed in details
by combining the harmonic balance method and the energy balance equation. Direct numerical simulations are
performed to validate the theoretical predictions. Special features describing two types of observable reso-
nances are then revealed by comprehensively monitoring the frequency response of the mean‐square voltage,
the input power, the output power, the energy conversion efficiency, the phase angle and the phase difference.
By comparing with the directly excited energy harvesters, the advantages of parametrically excited energy har-
vesters are finally revealed. The most important point view of this work is that the performance of vibratory
energy harvesters stems from the input power. It is suggested that superior self‐adjustable broadband vibration
harvesting could be exploited by constructing optimal phase to maximize the input power to achieve supreme
output power.
1. Introduction

Vibratory energy harvesting have received considerable attention
in the literature recently, due to the fact that different vibration
responses exist in various mechanical systems and human body sys-
tems, for instance, the whirling motion of rotors [1–6], the instability
and resonant response of pipes conveying fluid [7–10], the flutter and
dynamics of plates and wings [11–15], the heart pumping and the arte-
rial pulse [16–19], etc. Vibration‐based piezoelectric energy harvesters
use the electromechanical coupling effect of piezoelectric crystals
experiencing ambient vibrations to produce electric energy that can
be simultaneously stored up for supplying power. In the past few years,
there have been increasing interests on designing multifunctional
structures by combining energy harvesting and vibration suppression
[20–23].

For the vibratory energy harvesters operating based on the princi-
ple of linear resonance, the frequency bandwidth is usually very nar-
row, that limits the applicability and usefulness of the harvesters.
Nonlinearities arising from the nonlinear strain‐deflection relation-
ships or nonlinear constitutive relations are inherently present in the
vibratory energy harvesting systems. The introduction of nonlineari-
ties into the innovative design of vibratory energy harvesters has been
a widespread concerned topic [24,25]. Some results have pointed out
that elaborately introduced nonlinearity could be beneficial to harvest
energy because the harvester’s operation bandwidth can be extended
[26–31] when compared to the linear device.

There have been a tremendous amount of research dealing with the
system modeling and performance optimization of harvesting energy
via directly excited piezoelectric composite beam [32–40]. Such non-
linear energy harvesters take advantage of the forced resonance, which
occurs from external forcing of the beam structure at its primary mode,
subharmonic or superharmonic mode. It is worth noting that nonlin-
earity excited directly yields physically nonunique solutions of
response for certain frequency domains which can be characterized
by the presence of coexisting motions, and this type of nonlinear
energy harvesters are not always guaranteed to hold the expected
strong resonant state. Actually, the practical operating state is depend-
ing on the basin of attraction of the coexisting solutions [31,41]. In
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Fig. 1. A parametrically excited piezoelectric energy harvester. (a) Contin-
uum model; (b) Lumped-parameter model.
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order to achieve broadband performance, nonlinear energy harvesting
in the fully developed turbulence is a potential scheme. That could be
modeled as a directly excited electromechanical system under wide-
band or narrowband noises, and the method of nonlinear stochastics
can be applied to estimate the performance metrics.

In the last decade, energy harvesting through parametrically
excited nonlinear piezoelectric beams, as a promising concept,
emerged [42–48]. This type of nonlinear energy harvesters utilizes
the parametric resonance to improve the harvester’s performance. By
comparing with the energy harvesters under forced resonance, in this
paper, it is concluded that the potential benefits of parametric reso-
nance for harvesting energy are larger responses and wider band-
widths on input power and output power. In fact, a relatively small
parametric modulation level may induce a dynamical instability when
the modulation frequency is close to double of the mode frequency,
and a wider response bandwidth could be obtained as increasing the
strength of the parametric modulation.

To the best of our knowledge, no research has been conducted to
systematically study the performance metrics of parametrically excited
piezoelectric energy harvesters, including mean‐square voltage output,
input power, output power and energy conversion efficiency. In partic-
ular, there is still a lack of rational research on the crucial performance
metric, efficiency (the ratio of the electrical power net output to the
mechanical power net input). There are two main reasons resulting
in incorrect estimation of efficiency, the erroneous definition on input
power and inappropriate dimensionless governing equations
employed. More importantly, the input power, as the basis of effi-
ciency analysis, could also interpret the power generation mechanism.
For the directly excited piezoelectric energy harvesters [49], the input
mechanical power, actually, is influenced by the phase difference
between the dynamical response and the deterministic excitation,
and the corresponding conclusions can be degenerated to these of
the purely mechanical systems [50] when the electromechanical cou-
pling factor is set to zero.

Recently, we find that by employing the energy balance equation of
electromechanical coupling system, mathematical expressions on the
input mechanical power and the output electrical power can be gener-
ated naturally and new set of dimensionless transformations can cap-
ture two‐way coupling effects, thus, rational efficiency research has
been achieved for the energy harvesters under random excitations
[51,52]. It is noteworthy that the concept of energy balance [53], as
a universal law in physics, could be not only applied to efficiency anal-
ysis of the electromechanical coupling systems under random excita-
tions, but also to power generation mechanism analysis of the
electromechanical coupling system under deterministic excitations.
Galloping or flutter‐based nonlinear energy harvesting has also
received increasing attention. The response of such self‐excited
dynamical system is actually a stability issue, and in the governing
equation the excitation source is characterized by an autonomous term
with respect to the flow velocity. Due to the interactive effect between
the fluid motion and the small mechanical disturbance, the mechanical
system could capture kinetic energy from the fluid system when the
flow velocity exceeds the critical threshold, meanwhile, a steady‐
state mechanical response with finite amplitude is triggered and the
input energy is generated, thus, the output energy can be produced
via electromechanical coupling effect. The comparison on the energy
conversion efficiency of the same harvesting system under self‐
excitation, direct excitation and parametric excitation is also an impor-
tant research topic, in which the establishment of the energy balance
equation will be a crucial link.

This paper addresses critical issues related to power generation
mechanism and comprehensive performance analysis of the parametri-
cally excited piezoelectric energy harvesters. The rest of this paper is
organized as follows: In Section 2, a parametrically excited nonlinear
energy harvester is first introduced and its electromechanical coupling
equations are then nondimensionalized by using a new set of dimen-
2

sionless transformations. In Section 3, mean‐square voltage in the
steady‐state are obtained by employing the harmonic balance method
and its dependency relationships on system parameters are analyzed.
In Section 4, explicit expressions on input power, output power and
efficiency are then derived by means of energy balance equation and
then the variation law of performance metrics with system parameters
is investigated in detail. In Section 5, by comparing with the directly
excited energy harvesters, the advantages of parametrically excited
energy harvesters are finally revealed. In Section 6, we end the paper
with concluding remarks.

2. Electromechanical composite structure

Considering a parametrically excited piezoelectric device with von
Karman geometric nonlinearity, realized by a composite structure
including three components, that is, outer sleeve, piezoelectric beam
and inner sleeve, as shown in Fig. 1(a). The proposed composite struc-
ture is simple, with minimum number of components, and is encapsu-
lated as a whole, so it can withstand multiple loads of outdoor complex
and harsh environments, and avoid the direct damage of rain and snow
to the internal electromechanical coupling system. Based on the
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extended Hamilton’s principle with internal electrical energy and a
single‐mode truncation of the beam dynamics, a lumped‐parameter
model can be established (Fig. 1 (b)) and the electromechanical cou-
pling governing equations are obtained as follows

m€X þ c _X þ klX þ knlX3 � θV þ pXcos ωpt
� � ¼ 0 ð1aÞ

Cp _V þ 1
R
V þ θ _X ¼ 0 ð1bÞ

where the overdot represents the derivative with respect to time t. X
and V denotes the displacement response of the beam and the voltage
response measured across the equivalent resistance R, respectively. c
is the mechanical damping, θ is the electromechanical coupling, Cp is
the capacitance. kl and knl is linear and nonlinear stiffness, respectively.
p and ωp represents the amplitude and the frequency of the parametric
excitation, respectively.

Introducing the dimensionless variables and parameters as follows

X
�
¼ X

l
;V
�
¼ V

ffiffiffiffiffiffiffi
Cp

l2kl

s
; τ ¼ t

T
¼ tω0 ¼ t

ffiffiffiffi
kl
m

r
;Ω ¼ ωp

ω0

μ ¼ c
mω0

; α ¼ knll
2

kl
; χ ¼ θffiffiffiffiffiffiffiffiffi

klCp
p ; β ¼ 1

ω0RCp
; f ¼ p

mω2
0

ð2Þ

Eq. (1) becomes, after dropping all overbars for convenience

X 00 þ μX 0 þ X þ αX3 � χV þ f Xcos Ωτð Þ ¼ 0 ð3aÞ

V 0 þ βV þ χX 0 ¼ 0 ð3bÞ
where the prime represents the differential with respect to the dimen-
sionless time τ, μ is the dimensionless mechanical damping, α is the
dimensionless nonlinearity coefficient, χ denote the dimensionless elec-
tromechanical coupling, β is the time constant. f and Ω is the dimen-
sionless excitation amplitude and frequency, respectively. It is
noteworthy that we construct a new set of dimensionless transforma-
tion (2) to derive a reasonable dimensionless electromechanical cou-
pling model which can capture the two‐way coupling characteristics.
Thus, the inconsistency of the analysis results of energy conversion effi-
ciency based on the original equations and the dimensionless equations
can be avoided.

3. Steady-state solutions

In this section, approximate analytic solutions to periodic steady‐
state response of the parametrically excited nonlinear piezoelectric
energy harvester described by system (3) are presented. Apart from
the subharmonic parametric resonance, primary parametric resonance
is also considered as potential for vibration energy harvesting when
excitation amplitude level is relatively high. Since the coefficients of
the nonlinear terms, in general, are decided by the geometrical and
physical parameters of specific structure and which mode is involved,
thus, for a certain structure excited by stationary frequency, although
the coefficients of the nonlinear terms are constant, as excitation level
is increased, the nonlinear effects still significantly grow and more har-
monic components should be taken into account to predict the
dynamic behaviors accurately. In order to ensure the accuracy of har-
monic balance method, in this work, second‐order approximation to
the steady‐state solution of the electromechanical coupling system is
employed. A reasonably small damping coefficient (μ = 0.02) and a
relatively moderate excitation amplitude (f = 0.4) is used, to simulta-
neously capture the primary and subharmonic parametric resonance in
one frequency sweep. The results of the response behaviors of the har-
vester under two type of parametric resonances are examined by using
mean‐square voltage output at different parametric excitation frequen-
cies as a performance metric.
3

3.1. Primary parametric resonance

When the excitation frequency Ω is in the vicinity of the natural fre-
quency ω, i.e. Ω ≈ ω, primary parametric resonance may arise,
approximate solutions of Eq. (3) in this case, take the form

X ¼ A1cos Ωτð Þ þ A2sin Ωτð Þ þ A3cos 2Ωτð Þ þ A4sin 2Ωτð Þ þ A5

V ¼ A6cos Ωτð Þ þ A7sin Ωτð Þ þ A8cos 2Ωτð Þ þ A9sin 2Ωτð Þ ð4Þ
where Ai (i = 1, 2, … , 9) represents the steady‐state response ampli-
tude to be determined. Inserting Eq. (4) into Eq. (3) and equating coef-
ficients of the zeroth‐order harmonic, first‐order harmonic and second‐
order harmonic, respectively, one obtains the following coupled nonlin-
ear algebraic equations for Ai

KAA ¼ NLA ð5Þ
where

A ¼ A1 A2 A3 A4 A5 A6 A7 A8 A9½ �T

and

KA ¼

1� Ω2 Ωμ f
2 0 f 0 χ 0 0 0

�Ωμ 1� Ω2 0 f
2 0 0 χ 0 0

f
2 0 1� 4Ω2 2Ωμ 0 0 0 χ 0
0 f

2 �2Ωμ 1� 4Ω2 0 0 0 0 χ
f
2 0 0 0 1 0 0 0 0
0 �Ωχ 0 0 0 β Ω 0 0
Ωχ 0 0 0 0 �Ω β 0 0
0 0 0 �2Ωχ 0 0 0 β 2Ω
0 0 2Ωχ 0 0 0 0 �2Ω β

2
66666666666664

3
77777777777775
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ð6Þ
Unknown coefficients in A can be found by solving the nonlinear

algebraic Eq. (5) in terms of Newton‐Raphson method. Further, the
mean‐square voltage of system (3) in the case of primary parametric
resonance can be evaluated as

E V2� �
PPR ¼ Ω

2π

Z 2π
Ω

0
V2dτ ¼ 1

2
A2

6 þ A2
7 þ A2

8 þ A2
9

� � ð7Þ

In order to compare the analytical and numerical results quantita-
tively, Fig. 2 shows variation of the mean‐square voltage output with
the excitation frequency in the vicinity of the primary parametric res-
onance obtained by numerical simulation (NS) and harmonic balance
method (HBM), respectively. Such frequency response as a critical per-
formance metric is created by quasi‐statically varying the parametric
excitation frequency and then recording the steady‐state response of
mean‐square voltage at each frequency. The most beneficial merit of
the frequency response is that effective bandwidth and possible jump-
ing behaviors depending on specific applications can be evidently
observed. By comparing the overlap between the numerical results
and the analytic one, we verify the validity of the harmonic balance
method with second‐order approximation for the estimation of fre-
quency response. It is inspiring to see that the analytic solution is
slightly smaller than that of the numerical simulation and the peak
error for the forward frequency sweep is limited within 4%. Physical
explanation is that the system described by limited harmonic compo-



Fig. 3. Mean-square voltage response in frequency domain for subharmonic
parametric resonance. α = 1, β = 0.1, χ = 0.3, μ = 0.02, f = 0.4.

Fig. 2. Mean-square voltage response in frequency domain for primary
parametric resonance. α = 1, β = 0.1, χ = 0.3, μ = 0.02, f = 0.4.
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nents is actually equivalent to another system with higher stiffness,
consequently, the deflection amplitude of the corresponding mechan-
ical structure and voltage response is decreased, compared with the
original system.

3.2. Subharmonic parametric resonance

When Ω is in the vicinity of 2ω, subharmonic parametric resonance
may arise, approximate solutions of Eq. (3) in this case, take the form

X ¼ B1cos
1
2
Ωτ

� �
þ B2sin

1
2
Ωτ

� �
þ B3cos

3
2
Ωτ

� �
þ B4sin

3
2
Ωτ

� �

V ¼ B5cos
1
2
Ωτ

� �
þ B6sin

1
2
Ωτ

� �
þ B7cos

3
2
Ωτ

� �
þ B8sin

3
2
Ωτ

� �
ð8Þ

where Bi (i = 1, 2, … , 8) represents the steady‐state response ampli-
tude to be determined. Inserting Eq. (8) into Eq. (3) and performing
the same procedure followed previously, one obtains the following cou-
pled nonlinear algebraic equations for Bi

KBB ¼ NLB ð9Þ

where B ¼ B1 B2 B3 B4 B5 B6 B7 B8½ �T
and

KB ¼

1� Ω2
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ð10Þ
4

Then, similarly, the nonlinear algebraic Eq. (9) is solved iteratively
to define the mean‐square voltage of system (3) in the case of subhar-
monic parametric resonance

E V2� �
SPR ¼ Ω

2π

Z 2π
Ω

0
V2dτ ¼ 1

2
B2
5 þ B2

6 þ B2
7 þ B2

8

� � ð11Þ

The frequency–response results in Fig. 3 are obtained by numerical
simulation and the harmonic balance method with second‐order
approximation, respectively. Obviously, the subharmonic parametric
resonance trigger much larger response and the frequency range of
mean‐square voltage response is much wider than the primary para-
metric resonance when other system parameters are fixed. Due to
the superior performance resulting from forward frequency sweep, it
is expectable that the parametrically excited piezoelectric energy har-
vester is more suited to the ambient environment with slow varying
broadband frequency and relatively high excitation level. The compar-
ison result shows that the second‐order harmonic balance produces
fairly accurate solutions to this type of electromechanical coupling
systems.

3.3. The effect of parameters on steady-state solutions

The dependence of mean‐square voltage on the dimensionless sys-
tem parameters based on the approximate analytic solutions obtained
in Section 3.1 and 3.2 are now examined. Since the analytic results are
in good agreement with the numerical results, hereafter, only har-
monic balance results with two‐terms approximation are shown.

We first study the effect of nonlinear coefficient α on the mean‐
square voltage. Four values are considered for α and mean‐square volt-
age frequency response are together plotted in Fig. 4. For both primary
and subharmonic parametric resonance, the results indicate that α is
inverse proportional to the magnitude of the mean‐square voltage, that
is, decreasing α gives rise to higher output voltage as a result of stron-
ger amplitude response induced by easily available parametric insta-
bility. Moreover, the bandwidth of the voltage response appears to
be independent with α. Therefore, one could expect that these proper-
ties may be very helpful for harvesting energy in the presence of inher-
ent weak nonlinearity. In addition, it is noteworthy that the response
of the subharmonic parametric resonance extends over a broad fre-
quency range and the peak is naturally high, while the bandwidth of
the primary parametric resonance is relatively much narrow, accompa-
nied with much low peak.



Fig. 4. Variation of mean-square voltage with α. f = 0.4, β = 0.1, μ = 0.02,
χ = 0.3.

Fig. 6. Variation of mean-square voltage with μ. f = 0.4, β = 0.1, α = 1,
χ = 0.3.
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We then survey the effect of excitation amplitude, f, on the mean‐
square voltage, as shown in Fig. 5. As the excitation amplitude is
decreased from 0.6 to 0.3, the mean‐square voltage drops significantly
for both primary and subharmonic parametric resonance. Especially
for the primary parametric resonance, when f is less than or equal to
0.3, the voltage response ceases to exist and vibration energy cannot
be harvested. In fact, same phenomenon can be also observed for the
subharmonic parametric resonance just corresponding to a much smal-
ler excitation amplitude. In other words, excitation amplitude’s mini-
mum should be maintained for harvesting energy by using
parametric resonance. On the other hand, as the excitation amplitude
is decreased, the frequency range wherein parametric instability
occurs and steady‐state voltage response forms shrinks evidently.
These properties indicate that better performance would be expected
with stronger excitation.

Figure 6 shows that the mean‐square voltage for both primary and
subharmonic parametric resonance drop rapidly and the bandwidth
shrinks significantly as mechanical damping μ is increased. When exci-
tation amplitude is fixed, relatively high damping which is above a cer-
tain threshold can actually prevent the occurrence of parametric
instability and it will be detrimental to harvesting energy. This phe-
Fig. 5. Variation of mean-square voltage with f. μ = 0.02, α = 1, β = 0.1,
χ = 0.3.

5

nomenon first arises in the frequency range of the primary parametric
resonance and then the subharmonic parametric resonance. By synthe-
sizing Fig. 5 and Fig. 6, one could conclude that it is allowed with
higher damping and weaker excitation to establish subharmonic para-
metric resonance and wider applications can be expected.

Figure 7 demonstrates the effect of time constant β on the mean‐
square voltage. The results show that the mean‐square voltage reaches
maximum in the open‐circuit scenario, and the frequency range of
voltage response shrinks as β is increased from zero. It is noted that
the response of primary parametric resonance is more sensitive to
the increased β than that of the subharmonic resonance. The paramet-
ric instability settles down with higher time constant.

Figure 8 shows the influence of electromechanical coupling χ on
the mean‐square voltage. For both primary and subharmonic paramet-
ric resonance, optimum mean‐square voltage exists. This can be
explained that, for given other system parameters, the voltage
response is actually affected by two factors, that is, deflection ampli-
tude of the mechanical structure and electromechanical coupling χ.
As χ is increased, electromechanical coupling induces a partial energy
migration to the electrical system, captured by load resistance. This
leads the deflection amplitude to decrease with χ. As a result, an opti-
Fig. 7. Variation of mean-square voltage with β. f = 0.4, μ = 0.02, α = 1,
χ = 0.3.



Fig. 8. Variation of mean-square voltage with χ. f = 0.4, μ = 0.02, α = 1, β = 0.1.
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mal χ exists at which the generated voltage is maximized. For the pri-
mary parametric resonance, when χ is greater than or equal to 0.5, the
voltage response ceases to exist and vibration energy cannot be har-
vested. It is also evident that the primary parametric resonance
requires a smaller coupling value to stay the best performance than
the subharmonic parametric resonance. It is noteworthy that the band-
width shrinks significantly near the region where the optimal χ is
located.

4. Energy conversion efficiency and work done on parametric
excitation

In this section, the energy conversion efficiency of parametrically
excited piezoelectric energy harvester (3) is analyzed via the mean
power balance equation as

dE H½ �
dτ

¼ �μE X2� �þ χE X 0V½ � � fE XX 0cosΩτ½ � ð12Þ

where H represents the conservative energy corresponding to the
mechanical system, H X;X 0ð Þ ¼ X2=2þ X2=2þ αX4=4, and E �½ � denotes
the averaging operator, that is,E �½ � ¼ 1

T1

R T1

0 �ð Þdτ, herein, T1 represents
the corresponding period.

Note that Eq. (12) can be easily derived by taking the time deriva-
tive of H, making use of the electromechanical coupling governing
equation (3) and then averaging. Such mean power balance equation
contains useful information on power input, power output, and power
dissipation. To be specific,μE X2� �

represents the power dissipated by
mechanical damping,�χE X 0V½ � is the power transferred from the
mechanical system to the electric system, which is equal toβE V2� �

,
the net output power, and�fE XX 0cosΩτ½ � is the net input power sup-
plied by parametric excitation.

For the primary parametric resonance, taking into account the peri-
odic solution expressed in Eq. (4), the input power can then be written
as

E Pin½ �PPR ¼ 1
4
Ωf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2

q
2A5sinϕ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 þ A2
4

q
sin ϕ2 � ϕ1ð Þ

	 

ð13Þ

where A5 is negative based on the system parameters selected in this
paper and the phase angles describing the first‐order harmonic and
the second‐order harmonic motion of the mechanical system are

ϕ1 ¼ arctan �A2

A1

� �
;ϕ2 ¼ arctan �A4

A3

� �
ð14Þ
6

It is noteworthy that the net input power is proportional to the exci-
tation frequency and amplitude, and directly related to the amplitude,
the phase angle and the phase difference of the response. The first term
in Eq. (13) represents the contribution of the first‐order harmonic cou-
pled with zeroth‐order harmonic, which is the primary source of net
power inflow from the outside excitation into the energy harvesting
system, and the second term in Eq. (13) represents the contribution
of the second‐order harmonic, which is the secondary source of net
power inflow from the outside excitation into the energy harvesting
system.

Hence, the efficiency for the primary parametric resonance can be
expressed as

ηPPR ¼ E Pout½ �PPR
E Pin½ �PPR

¼ 2β A2
6 þ A2

7 þ A2
8 þ A2

9

� �
Ωf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2

q
2A5sinϕ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 þ A2
4

q
sin ϕ2 � ϕ1ð Þ

	 
 ð15Þ

Similarly, for the subharmonic parametric resonance, taking into
account the periodic solution expressed in Eq. (8), the input power
is written as

E Pin½ �SPR ¼ 1
8
Ωf

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

q
sin2ϕ3 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
3 þ B2

4

q
sin ϕ4 � ϕ3ð Þ

	 

ð16Þ

and, the efficiency for the subharmonic parametric resonance is

ηSPR ¼ E Pout½ �SPR
E Pin½ �SPR

¼ 4β B2
5 þ B2

6 þ B2
7 þ B2

8

� �
Ωf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ B2

2

q
sin2ϕ3 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
3 þ B2

4

q
sin ϕ4 � ϕ3ð Þ

	 
 ð17Þ

where the corresponding phase angles are

ϕ3 ¼ arctan �B2

B1

� �
;ϕ4 ¼ arctan �B4

B3

� �
ð18Þ

Note that the first term in Eq. (16) is the contribution of the first‐
order subharmonic, the primary source of net power generation,
whereas the second term in Eq. (16) is the contribution of the third‐
order subharmonic which also represents the net power inflow from
the outside excitation to the energy harvesting system.
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Considering Eq. (13) and Eq. (16), and combining with the evolu-
tion diagrams of the phase angle and the phase difference demon-
strated in Figs. 9‐13, we conclude that, for both the primary
parametric resonance and the subharmonic parametric resonance,
parametric excitation does positive work over a whole cycle acting
upon the higher‐order harmonic motion induced by nonlinearity in
the mechanical system, which is benefit to the energy harvesting.
However, for the directly excited nonlinear energy harvesters con-
cerned by most researchers, as one kind of forced excitation, the work
done by a harmonic force acting upon the higher‐order harmonic
motion of a different frequency from the force is zero during a whole
cycle [50], which indicates that the nonlinear harmonics have no sub-
stantial benefit to the improvement of input power. It is worth point-
ing out that, generally speaking, maximizing the input power is a
feasible way to enhance the output power. It is preliminarily revealed
that the parametrically excited nonlinear energy harvesters are more
valuable to develop than the directly excited ones if the output power
as a leading performance metric is considered.
(a)

(c)

Fig. 9. Variation of input power (IP), output power (OP) and efficiency (E) with Ω
(c) with different α; Variation of phase (left label) and phase difference (right lab
resonance (d) with different α. f = 0.4, β = 0.1, μ = 0.02, χ = 0.3, α = 1 (E1, IP

7

As shown in Figs. 9‐13, the frequency responses of input power,
output power and efficiency obtained are now examined. In addition,
the corresponding frequency responses of phase illustrated furnish the
basic dynamical information involving the primary harmonic and the
secondary harmonic. Two parametric resonance regimes are observed,
namely, the relatively narrow primary parametric resonance regime
and the relatively wide subharmonic parametric resonance regime. A
common characteristic in the two resonance regimes is that the output
power is mainly determined by the input power, which is depending
on the frequency and amplitude of the parametric excitation and also
the phase information of the response, and as the excitation frequency
is increased, the input power and the output power are both enhanced,
that can be confirmed by the increased sine value of the phase angle
and phase difference. Special features in the two resonance regimes
are revealed in details.

Figure 9 shows that the variation of the input power, the output
power, the efficiency and the phase with respect to the parametric
excitation frequency Ω for three different nonlinearities. For both
the primary parametric resonance and subharmonic parametric reso-
(b)

(d)

for primary parametric resonance (a) and subharmonic parametric resonance
el) with Ω for primary parametric resonance (b) and subharmonic parametric
1, OP1, ϕi

1), α = 3 (E3, IP3, OP3, ϕi
3), α = 5 (E5, IP5, OP5, ϕi

5).



(a) (b)

(c) (d)

Fig. 10. Variation of input power (IP), output power (OP) and efficiency (E) with Ω for primary parametric resonance (a) and subharmonic parametric resonance
(c) with different μ; Variation of phase (left label) and phase difference (right label) with Ω for primary parametric resonance (b) and subharmonic parametric
resonance (d) with different μ. f = 0.4, β = 0.1, α = 1, χ = 0.3, μ = 0.01 (E0.01, IP0.01, OP0.01, ϕi

0.01), μ = 0.015 (E0.015, IP0.015, OP0.015, ϕi
0.015), μ = 0.02 (E0.02,

IP0.02, OP0.02, ϕi
0.02).
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nance, it is evident that, the input power and the output power is pro-
portional to the excitation frequency, respectively, while the efficiency
is inversely proportional to the excitation frequency. It can be
explained that the higher the excitation frequency is, the more dissipa-
tion induced from the mechanical damping the vibratory energy har-
vester behaves, thus, it leads to a bigger difference between the
input power and the output power, and consequently, a decreasing
trend with respect to the excitation frequency. Unlike the scenario of
directly excited energy harvesters in which both the input power
and output power peak at resonance and plunge once excitation fre-
quency deviates from resonance [49], as shown in Fig. 9(b) and
Fig. 9(d), no “phase transition” occurs in both the primary and the sub-
harmonic parametric resonance regimes for the primary harmonic
motion. However, for the secondary harmonic motion in the subhar-
monic parametric resonance regime, “phase transition” arises within
a narrow band. The term “phase transition” in this investigation refers
to a phase change of π of the displacement amplitude of harmonic
components. This intriguing feature of the frequency response of phase
8

differences may result in a sudden change of the frequency response of
the input power and efficiency. However, such phenomenon cannot be
evidently observed due to the relatively weak secondary harmonic
response in the low frequency region of parametric resonance band.
It is worth recalling that, for the directly excited energy harvesters,
due to the additional damping and stiffness effects of the electrical sys-
tem on the mechanical system [54], the resonance state corresponds to
a phase difference between the dynamical response and the forced
excitation, which is close but not equal to 90° [49]. However, a com-
pletely different law phase difference evolution appears, for the para-
metrically excited energy harvesters. Note that, the efficiency is
independent to the nonlinearity level, resulting from the proportional
amplification effect between the input power and the output power
with respect to the excitation frequency, and the independence of
the phase with respect to the nonlinearity level. Moreover, the band-
width of the input power, the output power and the efficiency is still
independent with the nonlinearity level, respectively, due to the inde-



(a) (b)

(c) (d)

Fig. 11. Variation of input power (IP), output power (OP) and efficiency (E) with Ω for primary parametric resonance (a) and subharmonic parametric resonance
(c) with different f; Variation of phase (left label) and phase difference (right label) with Ω for primary parametric resonance (b) and subharmonic parametric
resonance (d) with different f. μ = 0.02, β = 0.1, α = 1, χ = 0.3, f = 0.6 (E0.6, IP0.6, OP0.6, ϕi

0.6), f = 0.5 (E0.5, IP0.5, OP0.5, ϕi
0.5), f = 0.4 (E0.4, IP0.4, OP0.4, ϕi

0.4).
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pendence of the bandwidth of phase with respect to the nonlinearity
level.

Figure 10 depicts the variation of the input power, the output
power, the efficiency and the phase with respect to Ω for three differ-
ent mechanical damping. It is clearly seen that the mechanical damp-
ing has quite an influence on the input power, the output power and
the efficiency. Specifically, as increasing the mechanical damping,
the bandwidth of input power, output power and efficiency shrink sig-
nificantly. Note that, the variation of the mechanical damping does not
affect the starting point of resonance band, but the terminal point.
Although the smaller the mechanical damping is, the lower the input
power generate, but because the output power appears to be not obvi-
ously influenced when excitation frequency is fixed, the efficiency
increases as the mechanical damping is decreased. In other words,
reducing mechanical damping not only expands the operation band-
width, but also improves the efficiency.

On the other hand, increasing the amplitude of parametric excita-
tion also significantly expands the bandwidth of input power, output
power and efficiency, not only pushing forward the starting point of
9

resonance band, but also pushing back the terminal point, see
Fig. 11. For the scenario of primary parametric resonance, although
the variation of the excitation amplitude substantially influences the
input power and output power, the efficiency seems to be unchanged
when the excitation frequency is fixed. This results from the propor-
tional amplification effect involving the input power and the output
power with respect to the excitation frequency when the mechanical
damping is maintained constant. However, for the scenario of subhar-
monic parametric resonance, the input power, the output power and
the efficiency appear not to be affected by the excitation amplitude
when the excitation frequency is fixed.

Figure 12 illustrates the variation of the input power, the output
power, the efficiency and the phase with respect to Ω for three differ-
ent time constant. For the scenario of the primary parametric reso-
nance, as the time constant is increased from the approximate open‐
circuit case (β = 0.001), the input power increases gradually, and
the output power significantly increases, hence, the efficiency
increases considerably. Meanwhile, the bandwidth shrinks until the
resonance band vanishes. Therefore, evaluating the performance of



(a) (b)

(c) (d)

Fig. 12. Variation of input power (IP), output power (OP) and efficiency (E) with Ω for primary parametric resonance (a) and subharmonic parametric resonance
(c) with different β; Variation of phase (left label) and phase difference (right label) with Ω for primary parametric resonance (b) and subharmonic parametric
resonance (d) with different β. μ = 0.02, f = 0.4, α = 1, χ = 0.3, β = 0.001 (E0.001, IP0.001, OP0.001, ϕi

0.001), β = 0.01 (E0.01, IP0.01, OP0.01, ϕi
0.01), β = 0.1 (E0.1,

IP0.1, OP0.1, ϕi
0.1), β = 3 (E3, IP3, OP3, ϕi

3), β = 4 (E4, IP4, OP4, ϕi
4), β = 4.5 (E4.5, IP4.5, OP4.5, ϕi

4.5).
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vibratory energy harvesters needs comprehensive consideration. For
the scenario of the subharmonic parametric resonance, a transition
point exists within a certain parameter range. Specifically, when the
excitation frequency is lower than the transition frequency, as the time
constant is increased, the input power, the output power and the effi-
ciency are slightly attenuated. But, when the excitation frequency is
higher than the transition frequency, the input power, the output
power and the efficiency are then slightly enhanced. If we only focus
on the performance near the terminal point of resonance band, then,
β = 4 can be regarded as an optimal time constant. These features
inspire researchers to subtly select a time constant in order to obtain
a better performance. Note that the performance of primary paramet-
ric resonance is more sensitive to the increased time constant than that
of the subharmonic resonance, and the parametric resonance will set-
tle down as further increasing time constant.

The influence of electromechanical coupling on the frequency
response of input power, output power, efficiency and phase is shown
10
in Fig. 13. For both primary parametric resonance and subharmonic
parametric resonance, maximum output power exists as the electrome-
chanical coupling is varied. The reason of the existence of optimal
electromechanical coupling could be essentially explained from the
perspective of energy balance. In fact, Fig. 13(a) and Fig. 13(c) show
that, as expected, the higher the electromechanical coupling is, the
higher energy conversion efficiency from the mechanical system to
the electrical system is, which but leads to a weaker mechanical
response and then input power reduction and also corresponding res-
onance bandwidth shrink. The decreased input power will be further
detrimental to the output power generation. Consequently, there is
no need to constantly improve piezoelectric materials’ electromechan-
ical conversion factor, if one mainly concerns high output power gen-
eration. For the primary parametric resonance, the output power peaks
at the optimal value χ = 0.3 and then drop evidently. For the subhar-
monic parametric resonance, the output power reaches the maximum
at the optimal value χ = 0.9 and then drop. Further increasing the



(a) (b)

(c) (d)

Fig. 13. Variation of input power (IP), output power (OP) and efficiency (E) with Ω for primary parametric resonance (a) and subharmonic parametric resonance
(c) with different χ; Variation of phase (left label) and phase difference (right label) with Ω for primary parametric resonance (b) and subharmonic parametric
resonance (d) with different χ. μ= 0.02, f= 0.4, α = 1, β= 0.1, χ = 0.2 (E0.2, IP0.2, OP0.2, ϕi

0.2), χ = 0.3 (E0.3, IP0.3, OP0.3, ϕi
0.3), χ = 0.4 (E0.4, IP0.4, OP0.4, ϕi

0.4),
χ = 0.7 (E0.7, IP0.7, OP0.7, ϕi

0.7), χ = 0.9 (E0.9, IP0.9, OP0.9, ϕi
0.9), χ = 1 (E1, IP1, OP1, ϕi

1).
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electromechanical coupling will result in sharp shrinkage of the band-
width near the region where the optimal electromechanical coupling is
located.

5. Performance comparisons with directly excited energy
harvesting systems

In this section, by comparing directly excited linear energy harvest-
ing system (DEL), directly excited nonlinear energy harvesting system
(DEN) and parametrically excited nonlinear energy harvesting system
(PEN), the broad band and high efficiency advantage of parametrically
excited scenario is first confirmed, as shown in Fig. 14 and the features
of instantaneous input power, dissipative power and output power are
then revealed, see Fig. 15. Herein, comparisons between DEN and PEN
are implemented via the same electromechanical coupling system but
excited by different directional harmonic vibrations, and the results of
DEL, as a benchmark, are achieved by setting the nonlinearity to be
zero.
11
The frequency response diagrams of averaged output power
(Fig. 14(a) and Fig. 14(c)) demonstrate that, as the excitation ampli-
tude is increased, for DEN under primary resonance, although the
effective bandwidth slightly increases, comparing with DEL, the peak
difference between them increases significantly. That, to a certain
extent, limits the potential applications of DEN. In other words, one
should balance the effect of bandwidth increase and that of relative
peak reduction when employing DEN. However, it is inspiring to see
that, for PEN under subharmonic resonance, both the bandwidth and
the peak of averaged output power increase significantly. It is worth
noting that, for extremely small excitation amplitude, DEN will gain
advantages over PEN because the steady‐state response may not even
be excited for the nonlinear energy harvesting system under weak
parametric excitation. For energy conversion efficiency (Fig. 14(b)
and (d)), PEN is always superior to DEN within the subharmonic res-
onance region, regardless of the excitation amplitude.

Based on the energy balance equation, we conclude that the ulti-
mate goal of vibratory energy harvesting is to minimize damping dis-



(a) (b)

(c) (d)

Fig. 14. Variation of output power (a) and efficiency (b) with Ω for f = 0.2; Variation of output power (c) and efficiency (d) with Ω for f = 0.4. μ = 0.02, α = 5,
β = 5, χ = 0.3.
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sipation and maximize power input. It is easy to minimize damping
dissipation by employing the structural material with low damping
factor. Maximizing power input, actually requiring the excitation to
do positive work to the energy harvesting system in each cycle, such
supreme on‐resonance state exists in DEL, DEN and PEN, as shown
in Fig. 15(a), (c) and (e), respectively. However, when the excitation
frequency of the vibration source is far from the supreme on‐
resonance frequency, it is inevitable to do negative work for a certain
period in each cycle, that is, some energy flows back the vibration
source, see Fig. 15(b), (d) and (f)). These features are universal for
vibration‐based energy harvesting systems, which are the essential
characteristics that distinguishes it from photovoltaic power
generation.

6. Conclusions

In this paper,we analyze the performance of a parametrically excited
piezoelectric energy harvester as viewed from energy transformation in
mechanic‐electronics. New dimensionless transformations capturing
12
the essence of two‐way electromechanical coupling are employed to
obtain a dimensionless dynamical system. Based on it, two types of
observable resonances, namely, the primary parametric resonance with
narrow bandwidth and the subharmonic parametric resonance with
wide bandwidth, are investigated by using the harmonic balance
method and the energy balance equation. The variation law of the
mean‐square voltage, the input power, the output power, the energy
conversion efficiency, the phase angle and the phase difference with
dimensionless parameters is first revealed in details and the optimal
parameter values in which the performance is maximized are discussed.
The main results obtained can be briefly summarized as follows:

(1) For both two types of parametric resonance, the performance of
vibratory energy harvesters stems from the input power which is pro-
portional to the frequency and amplitude of the parametric excitation,
and directly related to the amplitude, phase angle and phase difference
of the response.

(2) The amplitude, phase angle and phase difference of the response
are essentially depending on the comprehensive effects between the
parametric excitation and the dimensionless system parameters.



(a) (b)

(c) (d)

(e) (f)

Fig. 15. Instantaneous input power (IP), dissipative power (DP), and output power (OP) in each cycle for directly excited linear energy harvesting system (a) and
(b), directly excited nonlinear energy harvesting system (c) and (d), and parametrically excited nonlinear energy harvesting system (e) and (f). μ = 0.02, f = 0.2,
α = 5, β = 5, χ = 0.3.
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(3) Due to the broadband characteristics, the subharmonic para-
metric resonance pumps much more power input and output than
the primary parametric resonance.

(4) For the directly excited nonlinear energy harvesters, broadband
and high output power cannot be achieved simultaneously. However,
for the parametrically excited nonlinear energy harvesters, the wide
bandwidth results in considerable power output.

(5) For the directly excited nonlinear energy harvesters, broadband
performance requires strong nonlinearity. However, the bandwidth of
the parametrically excited nonlinear energy harvesters is independent
to the nonlinearity level. Moreover, weaker nonlinearity leads to stron-
ger power input and output.

(6) For both the directly excited nonlinear energy harvesters and
the parametrically excited nonlinear energy harvesters, supreme on‐
resonance state exists, where maximized power input can be achieved
via the excitation doing positive work to the energy harvesting system
in each cycle.

(7) For the parametrically excited nonlinear energy harvesters,
parametric excitation does positive work over a whole cycle acting
upon the higher‐order harmonic motion induced by nonlinearity in
the mechanical system, which is benefit to the energy harvesting.
However, for the directly excited nonlinear energy harvesters, the
work done by a harmonic force acting upon the higher‐order harmonic
motion is zero during a whole cycle, revealing that the nonlinear har-
monics have no substantial benefit to the enhancement of input power
and output power.

(8) Within the effective resonance band, the energy conversion effi-
ciency of the same energy harvesters under parametric excitation is
higher than that under direct excitation.

(9) The parametrically excited nonlinear energy harvesters under
subharmonic parametric resonance are more suitable for the weakly
nonlinear electromechanical systems subjected to the relatively strong
excitation. Such subharmonic broadband response feature also has
potential applications in designing advanced mechanical filters and
converters.
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