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A B S T R A C T   

Periodic structure with spatiotemporally modulated properties has become a rising concern due 
to its unusual behavior to manipulate non-reciprocal wave propagation. In this paper, by taking 
advantage of the asymmetric architecture of nonlinear chiral microstructures, we propose a novel 
autoparametric modulated periodic structure and investigate its global dynamics, non-reciprocal 
and topological effect. An analytical formulation for deriving the evolution equations and solving 
the dispersion relations of the autoparametric system is presented by combining the multiple-time 
scales perturbation method and Floquet-Bloch theorem. Non-reciprocal wave behavior and band 
topology of the autoparametric modulated periodic structure are analyzed and demonstrated by 
numerical calculations. We envision that the autoparametric modulated configuration realized by 
nonlinear chirality may serve as a building block for realizing one-way propagation and me
chanical logic gate in passive or active ways.   

1. Introduction 

Reciprocity is a fundamental physical principle stating that wave propagation relating two points is independent of the choice of 
source and receiver [1,2]. Breaking reciprocity enables the realization of one-way wave propagation, expecting to bring numerous 
potential applications to wave communication, vibration isolation and energy harvesting. Non-reciprocal wave propagation can be 
achieved by resorting to the chiral inertial coupling in gyroscopic phononic crystals [3,4], or by the combination of structural 
asymmetry and high order harmonic generation induced by nonlinearity [5–11]. Recently, harnessing the spatiotemporal modulation 
over material properties to break reciprocity have received considerable attentions [12–20], and experimental demonstrations of the 
non-reciprocity in dynamic one-dimensional phononic crystals and metamaterials have been reported [21,22]. Time-modulated 
properties of structural materials are tailored in active ways primarily through the coupling of multiple physical fields at the 
microstructure level. Purely mechanical small-on-large coupling based on the nonlinear mechanism can be also utilized to design 
phononic lattices with the non-reciprocity [23,24]. On the other hand, the time modulation of constitutive properties is greatly valued 
for it offers a necessary degree of freedom (DOF) for realizing the non-trivial band topology in mechanical systems via breaking time- 
reversal symmetry. Mechanical topological insulators can guarantee the robustness of one-way topological edge modes and stay 
immune to backscattering by defects, damping dissipation, sharp corners, and modulation disorders [12,25,26]. 

Autoparametric structural systems are vibrating systems consisting of at least a primary subsystem and secondary one which are 
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nonlinearly coupled [27]. The effects of the primary system on the secondary system are interpreted by parametric excitation terms 
included in the equations of motion of the autoparametric systems [28]. The autoparametric phenomena are frequently encountered in 
engineering. For instance, the pitch motion and the rolling motion for a vessel in a longitudinal sea couple to each other via nonlinear 
buoyancy. The engines of airplanes mounted under the wings by elastic suspenders is another typical example in which the vertical 
motion of the wing and the swinging motion of the suspended engines form an autoparametric system. 

In this paper, we propose a novel scheme to create the time-modulated properties by integrating the metamaterial design with the 
concept of autoparametric system. Metamaterials are artificial materials that derive unusual dynamic properties mainly from the 
constitutive microstructures [29–33]. In the present study, artificial metamaterials are constituted by autoparametric unit cells, and 
the temporally modulated dynamics stems from autoparametric mode coupling. 

The paper is organized as follows: In Section 2, by introducing nonlinear chiral rotational DOF into mechanical Drude-type model, 
we propose a novel autoparametric modulated periodic structure. To characterize the global dynamics and intrinsic non-reciprocity of 
such autoparametric modulated system, a procedure to derive the evolution equations and calculate the dispersion relations based on 
the multiple-time scales perturbation method and Floquet-Bloch theorem is presented in Section 3. In Section 4, numerical simulations 
are performed to validate the analytical results. One-way wave propagation and frequency conversion due to the autoparametric 
modulation are illustrated. The non-trivial topological characterization of wave dispersion and the bulk-edge correspondence rela
tionship are also examined for the quasi-static scenario. In Section 5, we end this paper with concluding remarks. 

2. Geometric model of autoparametric periodic structure 

Differing from the mechanical systems based on parametric resonances [34], the essential feature of an autoparametric system is 
that it should consist of at least a primary system and a secondary system that are coupled. Such system is expected to exhibit its wave 
control capability by means of one degree of freedom to manipulate the other. The proposed one-dimensional mass-spring model of 
autoparametric periodic structure with lattice distance a is shown in Fig. 1. Four linear elastic springs are pin-connected to an oscillator 
of mass m and a rigid disk of radius R and rotational inertia J. The included angles between two inclined springs with stiffness G and 
horizontal springs with stiffness K are both θ in an initial undeformed configuration. Here, chiral rotational vibration of disks is 
introduced as a primary DOF to manipulate the longitudinal DOF of oscillators at the unit cell scale. The chiral geometry is suggested 
since the quadratic nonlinear terms necessary for the autoparametric coupling automatically arise in the finite deformation regime, as 
addressed further below. The inclined springs of rest length R/tanθ satisfy linear force–displacement relationship fr = Gδ. The length 
changes of the left and right springs in large deformation can be expressed as δl = Rεp +
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R/sinθ − εu)2
− R2

√

− [arccos(R/(R/sinθ − εu) ) − π/2 + θ ]R − R/tanθ
}

, 

δr = Rεp −
{

R/tanθ − [π/2 − θ − arccos(R/(R/sinθ + εu) ) ]R +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R/sinθ + εu)2
− R2

√ }

, respectively. Herein, ε is a small, dimen

sionless parameter to mark the orders of the amplitude p of the rotational vibration and the amplitude u of the longitudinal wave. The 
linear force–displacement relationship of horizontal springs readsft = Kq. According to the dynamic equilibrium condition, the 
equations of motion for the jth cell can be expressed by retaining nonlinear terms up to O(ε2) as 

m
d2uj

dt2 − k
(
uj− 1 − 2uj + uj+1

)
+
(
2K + 2Gcos2θ

)
uj + 2Gtanθsin2θpjuj = 0

J
d2pj

dt2 + 2R2Gpj + Gtanθsin2θu2
j = 0

(1) 

Introducing the dimensionless variables and parameters 

uj− 1 =
uj− 1

a
, uj =

uj

a
, uj+1 =

uj+1

a
, τ = ω0t =

̅̅̅̅
k
m

√

t,

Fig. 1. The 1D representative mass-spring model attached with chiral oscillators.  
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α =
G
k
, β =

K
k
, γ =

R
a
, μ =

J
mR2 (2) 

Under this rescaling, Eq. (1) become, after dropping all overbars for convenience 

üj −
(
uj− 1 − 2uj + uj+1

)
+ 2

(
β + αcos2θ

)
uj + 2αtanθsin2θpjuj = 0

p̈j +
2α
μ pj +

αtanθsin2θ
μγ2 u2

j = 0
(3)  

where the overdot denotes differentiation with respect to τ. 
According to the equations of motion in a unit cell, the chiral rotational vibration p is decoupled with the longitudinal wave u when 

deformations are infinitesimal, but coupled when geometric nonlinearity is considered. To be specific, the rotational vibration acts on 
the longitudinal wave as a parametric excitation via the quadratic nonlinearity with cross-product term. Conversely, the longitudinal 
wave transports dynamical responses into the rotational vibration via the quadratic nonlinearity with self-product term, resulting in 
the generation of even harmonics of the rotational vibration. Such autoparametric system is two-way coupled when the amplitude of 
the rotational vibration and the amplitude of the longitudinal wave are in the same order of magnitude. When the amplitude of the 
rotational vibration is significantly larger than that of the longitudinal wave, the feedback of longitudinal wave to rotational vibration 
can be ignored. In other words, one-way coupling with the small-on-large modulation would be created naturally. As we will discuss in 
the following sections, in a super cell, the rotational vibration with traveling phases acting on the longitudinal wave can be degen
erated to, in the sense of perturbation, a wave-like spatiotemporal modulation of the stiffness properties. The presented autoparametric 
system, in fact, as a macro system, contains the small-on-large modulation system and incorporates the active excitation of conven
tional spatiotemporal modulation system as a part of the macro system itself. Thus, the conservative autoparametric system (3) 
supplies an effective solution for exploring purely mechanical spatiotemporal modulation in passive ways when mechanical damping 
is neglected. When the mechanical damping is small but cannot be ignored, it is predicted that such autoparametric system can be 
applied to a limited time operation scenario in order to generate non-reciprocal wave propagation. On the other hand, if the rotational 
vibration is excited forcedly by using active components, the longitudinal wave will then be parametrically excited through the direct 
coupling of mechanical force. Thereby, a new type of spatiotemporal modulation system in active ways will be expected. Based on this 
kind of autoparametric dynamical system, we are inspired to construct modulated periodic structures with quadratic nonlinearity by 
taking advantage of the asymmetric property of chiral structures. 

In the following sections, by releasing the chiral rotational DOF in a super cell, based on the conservative autoparametric dynamical 
system (4), we design a wave-like modulated periodic structure and study the wave non-reciprocity in different cases of fast auto
parametric modulation, moderate autoparametric modulation and quasi-static modulation, respectively. Hereafter, the modulation 
speed will be classified according to the vibration frequency of the rotational DOF. 

3. Multiple-time scales perturbation method for dispersion analysis 

To assemble a traveling wave modulation, at least three sub-cells distributed in real space with specific phases are required. 
Without loss of generality, we consider the autoparametric modulated super cell structure composed of three sub-cells, as shown in 
Fig. 2. By applying the Floquet-Bloch theorem, the equations of motion can be casted into the matrix form 

Ü+KU+NL1 = 0 (4a)  

P̈+ χ3P+NL2 = 0 (4b)  

where variables U = [u3j u3j+1 u3j+2]T, P = [p3j p3j+1 p3j+2]T, and 

Fig. 2. Schematic of autoparametric modulated super cell.  

T. Yu et al.                                                                                                                                                                                                              



Mechanical Systems and Signal Processing 165 (2022) 108325

4

K =

⎡

⎣
2 + λ1 − 1 − e− iξ

− 1 2 + λ2 − 1
− eiξ − 1 2 + λ3

⎤

⎦, NL1 =

⎡

⎣
χ2p3ju3j

χ2p3j+1u3j+1
χ2p3j+2u3j+2

⎤

⎦, NL2 =

⎡

⎢
⎢
⎢
⎣

χ4u2
3j

χ4u2
3j+1

χ4u2
3j+2

⎤

⎥
⎥
⎥
⎦

(5)  

with 

λn = 2
(
βn + αcos2θ

)
, βn =

Kn

k
, χ2 = 2αtanθsin2θ, χ3 =

2α
μ , χ4 =

αtanθsin2θ
μγ2 (6) 

Herein, ξ is the wavenumber of the propagation mode, index n = 1, 2, 3. The second-order multiple-time scales perturbation 
method is then utilized to capture the coupling effect between the vibration of chiral rotational disks and wave propagation in the 
lattice chain. It is noteworthy that, in the present study, we directly invoke the Floquet-Bloch theorem on the nonlinear wave system to 
obtain the nonlinear dynamical equations (4) governing the nonlinear dynamics of the autoparametric modulated super cell structure, 
and thereafter multiple-time scales perturbation technique will be applied to such nonlinear dynamical system to derive the evolution 
equations. In fact, we have verified that, the obtained evolution equations based on such analysis strategy is exactly the same as that 
from first applying multiple-time scales perturbation to the original nonlinear problem and then subsequently invoking the Floquet- 
Bloch theorem on each order linearized problem. The analysis strategy provided by the present study can also be applied to analyze 
other nonlinear wave dynamics of discrete lattices in which the nonlinearity stemming from on-site, such as metamaterials with 
nonlinear local resonance [35] and nonlinear inertia-induced autoparametric periodic structures [36]. However, when the nonline
arity comes from inter-site, for instance, phononic crystals with nonlinear internal force between two adjacent unit cell [37], the errors 
result if the Floquet-Bloch theorem is directly invoked on the original nonlinear equations of motion. In addition, based on the previous 
experience of analytical analysis on nonlinear dynamical systems with quadratic nonlinearity, at least second-order multiple-time 
scales perturbation should be employed to seize the harmonic content and the time evolution of amplitude and phase unless one to two 
internal resonance scenario is considered [38]. The theoretical study on the higher-order dispersion in nonlinear monoatomic and 
diatomic systems also indicated that the quadratic nonlinearity does not result in the shifting of frequency until second-order 
correction is considered [39]. Thus, the approximate solutions of Eq. (4) are sought in the perturbed form [40] 

U(τ; ε) = εU1(T0,T1,T2)+ ε2U2(T0,T1,T2)+ ε3U3(T0, T1, T2) (7a)  

P(τ; ε) = εP1(T0,T1,T2)+ ε2P2(T0,T1,T2)+ ε3P3(T0,T1,T2) (7b)  

where ε is treated as a small perturbation parameter, the original time variable τ has been replaced by three variables representing 
different time scales, that is, T0 = τ, T1 = ετ and T2 = ε2τ. Displacement functions Un and Pn with n = 1, 2, 3 are expressed to first-order, 
second-order and third-order in the form of perturbation, and 

Un =

⎡

⎣
u3j,n

u3j+1,n
u3j+2,n

⎤

⎦, Pn =

⎡

⎣
p3j,n

p3j+1,n
p3j+2,n

⎤

⎦ (8) 

Substituting (7) into (4) and equating coefficients of like powers of ε, we obtain the following hierarchy of equations 
Order ε1 

∂2U1

∂T2
0
+KU1 = 0 (9a)  

∂2P1

∂T2
0
+ χ3P1 = 0 (9b) 

Order ε2 

∂2U2

∂T2
0
+KU2 = − 2

∂2U1

∂T0∂T1
− NL1,1 (10a)  

∂2P2

∂T2
0
+ χ3P2 = − 2

∂2P1

∂T0∂T1
− NL2,1 (10b) 

Order ε3 

∂2U3

∂T2
0
+KU3 = − 2

∂2U2

∂T0∂T1
− 2

∂2U1

∂T0∂T2
−

∂2U1

∂T2
1
− NL1,2 (11a)  

∂2P3

∂T2
0
+ χ3P3 = − 2

∂2P2

∂T0∂T1
− 2

∂2P1

∂T0∂T2
−

∂2P1

∂T2
1
− NL2,2 (11b) 
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where 

NL1,1 =

⎡

⎣
χ2p3j,1u3j,1

χ2p3j+1,1u3j+1,1
χ2p3j+2,1u3j+2,1

⎤

⎦, NL2,1 =

⎡

⎢
⎢
⎢
⎣

χ4u2
3j,1

χ4u2
3j+1,1

χ4u2
3j+2,1

⎤

⎥
⎥
⎥
⎦
,

NL1,2 =

⎡

⎣
χ2
(
p3j,2u3j,1 + p3j,1u3j,2

)

χ2
(
p3j+1,2u3j+1,1 + p3j+1,1u3j+1,2

)

χ2
(
p3j+2,2u3j+2,1 + p3j+2,1u3j+2,2

)

⎤

⎦, NL2,2 =

⎡

⎣
2χ4u3j,2u3j,1

2χ4u3j+1,2u3j+1,1
2χ4u3j+2,2u3j+2,1

⎤

⎦ (12) 

It should be noted that, instead of introducing the perturbation parameter ε into the governing equations (4) in advance, we 
naturally separate the equations in each hierarchy by substituting the assumed approximate perturbation solutions (7) (starting from 
the first power of ε) into (4). Such procedure leads to the hierarchy index taking 1 on the linearized equation (9), and increasing 
progressively. 

In the following calculations, general solutions to (9) are first determined and then substituted into (10) to resolve for U2 and P2. 
Subsequently, solutions to (9) and (10) allow us to obtain the evolution equations describing the dynamics of wave-vibration coupling 
on a slower time scale. 

The solutions of Eq. (9a) can be written in the usual form 

Uu
1 = vAei(jξ− ωT0) (13)  

where v = [v1 v2 v3]T are constants to be determined with the initial conditions, and ω is the angular frequency of the propagation 
mode. Inserting (13) into (9a) yields the following matrix equation 

(
K − ω2I

)
v = 0 (14)  

where I represents the unity matrix. 
Equation (14) admits three non-trivial solutions when the determinant of the matrix vanishes, i.e., 

D(ω) =
⃒
⃒K − ω2I

⃒
⃒ = 0 (15) 

Then the general solution of first-order equation (9) can be expressed as a superposition of modes 

U1 = v1A1ei(jξ− ω1T0) + v2A2ei(jξ− ω2T0) + v3A3ei(jξ− ω3T0) + v1A1e− i(jξ− ω1T0) + v2A2e− i(jξ− ω2T0) + v3A3e− i(jξ− ω3T0) (16a)  

P1 =

⎡

⎢
⎢
⎢
⎣

B1eiΩT0 + B1e− iΩT0

B2eiΩT0 + B2e− iΩT0

B3eiΩT0 + B3e− iΩT0

⎤

⎥
⎥
⎥
⎦

(16b)  

where An and Bn are both complex-valued functions with respect to the time scales T1 and T2, and overbars represent the complex 
conjugates. The frequency of rotational vibration in each sub cell is equal, expressed as Ω =

̅̅̅̅̅χ3
√ . Matrix vn satisfy the equation 

(
K −

ω2
nI
)
vn = 0. Without loss of generality, vn can be expressed as 

v1 =

⎡

⎣
1

v21
v31

⎤

⎦, v2 =

⎡

⎣
1

v22
v32

⎤

⎦, v3 =

⎡

⎣
1

v23
v33

⎤

⎦, v2n =
2 + λ1 − ω2

n + e− iξ

1 + e− iξ
(
2 + λ2 − ω2

n

),

v3n =
ω4

n − λ1ω2
n − λ2ω2

n − 4ω2
n + λ1λ2 + 2λ1 + 2λ2 + 3

1 + e− iξ
(
2 + λ2 − ω2

n

) (17) 

Substituting solutions (16) into (10), and setting the secular terms containing e±i(jξ− ωnT0) in (10a) and e±iΩT0 in (10b) to be zero, yields 

∂An

∂T1
= 0,

∂Bn

∂T1
= 0 (18) 

We note that amplitudes An and Bn only depend on the time scales T2. Meanwhile, the particular solutions of second-order equation 
(10) are sought in the following form 
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U2 = E1A1B1ei(jξ− ω1T0+ΩT0) + E2A1B1ei(jξ− ω1T0 − ΩT0) + E3A2B1ei(jξ− ω2T0+ΩT0)

+E4A2B1ei(jξ− ω2T0 − ΩT0) + E5A3B1ei(jξ− ω3T0+ΩT0) + E6A3B1ei(jξ− ω3T0 − ΩT0)

+E7A1B1ei(ω1T0 − jξ+ΩT0) + E8A1B1ei(ω1T0 − ΩT0 − jξ) + E9A2B1ei(ω2T0 − jξ+ΩT0)

+E10A2B1ei(ω2T0 − jξ− ΩT0) + E11A3B1ei(ω3T0 − jξ+ΩT0) + E12A3B1ei(ω3T0 − jξ− ΩT0)

+E13A1B2ei(jξ− ω1T0+ΩT0) + E14A1B2ei(jξ− ω1T0 − ΩT0) + E15A2B2ei(jξ− ω2T0+ΩT0)

+E16A2B2ei(jξ− ω2T0 − ΩT0) + E17A3B2ei(jξ− ω3T0+ΩT0) + E18A3B2ei(jξ− ω3T0 − ΩT0)

+E19A1B2ei(ω1T0 − jξ+ΩT0) + E20A1B2ei(ω1T0 − ΩT0 − jξ) + E21A2B2ei(ω2T0 − jξ+ΩT0)

+E22A2B2ei(ω2T0 − jξ− ΩT0) + E23A3B2ei(ω3T0 − jξ+ΩT0) + E24A3B2ei(ω3T0 − jξ− ΩT0)

+E25A1B3ei(jξ− ω1T0+ΩT0) + E26A1B3ei(jξ− ω1T0 − ΩT0) + E27A2B3ei(jξ− ω2T0+ΩT0)

+E28A2B3ei(jξ− ω2T0 − ΩT0) + E29A3B3ei(jξ− ω3T0+ΩT0) + E30A3B3ei(jξ− ω3T0 − ΩT0)

+E31A1B3ei(ω1T0 − jξ+ΩT0) + E32A1B3ei(ω1T0 − ΩT0 − jξ) + E33A2B3ei(ω2T0 − jξ+ΩT0)

+E34A2B3ei(ω2T0 − jξ− ΩT0) + E35A3B3ei(ω3T0 − jξ+ΩT0) + E36A3B3ei(ω3T0 − jξ− ΩT0)

(19a)  

P2 = F1A2
1e2i(jξ− ω1T0) + F2A1A2ei(2jξ− ω2T0 − ω1T0) + F3A1A3ei(2jξ− ω3T0 − ω1T0) + F4A1A1

+F5A1A2ei(ω2T0 − ω1T0) + F6A1A3ei(ω3T0 − ω1T0) + F7A2
2e2i(jξ− ω2T0) + F10A2A2

+F8A3A2ei(2jξ− ω2T0 − ω3T0) + F9A1A2ei(ω1T0 − ω2T0) + F11A3A2ei(ω3T0 − ω2T0)

+F12A2
3e2i(jξ− ω3T0) + F13A1A3ei(ω1T0 − ω3T0) + F14A3A2ei(ω2T0 − ω3T0) + F15A3A3

+F16A2
1e− 2i(jξ− ω1T0) + F17A1A2e− i(2jξ− ω2T0 − ω1T0) + F18A1A3e− i(2jξ− ω3T0 − ω1T0)

+F19A2
2e− 2i(jξ− ω2T0) + F20A3A2e− i(2jξ− ω2T0 − ω3T0) + F21A2

3e− 2i(jξ− ω3T0)

(19b) 

in which, matrices Eh =
[
eh

11 eh
21 eh

31

]T
(h = 1, 2,⋯, 36), Fg =

[
f g
11 fg

21 f g
31

]T
(g = 1,2,⋯,21), 

and all the parameters can be obtained by substituting (19) into (10) and balancing similar terms. 
Inserting (16) and (18–19) into (11) and eliminating the secular terms leads to 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Q1
n − 1 − e− iξ

Q2
n 2 + λ2 − ω2

n − 1
Q3

n − 1 2 + λ3 − ω2
n

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 (20a)  

2iΩ
∂Bn

∂T2
+

(

b1
nA1A1 + b2

nA2A2 + b3
nA3A3

)

B1

+

(

b4
nA1A1 + b5

nA2A2 + b6
nA3A3

)

B2 +

(

b7
nA1A1 + b8

nA2A2 + b9
nA3A3

)

B3 = 0

(20b) 

where 

Q1
1 = 2iω1

∂A1

∂T2
− χ2

(
f 1
11 + f 4

11

)
A2

1A1 − χ2
(
f 10
11 + v12f 2

11 + v12f 5
11

)
A1A2A2

− χ2
(
f 15
11 + v13f 3

11 + v13f 6
11

)
A1A3A3 − χ2

(
e1

11 + e2
11

)
A1B1B1

− χ2e14
11A1B1B2 − χ2e26

11A1B1B3 − χ2e13
11A1B2B1 − χ2e25

11A1B3B1,

Q2
1 = 2iv21ω1

∂A1

∂T2
− χ2v21

(
f 1
21 + f 4

21

)
A2

1A1 − χ2
(
v21f 10

21 + v22f 2
21 + v22f 5

21

)
A1A2A2

− χ2
(
v21f 15

21 + v23f 3
21 + v23f 6

21

)
A1A3A3 − χ2

(
e13

21 + e14
21

)
A1B2B2

− χ2e1
21A1B1B2 − χ2e25

21A1B3B2 − χ2e26
21A1B2B3 − χ2e2

21A1B2B1,

Q3
1 = 2iv31ω1

∂A1

∂T2
− v31χ2

(
f 1
31 + f 4

31

)
A2

1A1 − χ2
(
v31f 10

31 + v32f 2
31 + v32f 5

31

)
A1A2A2

− χ2
(
v31f 15

31 + v33f 3
31 + v33f 6

31

)
A1A3A3 − χ2

(
e25

31 + e26
31

)
A1B3B3

− χ2e1
31A1B1B3 − χ2e14

31A1B3B2 − χ2e13
31A1B2B3 − χ2e2

31A1B3B1,

Q1
2 = 2iω2

∂A2

∂T2
− χ2

(
f 10
11 + f 7

11

)
A2

2A2 − χ2
(
f 4
11 + f 2

11 + f 9
11

)
A2A1A1

− χ2
(
f 15
11 + f 11

11 + f 8
11

)
A2A3A3 − χ2

(
e3

11 + e4
11

)
A2B1B1

− χ2e16
11A2B1B2 − χ2e28

11A2B1B3 − χ2e15
11A2B2B1 − χ2e27

11A2B3B1,
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Q2
2 = 2iω2v22

∂A2

∂T2
− χ2v22

(
f 10
21 + f 7

21

)
A2

2A2 − χ2
(
v22f 4

21 + v21f 2
21 + v21f 9

21

)
A2A1A1

− χ2
(
v22f 15

21 + v23f 11
21 + v23f 8

21

)
A2A3A3 − χ2

(
e15

21 + e16
21

)
A2B2B2

− χ2e3
21A2B1B2 − χ2e27

21A2B3B2 − χ2e28
21A2B2B3 − χ2e4

21A2B2B1,

Q3
2 = 2iω2v32

∂A2

∂T2
− χ2v32

(
f 10
31 + f 7

31

)
A2

2A2 − χ2
(
v32f 4

31 + v31f 2
31 + v31f 9

31

)
A2A1A1

− χ2
(
v32f 15

31 + v33f 11
31 + v33f 8

31

)
A2A3A3 − χ2

(
e27

31 + e28
31

)
A2B3B3

− χ2e3
31A2B1B3 − χ2e16

31A2B3B2 − χ2e15
31A2B2B3 − χ2e4

31A2B3B1,

Q1
3 = 2iω3

∂A3

∂T2
− χ2

(
f 12
11 + f 15

11

)
A2

3A3 − χ2
(
f 10
11 + f 14

11 + f 8
11

)
A3A2A2

− χ2
(
f 13
11 + f 3

11 + f 4
11

)
A3A1A1 − χ2

(
e5

11 + e6
11

)
A3B1B1

− χ2e18
11A3B1B2 − χ2e30

11A3B1B3 − χ2e17
11A3B2B1 − χ2e29

11A3B3B1,

Q2
3 = 2iω3v23

∂A3

∂T2
− χ2v23

(
f 12
21 + f 15

21

)
A2

3A3 − χ2
(
v23f 10

21 + v22f 14
21 + v22f 8

21

)
A3A2A2

− χ2
(
v21f 13

21 + v21f 3
21 + v23f 4

21

)
A3A1A1 − χ2

(
e17

21 + e18
21

)
A3B2B2

− χ2e5
21A3B1B2 − χ2e29

21A3B3B2 − χ2e30
21A3B2B3 − χ2e6

21A3B2B1,

Q3
3 = 2iω3v33

∂A3

∂T2
− χ2v33

(
f 12
31 + f 15

31

)
A2

3A3 − χ2
(
v33f 10

31 + v32f 14
31 + v32f 8

31

)
A3A2A2

− χ2
(
v31f 13

31 + v31f 3
31 + v33f 4

31

)
A3A1A1 − χ2

(
e29

31 + e30
31

)
A3B3B3

− χ2e5
31A3B1B3 − χ2e18

31A3B3B2 − χ2e17
31A3B2B3 − χ2e6

31A3B3B1,

b1
1 = 2χ4

(
e1

11 + e7
11

)
, b2

1 = 2χ4v12
(
e3

11 + e9
11

)
, b3

1 = 2χ4v13
(
e5

11 + e11
11

)
,

b4
1 = 2χ4

(
e13

11 + e19
11

)
, b5

1 = 2χ4v12
(
e15

11 + e21
11

)
, b6

1 = 2χ4v13
(
e17

11 + e23
11

)
,

b7
1 = 2χ4

(
e25

11 + e31
11

)
, b8

1 = 2χ4v12
(
e27

11 + e33
11

)
, b9

1 = 2χ4v13
(
e29

11 + e35
11

)
,

b1
2 = 2χ4

(
e1

21 + e7
21

)
, b2

2 = 2χ4v22
(
e3

21 + e9
21

)
, b3

2 = 2χ4v23
(
e5

21 + e11
21

)
,

b4
2 = 2χ4

(
e13

21 + e19
21

)
, b5

2 = 2χ4v22
(
e15

21 + e21
21

)
, b6

2 = 2χ4v23
(
e17

21 + e23
21

)
,

b7
2 = 2χ4

(
e25

21 + e31
21

)
, b8

2 = 2χ4v22
(
e27

21 + e33
21

)
, b9

2 = 2χ4v23
(
e29

21 + e35
21

)
,

b1
3 = 2χ4

(
e1

31 + e7
31

)
, b2

3 = 2χ4v32
(
e3

31 + e9
31

)
, b3

3 = 2χ4v33
(
e5

31 + e11
31

)
,

b4
3 = 2χ4

(
e13

31 + e19
31

)
, b5

3 = 2χ4v32
(
e15

31 + e21
31

)
, b6

3 = 2χ4v33
(
e17

31 + e23
31

)
,

b7
3 = 2χ4

(
e25

31 + e31
31

)
, b8

3 = 2χ4v32
(
e27

31 + e33
31

)
, b9

3 = 2χ4v33
(
e29

31 + e35
31

)
(21) 

Rewriting An = A0neiΦn(T2)/2 and Bn = B0neiϕn(T2)/2 in (20), we obtain the following evolution equations 

∂A0n

∂T2
=

1
2
A0nIm

(
Δ1

n

)
(22a)  

∂B0n

∂T2
= −

1
Ω

Im
(
Δ2

n

)
(22b)  

∂Φn

∂T2
= −

1
2
Re

(
Δ1

n

)
(22c)  

∂ϕn

∂T2
=

1
ΩB0n

Re
(
Δ2

n

)
(22d) 
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where 

Δ1
n =

1
4
(
g1

nA2
01 + g2

nA2
02 + g3

nA2
03 + g4

nB2
01 + g5

nB01B02ei(ϕ1 − ϕ2) + g6
nB01B03ei(ϕ1 − ϕ3) + g7

nB02B01e− i(ϕ1 − ϕ2)
)

+
1
4
(
g8

nB03B01e− i(ϕ1 − ϕ3) + g9
nB2

02 + g10
n B02B03ei(ϕ2 − ϕ3) + g11

n B03B02e− i(ϕ2 − ϕ3) + g12
n B2

03

)
,

Δ2
n =

1
8
[(

b1
nA2

01 + b2
nA2

02 + b3
nA2

03

)
B01e− iϕ1 +

(
b4

nA2
01 + b5

nA2
02 + b6

nA2
03

)
B02e− iϕ2

+
(
b7

nA2
01 + b8

nA2
02 + b9

nA2
03

)
B03e− iϕ3

]
e− iϕn

(23)  

and parameters gq
n (q = 1,2, ...,12) can be obtained from equation (20a) by balancing similar terms. 

By examination of Eq. (22a), it is apparent that a fixed point exists at A0n = 0 and its stability is affected by the dynamical behavior 
of amplitude evolution which is finally determined by the frequency of rotational vibration. Inspection of high dimensional dynamical 
system (22) shows that the amplitude and phase of rotational vibration gradually tend to constants as the amplitude of longitudinal 
wave evolves towards the fixed point when a moderate modulated frequency of rotational vibration is considered, whereas, when a fast 

Fig. 3. The global dynamics flow in the projected amplitude A0n space and B0n space when the fixed point (red point) is stable (a) and (b), and 
unstable (c) and (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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modulated frequency of rotational vibration is considered, the amplitude of longitudinal wave is amplified exponentially as the 
amplitude of rotational vibration evolves towards zero. Such evolution process is accompanied by energy transports between the 
longitudinal wave and the rotational vibration of our conservative autoparametric system. The projections of global evolution flow in 
three-dimensional amplitude space induced by the initial phases ϕn = − 2πn/3 of the vibratory disks are shown in Fig. 3 with the 
dimensionless parameters α = 0.75, β = [0.0167, 0.0833, 0.3333], γ = 0.1667, μ = 4, θ = 0.5236, ξ = 0.2094 for the stable fixed point 
and parameters α = 0.75, β = [0.0167, 0.0833, 0.3333], γ = 0.1667, μ = 0.12, θ = 0.5236, ξ = 1.4392 for the unstable fixed point. It is 
noteworthy that, the time-growing wave evolution is associated with the generation of unstable manifold when a supersonic modu
lated vibration is imposed. Such instable propagating wave can be created by the present autoparametric system and has wide ap
plications on mechanical amplifications. On the other hand, when a subsonic modulated vibration is triggered, a one-way net power 
flow output produces from the longitudinal wave to the rotational vibration, which squeezes the finite amplitude of longitudinal wave 
to infinite small, the fixed point. At the fixed point, the rest equations of (22) can be reduced in the following form 

∂Φn

∂T2
= −

1
2
Re

(
Δ1

n

⃒
⃒

A01=A02=A03=0

)
,
∂B0n

∂T2
= 0,

∂ϕn

∂T2
= 0 (24) 

In this scenario, the amplitude B0n and phase ϕn of the vibratory disks for the nth sub cell is constant. Combining equations (7b), 
(16b), (19b) and (24), the approximate solutions of rotational vibration can be written as 

P(τ; ε) =

⎡

⎣
εB01cos(Ωτ + ϕ1)

εB02cos(Ωτ + ϕ2)

εB03cos(Ωτ + ϕ3)

⎤

⎦ (25) 

In other words, when the amplitude of longitudinal wave is obviously smaller than that of the rotational vibration, the amplitude 
and phase of rotational vibration are not modulated by the longitudinal wave. The two-way coupling autoparametric modulated 
system will be degenerated to a one-way coupling system. Introducing an appropriate sequence of the initial phases of the vibratory 
disks can directly create the spatial waveform of modulation. This is exactly the small-on-large coupling mechanism. Thus, we now 
know that the small-on-large effect can be readily constructed from an autoparametric system. Moreover, the phase evolution of 
longitudinal wave provides the second-order correction upon the linear wave frequency, and the band structure constantly used in 
wave analysis will continue to be valid to characterize the intrinsic characteristics of the autoparametric modulated system in the sense 
of small-on-large. 

Revisiting the particular solution (19), it is worth noting that there are six kinds of denominators of the parameters Eh, expressed as 
functions D(ω1 ± Ω), D(ω2 ± Ω) and D(ω3 ± Ω). These functions contain physical information about the possible resonance processes 
that underlie the nonlinear modes of our autoparametric system. A resonance may appear due to the vanishing of denominators at 
certain values of frequency-wavenumber pairs. 

Returning to the original time scale, then, the second-order correction to the linear frequency is expressed as follows 

ωNL
n = ωn +

ε2

2
Re

(
Δ1

n

⃒
⃒

A01=A02=A03=0

)
(26) 

According to (26), the dispersion curves corresponding to the fundamental mode of Bloch waves can be tracked for each 

Fig. 4. (a) The dispersion curves of an autoparametric modulated structure obtained using full numerical simulations (level sets) compared to the 
one determined by the method of multiple-time scales with second-order accuracy (solid dots). (b) Spatiotemporal trajectory of partical 
displacement when signal is sent from the mid-span. 
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wavenumber. The effectiveness of the perturbation procedure will be verified by comparing analytical dispersion curves with those 
reconstructed from the direct numerical simulations, as addressed in the next section. It is worth to note, to characterize the non- 
reciprocal wave propagation of autoparametric systems, efforts might be also devoted to an asymptotic analysis based on coupled 
mode theory [15] applied to equations of motion (4). With separation of the incident wave dispersion branch C0 and scattered ones 
C±1, the coupled mode theory based on first-order perturbation can explain the bandgaps generation induced by the autoparametric 
modulation when coupled modes exist, which we call, the moderate autoparametric modulation. However, it cannot take into account 
the asymmetry in dispersion curves where only single uncoupled mode exists, which we call, the fast autoparametric modulation. In 
view of this, higher-order coupled mode theory is worth developing for capturing such asymmetry. 

4. Non-reciprocal effect in autoparametric periodic structure 

This section is devoted to the analysis of the non-reciprocal effect of periodic structures with fast, moderate, and quasi-static 
autoparametric modulation, respectively. Classification of modulation speed is according to the magnitude of the rotational vibra
tion frequency Ω. 

4.1. Fast autoparametric modulation 

Consider the case of the fast autoparametric modulation with Ω = 1. Fig. 4 (a) shows by the thin solid line the dispersion diagram of 
the unmodulated structure, in which the geometrically linear deformation of inclined spring is considered such that the rotational 
vibration and the longitudinal wave are decoupled. The presence of the bandgap below a cut-off frequency (ω = 1.8), the so-called the 
Drude dispersion behavior [41], arises from the constrained longitudinal movement of internal disks. Notice that such wide bandgap in 
the low frequency regime is intentionally not exhibited in order to highlight the features of non-reciprocity. The band diagram for the 
unmodulated structure is seen to follow the mirror symmetry in the wave vector space as the preservation of time reversal symmetry. 
For the modulated structure with the nonlinear mode coupling, the fundamental dispersion branch is calculated by the perturbation 
method as plotted by the solid dots in Fig. 4 (a). It is noteworthy that this asymmetry in dispersion curves can be easily observed in the 
case of fast autoparametric modulation and predicted by the method of multiple-time scales with second-order accuracy, but cannot be 
captured based on coupled mode theory. 

To validate the analytical dispersion relations, we perform transient numerical simulations for the proposed nonlinear chiral- 
induced autoparametric periodic structure with internal wave-like modulation. The simulation model of the 1D chain contains 401 
cells with the dimensionless parameters: α = 2, β = [0.0167, 0.0833, 0.3333], γ = 0.1667, μ = 4, θ = 0.5236, and the amplitude B0n of 
the initial rotational vibration is set as 0.7π. The displacement excitation characterized by the broadband tone burst signal of the form 
A
[
H(τ) − H

(
τ − N/fc

) ]
[1 − cos(ωcτ/N) ]sin(ωcτ) is imposed at the middle of the chain, where A is an amplitude, H is the Heaviside 

function, ωc is the central frequency, and N is the number of cycles. The time-domain displacement responses in spatial lattice points 
away from the excitation location are Fourier-transformed to reconstruct the dispersion diagram as shown by the contour plot in Fig. 4 
(a). By comparing the numerical dispersion contours and analytical results, the perturbation methodology for the estimation of the 
dispersion diagrams can be verified. To further demonstrate the non-reciprocal wave behavior, the transient displacement response to 
the narrow-band pulse excitation centered at ωc = 1.9 within the pass band of Fig. 4 (a) is computed, as shown in Fig. 4 (b). Distinct 

Fig. 5. The dispersion curves of an autoparametric modulated structure obtained using full numerical simulations (level sets) compared to the one 
determined by the method of multiple-time scales with second-order accuracy (solid dots). The incident wave dispersion branch C0 is represented by 
the thin solid lines, and the scattered wave dispersion branch C-1 and C+1 is represented by the thin dotted lines and thin dash lines, respectively. 
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group velocities of lattice waves propagating in two opposite directions can be observed, which indicates the non-reciprocity. 

4.2. Moderate autoparametric modulation 

Then, we consider the moderate autoparametric modulation by setting Ω = 0.6124. The numerical dispersion contours constructed 
from the response of the finite autoparametric super cell are evaluated with the parameters α = 0.75, β = [0.0167, 0.0833, 0.3333], γ 
= 0.1667, μ = 4, θ = 0.5236, and the amplitude B0n = 0.5π. Remarkably, for the autoparametric structure, dynamic modulation 

Fig. 6. (a, b) Spatiotemporal trajectory of partical displacement when signal is sent from the right and left end, respectively, with central frequency 
ωc = 1.25. (c, d) Spatiotemporal trajectory of partical displacement when signal is sent from the right and left end, respectively, with central 
frequency ωc = 1.3. (e, f) Spatiotemporal trajectory of partical displacement when signal is sent from the right and left end, respectively, with central 
frequency ωc = 1.4. 
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Fig. 7. The frequency content of the propagating pulse at the time 600, 1200, 1800 and 3000, respectively. (a-d) Signal is sent from the right with 
central frequency ωc = 1.25. (e-h) Signal is sent from the right with central frequency ωc = 1.3. (i-l) Signal is sent from the left with central frequency 
ωc = 1.3. 
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originates primarily from the foundamental mode of the chiral rotational DOF, and its frequency is related to both the global location 
of the band diagram in frequency domain and the strength of the autoparametric modulation as referred by Eq. (1). Based on the 
coupled mode theory, the incident wave dispersion branch C0 represented by the thin solid lines (corresponding to the unmodulated 
case), and the scattered wave dispersion branch C-1 and C+1 represented by the thin dotted lines and thin dash lines, respectively, are 
separated and shown in Fig. 5. We make the important observation that there are four pairs of intersecting points of Bloch solutions (C0 

and C±1) in which asymmetric bandgaps generate. The loss of parity indicates that, if one wave is scattered when incident in a specific 
direction, it will be scattered or not when incident in the opposite direction, depending on the excitation frequency. We compare the 
band diagram obtained using full numerical simulations in the form of contour lines, with the band diagram that are given by the 
method of multiple-time scales with second-order accuracy as displayed in Fig. 5. The results show the good agreement between the 
numerical method and the analytical prediction proposed in this paper, even when the autoparametric modulation is relatively strong. 

To verify the frequency-dependent wave non-reciprocity, we consider a composite structure made of autoparametric lattices with 
and without initially activated chiral rotational vibration. Short pulses with different central frequencies are sent from the right or left 
ends of a finite composite structure, and the wave responses are illustrated in Fig. 6. Fig. 6 (a) shows that, when the narrow-band 
displacement excitation with central frequency ωc = 1.25 is imposed at the right end of the non-activated medium side, the pulse 
wave is totally reflected with up-converted frequency upon impinging the activated/non-activated medium interface. The frequency 
difference induced by the autoparametric modulation is approximatively equal to Ω, as evidenced by the spectrum contour of the 
propagating waves in Fig. 7 (a-d). The reflected waves propagating rightwards with two different frequencies and group velocities are 
reflected again at right ends without the change of wave frequencies and amplitudes. Since the incident frequency and up-converted 
frequency are within the forbidden band, multiple wave reflection occurs and is accompanied by the inter-flow of energy between the 
incident frequency and the up-converted frequency components. As the consequence of the multiple reflections, the pulse waves are 
constrained in the non-activated medium. The same wave propagation phenomenon can be observed in Fig. 6 (b) when the pulse is sent 
from the left end of the non-activeted/activated medium. 

The non-reciprocal wave propagation arises when the narrow-band displacement excitation with central frequency ωc = 1.3 is 
imposed at two ends of the composite mediums, as shown in Fig. 6 (c) and Fig. 6 (d). The corresponding frequency contours of 
propagating waves at different instants are illustrated in Fig. 7 (e-h) and Fig. 7 (i-l). For the activated/non-activated medium (Fig. 6 
(c)), the pulse wave impinging the right end undergoes the reflection at the interface, and the activated autoparametric modulation 
induces a partial energy migration to the mode with higher frequency. After reflected again at the right end, these wave pulses with up- 
converted frequency propagate leftwards toward the interface. In contrast to the scenario in Fig. 6 (a), the up-converted frequency is 
now outside of the forbidden band. The left-travelling wave can penetrate the activated medium. At the left boundary of the activated 
medium, the waves are reflected with down-converted frequency such that a partial energy is migrated to the mode with the initial 
frequency (ωc = 1.3). This fundamental mode is outside the forbidden band and then can be transmitted into the non-activated 
autoparametric modulated medium. 

For the non-activated/activated medium (Fig. 6 (d)), the pulse wave sent from the left end propagates across the interface with 
almost no reflection, and is transmitted into the activated medium. Then, it is reflected by the right boundary, accompanying by partial 
energy conversion into the mode with higher frequency. Since the up-converted frequency is outside of the forbidden band, the wave 
propagates leftwards into the non-activated medium, and is reflected back by the left boundary. When reaching the interface, the right- 
travelling wave is reflected and is accompanied by the inter-flow of energy between the incident frequency and the up-converted 
frequency components. We note that these frequency conversions can be readily realized if the incident wave frequency was set 
around the intersecting points of Bloch solutions, referring to Fig. 5. When the pulse central frequency ωc = 1.4 is set far from the 
intersecting points, reciprocal wave propagation can be observed as shown in Fig. 6 (e) and Fig. 6 (f). 

4.3. Quasi-static autoparametric modulation 

We finally analyze the autoparametric modulated structure in the quasi-static modulation. In this case, the rotational vibration 
frequency Ω in the autoparametric dynamical system is significantly small. Revisiting the perturbation procedure and substituting (25) 
into (4a), we have 

Ü+KU+ εNL3 = 0 (27) 

where 

NL3 =

⎡

⎣
χ2u3jB01cos(Ωτ + ϕ1)

χ2u3j+1B02cos(Ωτ + ϕ2)

χ2u3j+2B03cos(Ωτ + ϕ3)

⎤

⎦ (28) 

It is noted that, since the slow modulation has been assumed, therefore, topological invariant based on the adiabatic theorem 
[25,26] can be adopted to investigate the band topology. Considering the dynamical system (27) with quasi-static stiffness evolution, 
the natural modes can then be directly obtained from the dynamic matrix at any instant. 

Letting (ω2
n ,Ψn) be the instantaneous eigenvalue and eigenmode, defined by 

(
Kε − ω2

nI
)
Ψn = 0 (29) 

where 
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Kε = K+ εχ2

⎡

⎣
B01cos(Ωτ + ϕ1) 0 0

0 B02cos(Ωτ + ϕ2) 0
0 0 B03cos(Ωτ + ϕ3)

⎤

⎦ (30) 

In order to describe the change of each dispersion band due to the quasi-static modulation, wavenumber and time are chosen as two 
independent variables and the Chern number corresponding to each band is characterized as follows 

C n =
1

2π

∫ π

− π

∫ T

0
B cndτdξ (31)  

where the Berry curvature can be defined by 

B cn = 2Im
∑

m∕=n

〈
Ψn, ∂ξKε,Ψm

〉
〈Ψm, ∂τKε,Ψn〉

(
ω2

n − ω2
m

)2 (32) 

Fig. 8 illustrates the dispersion evolution of a modulated super cell with respect to wavenumber and time, and the corresponding 
Chern number of each band is labeled. The parameters used are α = 0.5, β = [0.0167, 0.0833, 0.3333], γ = 0.1667, μ = 400, θ = 0.5236, 
B0n = π and Ω = 0.05. It is well known that the bandgap topology is manipulated by the gap Chern number, which is the summation of 
the Chern numbers of all the bands below it. For the 3-periodic super cell with the initial phase modulation ϕn = 2πn/3 of its n-th 
sublattice, gap Chern numbers 0, − 1, 1, 0 are associated with four bandgaps 1, 2, 3 and 4, respectively. Non-zero gap Chern numbers 
support the existence of topological edge states according to the principle of bulk-edge correspondence. We perform numerical 
simulations to show how eigenfrequencies of a finite super cell evolve over time as a result of the quasi-static wave-like modulation 
induced by the chiral vibration. It can be seen in Fig. 9 (a) that there are two pairs of edge modes populated within two bulk bandgaps, 
respectively, and the two non-zero gap Chern numbers indicate non-trivial band topology for the autoparametric system under quasi- 
static modulation and opposite signs of the Chern numbers associated with bandgaps 2 and 3 imply the opposite phase reversal related 
to the edge modes. To confirm the bulk-edge correspondence, we focus on the time evolution of eigenfrequencies inside the second 
bandgap and the corresponding eigenmodes along the finite super cell. The right edge mode labeled b (Fig. 9 (b)) is picked up as a 
starting point of the evolution flow. This edge mode evolves towards the bulk mode d (Fig. 9 (d)) via the right edge mode c (Fig. 9 (c)), 
accompanied by decreased frequency across the bandgap. As the frequency shifts up, bulk mode d (Fig. 9 (d)) transforms into the left 
edge mode e (Fig. 9 (e)), which then evolves towards the bulk mode g (Fig. 9 (g)) via the left edge mode f (Fig. 9 (f)). Then, bulk mode g 
evolves back into the right edge mode b and so on. For spatially modulated lattices, the topological pumping occurs at single frequency 
along the wave number branch of the edge state, and a complete right-to-left (or left-to-right) mode transition can be observed during 
one modulated cycle [42]. However, only transition between localized edge mode (right or left) and bulk mode can be seen for time- 
modulated lattices under the transient propagation of a physical signal in each cycle. It is evident that the absolute value of gap Chern 
number − 1 for the second bandgap equals the number of degenerate points during one modulated cycle, actually also the number of 
times the right (or left) edge state traverses the bandgap. As a matter of fact, this kind of edge mode and mode transition can be 
employed to realize non-reciprocal transmission of the elastic waves [23]. Specifically, by exciting the system with right (left) edge 
state from the right (left) end of finite lattices at a certain time point, the longitudinal wave can propagate only from the right (left) to 
the left (right) end via the bulk state, due to the fact that the intrinsic mode of the lattices is triggered. However, the propagating wave 

Fig. 8. Evolution of Bloch dispersion branches of an infinite periodic super cell as a function of wavenumber and time, with Chern numbers assigned 
to each band. 
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from the left (right) to the right (left) is strictly forbidden if the excitation is imposed in the reverse direction, resulting from null energy 
input into the system at all (the intrinsic mode is not triggered). Moreover, the robustness of the topologically protected edge mode 
against dissipation effects and modulation phase disorders can also be rationally expected [26]. 

Fig. 9. (a) Evolution of eigenfrequencies of a finite periodic super cell over one period of slow modulation. The bulk modes are denoted by gray 
dots. Right and left edge modes are highlighted by red and blue and dots, respectively. The edge modes within the second bandgap at τ = 0.7 T and 
τ = 0.85 T are labeled b, e, and c, f; The bulk modes at τ = 0.2 T and τ = 0.95 T are labeled d and g. (b)-(g) The corresponding eigenmodes along the 
finite super cell. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusion 

In this paper, a novel class of nonlinear chiral-induced autoparametric periodic structure is proposed. By combining multiple-time 
scales perturbation method and Floquet-Bloch theorem, a procedure for analytically deriving the evolution equations and solving the 
dispersion relations of autoparametric systems is presented. Numerical simulations are performed to validate the global dynamics, the 
analytical band diagram and demonstrate the non-reciprocal wave propagation on the dynamically modulated system. The band 
topology of wave dispersion and bulk edge correspondence in the quasi-static scenario are also investigated. 

It is remarkable that the proposed autoparametric modulated structure could be designed as functional devices possessing 
outstanding direction-dependent propagation properties and the analytical approach with second-order accuracy can capture the 
asymmetry of dispersion curves in the case of relatively strong nonlinearity. In the sense of small-on-large, the autoparametric 
modulated structure is degenerated into a spatiotemporally modulated periodic structure, which is an ideal platform to implement a 
mechanical analogue of the quantum Hall effect in a periodic super cell under quasi-static modulation. The proposed autoparametric 
modulated concept based on geometric nonlinearity for tailoring the wave propagation could be used to construct various 2D and 3D 
composite structures with exotic wave manipulation capacity in passive or active ways. 
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