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Abstract Vibration-based piezoelectric energy har-

vesting for powering low-energy consuming elec-

tronic equipment has received a great deal of attention

in the last decade. Most researches applying deter-

ministic approaches or theory of random vibrations

have been concentrated on examining the performance

of the piezoelectric energy harvesters with a purely

resistive circuit under harmonic or random excitations.

Here, the ambient excitations are assumed to be white

Gaussian noises, we investigate a nonlinear piezo-

electric energy harvester which utilizes a harvesting

circuit with both a resistive load and an inductor, based

on the fact that previous research has demonstrated

that the intentional introduction of an inductor

substantially improves the performance of energy

harvesting device. Two scenarios, namely the purely

inductive circuit and the resistive–inductive circuit,

are examined. Exact stationary solution of the output

voltage and closed-form expression of the mean

square voltage are acquired for the purely inductive

circuit. By combining the equivalent linearization

method and the moment method of random process

theory, analytical solutions of mean square voltage

and averaged power output involving dimensionless

parameters of the electromechanical system are

derived for the resistive–inductive circuit. The energy

conversion efficiency is analyzed by means of energy

balance equation. Monte Carlo numerical simulations

are implemented to validate the theoretical predic-

tions. Results reveal unique characteristics of the

nonlinear vibration systems with a resonant circuit,

showing its superiority over the energy harvesters with

a purely resistive circuit. The present study provides a

paradigm in a simple but effective way to resolve

strong electromechanical coupling systems under

random excitations.

Keywords Energy harvesting � Random vibration �
Electromechanical coupling � Exact stationary

solution � Equivalent linearization method � Energy

conversion efficiency

1 Introduction

Since a long time ago, humans have started exploring

the feasibility of harnessing ambient energy to supply

considerable electrical energy by using waterwheels

and windmills. Even now, such electromechanical

conversion devices are still major power supply way in

many remote regions. With the continuous
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development of science and technology, compact and

scalable electronic devices emerge, such as wireless

sensors, portable health monitors, and data transmit-

ters. The common feature of these devices is that the

power requirements have been significant reduced.

For instance, the electronic microchips for health

monitoring approximately consume an average power

of 50 lW [1, 2]. It promotes researchers to develop

new micropower generators as a scalable continuous

energy source for substituting batteries. In practice,

unavoidable vibrations reside in diverse mechanical

and human body systems, for example, the whirling

motion of rotors [3–7], the forced or the parametrically

excited vibration of pipes conveying fluid [8–12],

aeroelastic response of flexible structures [13–19], the

heart pumping and the arterial pulse [20–23]. Vibra-

tory energy harvesting has formed a branch in the field

of mechanical engineering, electronics and applied

mechanics and is deeply integrated among them.

Vibration-based piezoelectric energy harvesters

(PEHs) use the electromechanical coupling effect of

piezoelectric crystals experiencing ambient vibrations

to produce electric energy that can be simultaneously

stored up for supplying power. For the PEHs operating

by means of the principle of linear resonance, the

frequency bandwidth is usually very narrow. That

results in great limitations on the usefulness and

applicability of the harvesters. Fortunately, for some

natural structures and the precisely designed artificial

structures, nonlinearities arising from nonlinear

strain–deflection relationships or nonlinear constitu-

tive relations can be easily observed. The introduction

of nonlinearities into the innovative design of PEHs

has been a widespread concerned topic [24, 25]. Some

results have pointed out that elaborately introduced

nonlinearity could be beneficial to harvest energy

because the harvester’s operation bandwidth can be

extended [26–32] when compared to the linear device.

It is noteworthy that nonlinearity yields non-unique

solutions of response for certain frequency domains

which are characterized by the presence of coexisting

motions, and the nonlinear energy harvesters are not

always guaranteed to hold the desired large amplitude

resonant state. Actually, the practical operating state is

depending on the basins of attraction of the coexisting

solutions [33, 34].

Up to now, most of the researches reported regard

the ambient vibration exerting on the PEHs has some

deterministic form. However, it is an indisputable fact

that most ambient energy is actually distributed over a

wide frequency spectrum. In such scenario, research-

ers need to apply the theory of random processes to

describe the ambient excitation and perform the

response analysis of harvested power output under

the framework of stochastic dynamics [35–37]. For

improving the harvester’s performance in an actual

environment, recently, some research groups have

studied the influence of the nonlinearity on the

transduction characteristics of nonlinear piezoelectric

energy harvesters (NPEHs) with a purely resistive

circuit under random excitations [38–42]. Although

the merits of the stochastic resonance effect for

performance improvement in the bistable harvesters

have been reported by McInnes et al. [43], but when

only harmonic excitation are considered, researchers

examined the performance of a bistable harvester

relative to a monostable harvester and their theoretical

and experimental results indicated that the

bistable configuration did not distinctly show signif-

icant enhancement in the power output [44]. Even in

the case of white Gaussian excitations, the bistability

did not seem to furnish much output power improve-

ment unless the time constant ratio is very small

[45, 46]. Recent researches have demonstrated that the

performance metrics can be improved by the har-

vesters with a resonant circuit, comparing with the

harvesters with a purely resistive circuit [47–49]. It is

worth mentioning that for the energy harvesters with a

purely resistive circuit, the recognized principle for

improving the output voltage and power by augment-

ing the displacement response, such as constructing

multi-stable energy harvesters, may be invalid when

the energy harvesters with a resonant circuit under

white Gaussian noises is considered, due to the

competitive mechanism between the mechanical

degree of freedom and the electrical degree of

freedom. To the best of our knowledge, there is still

a lack of corresponding analytical strategy for solving

the response statistics of strong two-way coupling

NPEHs with a resonant circuit under random excita-

tions and energy conversion efficiency is an open issue

until now [49–51]. These circumstances motivate us to

make this work for understanding the influence of the

system parameters with regard to the performance

metrics of monostable NPEHs with a resonant circuit.

The rest of this paper is organized as follows: In

Sect. 2, a two-degree-of-freedom NPEH model

excited by random noises is introduced and its
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electromechanical coupling equations are then trans-

formed into a Itô stochastic equation. In Sect. 3, an

exact stationary solution of probability density func-

tion of voltage output and simple expressions of the

mean square values of responses are derived in the

purely inductive circuit scenario. In Sect. 4, for the

resistive–inductive circuit scenario, with the help of

the direct equivalent linearization method and the

moment method of random process theory, analytical

solutions of the mean square voltage and the averaged

power output are derived and the energy conversion

efficiency is also attained based on energy balance

equation. In Sect. 5, the variation law of the mean

square voltage and efficiency (averaged power output)

with respect to system parameters is investigated in

detail. In Sect. 6, we end this investigation with

concluding remarks.

2 Electromechanical model

From the perspective of working principle, the PEHs

can be traditionally divided into two categories,

namely, inertial harvesters and non-inertial harvesters

[50]. In this investigation, we focus on the inertial

NPEHs, specifically, ambient vibration energy is

harvested by means of a nonlinear mechanical system

coupled with a resonant circuit. Considering a stack-

type nonlinear piezoelectric device operating in the 33

mode with a resistive–inductive circuit in parallel in

the electrical domain; see Fig. 1. The nonlinear

differential equations of such electromechanical cou-

pled model can be written as

m €X tð Þ þ c _X tð Þ þ klX tð Þ � hV tð Þ þ knlX tð Þ3

¼ � m €Xb tð Þ ð1aÞ

Cp
€V tð Þþh €X tð Þ þ 1

R
_V tð Þ þ 1

L
V tð Þ ¼ 0 ð1bÞ

where the overdot represents the derivative with

respect to time t. X and V denote the displacement

response of mass m and the voltage response measured

across the resistance R, respectively. c is the mechan-

ical damping, h is the electromechanical coupling, Cp

is the capacitance and L is the inductance. kl and knl are

linear and nonlinear stiffness, respectively. €Xb repre-

sents the base acceleration which is considered to be a

broadband random process.

Introducing the dimensionless transformations and

parameters as follows

�X ¼ X

l
; �V ¼ V

ffiffiffiffiffiffiffi

Cp

l2kl

r

; s ¼ tx0 ¼ t

ffiffiffiffi

kl
m

r

l ¼ c

mx0

; a ¼ knll
2

kl
; v ¼ h

ffiffiffiffiffiffiffiffiffi

klCp

p ; b ¼ 1

x0RCp
; c ¼ 1

x2
0LCp

ð2Þ

where s denotes the dimensionless time and x0

denotes the natural frequency of the corresponding

linear mechanical system, l is the thickness of

piezoceramic layer as a reference length, a is the

dimensionless cubic nonlinearity coefficient, l is the

dimensionless mechanical damping, v denotes the

dimensionless electromechanical coupling, b and c are

two dimensionless time constants. It is noteworthy that

the transformations (2) herein ensure the essence of

two-way coupling between the mechanical system and

the electrical system of NPEHs and hence the consis-

tency of the analysis on energy conversion efficiency

performed on the base of the dimensional framework

and the dimensionless framework.

Since the ambient base excitation is typically

distributed over a broad frequency spectrum, and thus,

the ambient excitation is assumed to be a white

Gaussian noise n(s) with zero mean value and its

correlation function E n sð Þn sð Þ½ � ¼ 2Dd s� sð Þ. Here

d is the Dirac-delta function, and 2D is the noise

intensity. Under the above rescaling system (1)

becomes, after dropping all overbars for convenience
Fig. 1 Schematic diagrams of a piezoelectric energy harvester

with a RL resonant circuit
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X00 sð Þ þ lX0 sð Þ þ X sð Þ � vV sð Þ þ aX sð Þ3¼ n sð Þ
ð3aÞ

V 00 sð ÞþvX00 sð Þ þ bV 0 sð Þ þ cV sð Þ ¼ 0 ð3bÞ

where the prime represents the differential with

respect to s. According to Itô differential rules

[36, 37], the response statistics on the stochastic

dynamics of system (3) can be resolved by rewriting

the system in the following Itô stochastic form

dx sð Þ ¼ FNL x; sð Þdsþ GNL x; sð ÞdB sð Þ ð4Þ

where the state vector x ¼ X X0 V V 0½ �T , B(s)

represents a Brownian motion, and

FNL x; sð Þ ¼

X0

�lX0 � X þ vV � aX3

V 0

v lX0 þ X þ aX3ð Þ � bV 0 � cþ v2ð ÞV

2

6

6

6

4

3

7

7

7

5

;

GNL x; sð Þ ¼

0
ffiffiffiffiffiffi

2D
p

0

�v
ffiffiffiffiffiffi

2D
p

2

6

6

6

4

3

7

7

7

5

ð5Þ

3 Purely inductive circuit

For a purely inductive circuit, the resistance load R is

set extremely large to create the scenario when no

current flows in the resistive branch. Consequently, the

dimensionless parameter b vanishes.

The response of (4) is depending on the evolution of

the transition probability density function

(TPDF)P x; sð Þ, which, in turn, is determined by the

following Fokker–Planck–Kolmogorov (FPK) equa-

tion with b = 0

oP x; sð Þ
os

¼ � o

oX
X0P x; sð Þ½ �

� o

oX0 �lX0 � X þ vV � aX3
� �

P x; sð Þ
� �

� o

oV
V 0P x; sð Þ½ � þ 1

2

o2

oX02 2DP x; sð Þð Þ

þ 1

2

o2

oV 02 2v2DP x; sð Þ
� �

� o

oV 0 v lX0 þ X þ aX3
� �

� cþ v2
� �

V
� �

P x; sð Þ
� �

� o2

oX0oV 0 2vDP x; sð Þð Þ

ð6Þ

with initial condition P 1; sð Þ ¼ P �1; sð Þ ¼ 0.

In this section, we focus on attaining the stationary

solution of Eq. (6), which means the TPDF is time

invariant, i.e., P xð Þ. Therefore, the exact stationary

solution of the PDF can be expressed as

P X;X0;V ;V 0ð Þ

¼ C exp � l
D

1

2
X2 þ 1

2
X02 þ a

4
X4 þ 1

2
V2 þ 1

2c
vX0 þ V 0ð Þ2

� �	 


ð7Þ

where C is a normalization constant which satisfies the

following normalization condition

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
P X;X0;V;V 0ð ÞdXdX0dVdV 0 ¼ 1

ð8Þ

Fig. 2 The exact stationary PDF of voltage. 2D = 0.05, a = 1,

l = 0.1, v = -0.6, c = 1
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The probability density function (PDF) of output

voltage can then be obtained as

P Vð Þ ¼
Z 1

�1

Z 1

�1

Z 1

�1
P X;X0;V ;V 0ð ÞdXdX0dV 0

¼
ffiffiffi

l
p
ffiffiffiffiffiffiffiffiffi

2pD
p exp � lV2

2D

� �

ð9Þ

Figure 2 demonstrates the comparison between the

exact stationary solution (ESS) and Monte Carlo

simulations (MCS) of the PDF of the voltage response.

It is noteworthy that, due to the existence of exact

stationary solution, even if we increase the nonlinear-

ity and the noise intensity of random excitations, the

analytical solution and the numerical result still

matches very well, thus, the verified results are

omitted. That feature immensely broadens the scope

of application of the present analytical solution to the

scenario of severe nonlinearity and excitation.

On the basis of the exact stationary PDF, the mean

square voltage has the simple expression

E V2
� �

¼
Z 1

�1
V2P Vð ÞdV ¼ D

l
ð10aÞ

Similarly, the mean square velocity and mean

square displacement are expressed as

E X02� �

¼ D

l
ð10bÞ

(a)

(c)

Fig. 3 Variation of mean square displacement with (a) nonlinearity a, (b) mechanical damping l and (c) noise intensity 2D
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E X2
� �

¼
BesselK 3

4
; l

8aD

� �

� BesselK 1
4
; l

8aD

� �

2aBesselK 1
4
; l

8aD

� � ð10cÞ

where BesselK represents the modified Bessel function

of second kind. The variations of the mean square

displacement with respect to the nonlinearity a,

mechanical damping l and noise intensity 2D are,

respectively, shown in Fig. 3.

The formula in (10) states that for the purely

inductive circuit, the mean square displacement

depends only on the nonlinearity, the noise intensity

and the mechanical damping, while the mean square

voltage is completely independent of the time constant

c, the electromechanical coupling and the nonlinear-

ity, and proportional to the noise intensity but

inversely proportional to the mechanical damping.

Actually, considering the fact that the mechanical

damping in practical engineering is a small but finite

value, the mean square voltage can never approach

infinite value. Note that, the astonishing result

expressed by (10) holds only in the case of PEHs

with a resonant circuit under white Gaussian noises

and can also be verified by the degenerated exact

solution (setting b to be zero) obtained in our recent

research on linear PEHs with a resonant circuit [49].

Consequently, both a linear and a nonlinear energy

harvester produce the same mean square voltage. In

fact, from the perspective of energy balance, as

discussed in Sect. 4, for the purely inductive circuit,

the input power, D, is completely dissipated by the

mechanical damping due to the null output power

caused by b = 0, thus, the simple formula expressed

by (10b) is naturally generated. Although the white

Gaussian noise is an ideal model to describe to the

ambient excitation with broadband property, we could

be also inspired by the present result that PEHs may be

applied to the ultra-wide-band circumstances without

considering the optimized piezo properties and elec-

trical parameters when the purely inductive circuit

condition is allowed in the specific applications.

4 Resistive–inductive circuit

For a resistive–inductive circuit, that is b = 0, it is

almost impossible to attain an exact stationary PDF of

the state variables. Some researchers strove to acquire

an approximate solution of the NPEHs with a purely

resistive circuit using analytical methods [39–42].

However, as a result of the particularity of the NPEHs

with a resonant circuit, the conventional stochastic

averaging method based on Hamiltonian mechanics

will be invalid. Most important, we would like to

further explore analytical solutions available to the

strong two-way coupling electromechanical system.

Consequently, hereafter, we apply a direct equivalent

linearization technique [52] to approximate the

response statistics of the NPEHs with a resonant

circuit.

4.1 Equivalent linearization technique

The purpose in this section is to estimate the response

behavior of the original nonlinear system in terms of a

linear system. We first write nonlinear Eq. (3) in a

compact form

g U00;U0;Uð Þ ¼ f sð Þ ð11Þ

where U = [X V]T, and

g ¼ X00 þ lX0 þ X þ aX3 � vV
vX00 þ V 00 þ bV 0 þ cV

� �

; f ¼ n sð Þ
0

� �

ð12Þ

Assuming that a stationary solution to nonlinear

system (11) exists. Then, we define the following

linear equations

MU00 þ CU0 þ KU ¼ f sð Þ ð13Þ

to afford an approximate solution to the nonlinear

system (11). Here, M, C and K are equivalent matrix

on mass, damping and stiffness, respectively, which

will be determined later. Next, we define the differ-

ence of the two systems, (11) and (13), as the error,

which are expressed as

e ¼ g U00;U0;Uð Þ � MU00 � CU0 � KU ð14Þ

Note that U in Eq. (14) is the response matrix of

system (13). In the purpose of selecting M, C and K

effectively, the error e should be controlled as small as

possible. Minimizing the mean square value of e

would be an effective criterion, i.e.,

E eTe
� �

! minimum ð15Þ

In fact, the criterion (15) implies the necessary

conditions
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o

omij
E eTe
� �

¼ 0;
o

ocij
E eTe
� �

¼ 0;
o

okij
E eTe
� �

¼ 0; i; j ¼ 1; 2ð Þ ð16Þ

Substituting (14) into (16) and implementing the

partial differentiations leads to the following

equations

E zzT
� �

M C K½ �T¼ E zgT
� �

ð17Þ

where

zT ¼ U00ð ÞT U0ð ÞT UT
� �

ð18Þ

Note that, since the excitation vector in (13) is

Gaussian with zero mean, so as the vector z. Hence,

the expression E zgT½ � can be written by

E zgT
� �

¼ E zzT
� �

E rgT
� �

ð19Þ

where

rT ¼ o

oX

o

oV

� �

ð20Þ

Substituting (19) into (17) yields

E zzT
� �

M C K½ �T¼ E zzT
� �

E rgT
� �

ð21Þ

Recall that z is Gaussian with zero mean, then the

covariance matrix E zzT½ � of z will be either positive

semidefinite or positive definite. Actually, no matter

the covariance matrix E zzT½ � is positive semidefinite

or positive definite, the solution of (21) will always

correspond to a minimum.

Finally, the solution of (21) can be obtained

M C K½ �T¼ E rgT
� �

ð22Þ

Utilizing (18), then each term of M, C and K

matrices are expressed as

m11 ¼ E
og1

oX00

� �

¼ 1;m12 ¼ E
og1

oV 00

� �

¼ 0;m21 ¼ E
og2

oX00

� �

¼ v

m22 ¼ E
og2

oV 00

� �

¼ 1; c11 ¼ E
og1

oX0

� �

¼ l; c12 ¼ E
og1

oV 0

� �

¼ 0

c21 ¼ E
og2

oX0

� �

¼ 0; c22 ¼ E
og2

oV 0

� �

¼ b; k11 ¼ E
og1

oX

� �

¼ 1 þ 3aE X2
� �

k12 ¼ E
og1

oV

� �

¼ �v; k21 ¼ E
og2

oX

� �

¼ 0; k22 ¼ E
og2

oV

� �

¼ c

ð23Þ

Thus, the exact expression of the equivalent

matrices in linear system (13) are attained. Observing

(23), evidently, the linear system (13)’s equivalent

matrices, in turn, rely on the response statistics. It is

noteworthy that if higher nonlinearities are contained

in the original system (3), higher-order statistics will

arise in the coefficients and can be determined by

repeated application of the identity relation (19).

Further, the second-order moments of system (13)

can be obtained by any of the existing analytical

methods. Herein, the moment equation method

[36, 37] is employed to attain the closed form of the

second-order moments. To this end, the equivalent

linearization system (13) can be further expressed in

the Itô stochastic differential equation

dx sð Þ ¼ F x; sð Þdsþ G x; sð ÞdB sð Þ ð24Þ

where

F x; sð Þ ¼

X0

�lX0 � k11X þ vV

V 0

vlX0 þ vk11X � bV 0 � cþ v2ð ÞV

2

6

6

6

4

3

7

7

7

5

;

G x; sð Þ ¼

0
ffiffiffiffiffiffi

2D
p

0

�v
ffiffiffiffiffiffi

2D
p

2

6

6

6

4

3

7

7

7

5

ð25Þ

Consider a polynomial function

M ¼ Xn1X0n2Vn3V 0n4 , according to Itô’s lemma, we

have

dM ¼ oM

oX
dX þ oM

oX
dX0 þ oM

oV
dV þ oM

oV 0 dV 0

þ 1

2

o2M

oX02 dX0ð Þ2þ 1

2

o2M

oV 02 dV 0ð Þ2

þ o2M

oX0oV 0 dX0ð Þ dV 0ð Þ

ð26Þ

Recall that in the Itô sense, the state variables in x

are independent of dB(s). Taking the mathematical

expectation on both sides of Eq. (26) and keeping the

terms up to the order ds yields
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dE M½ �
ds

¼ dmn1;n2;n3;n4

ds
¼ n1mn1�1;n2þ1;n3;n4

� ln2 þ bn4ð Þmn1;n2;n3;n4

� n2k11mn1þ1;n2�1;n3;n4
þ vn2mn1;n2�1;n3þ1;n4

þ vln4mn1;n2þ1;n3;n4�1

þ vn4k11mn1þ1;n2;n3;n4�1

þ n4v
2D n4 � 1ð Þmn1;n2;n3;n4�2

þ n3mn1;n2;n3�1;n4þ1

þ n2D n2 � 1ð Þmn1;n2�2;n3;n4

� cþ v2
� �

n4mn1;n2;n3þ1;n4�1

� 2vn2n4Dmn1;n2�1;n3;n4�1

ð27Þ

Selecting the pairs of the power indices

n1; n2; n3; n4ð Þ to satisfy the relationship

n1 þ n2 þ n3 þ n4 ¼ 2, the moment differential equa-

tions can be derived as

d

ds
E X2
� �

¼ 2E XX0½ �; d

ds
E V2
� �

¼ 2E VV 0½ �
d

ds
E XX0½ � ¼ E X02� �

� lE XX0½ � � k11E X2
� �

þ vE XV½ �
d

ds
E XV½ � ¼ E X0V½ � þ E XV 0½ �

d

ds
E XV 0½ � ¼ E X0V 0½ � þ vlE XX0½ � � bE XV 0½ �

þ vk11E X2
� �

� cþ v2
� �

E XV½ �
d

ds
E X02� �

¼ 2D� 2lE X02� �

� 2k11E XX0½ � þ 2vE X0V½ �
d

ds
E X0V½ � ¼ E X0V 0½ � � lE X0V½ � � k11E XV½ � þ vE V2

� �

d

ds
E X0V 0½ � ¼ vE VV 0½ � þ vlE X02� �

þ vk11E XX0½ �

� k11E XV 0½ � � lE X0V 0½ � � bE X0V 0½ �
� cþ v2
� �

E X0V½ � � 2vD

d

ds
E V 02� �

¼ 2vlE X0V 0½ � þ 2vk11E XV 0½ �

� 2bE V 02� �

� 2 cþ v2
� �

E VV 0½ � þ 2v2D

d

ds
E VV 0½ � ¼ E V 02� �

þ vlE X0V½ � þ vk11E XV½ �

� bE VV 0½ � � cþ v2
� �

E V2
� �

ð28Þ

By setting the time derivatives of the moments to

zero in Eq. (28), we obtain the steady-state solutions

of above moment equations as follows

E V2
� �

¼ v2D bk11 þ clð Þ
blk2

11 þ b2lþ b l2 þ v2ð Þ þ v2l� 2
� �

bk11 þ blc v2 þ l2 þ cþ blð Þ þ v2cl2

ð29aÞ

E X02� �

¼
D bk2

11 þ b2 þ blþ v2 � 2c
� �

bk11 þ bc l2 þ cþ blð Þ þ v2cl
� �

blk2
11 þ b2lþ b l2 þ v2ð Þ þ v2l� 2cl

� �

bk11 þ blc v2 þ l2 þ cþ blð Þ þ v2cl2

ð29bÞ

E X2
� �

¼
D bk2

11 þ b2 þ bl� 2c
� �

bk11 þ bc v2 þ l2 þ cþ blð Þ þ v2cl
� �

blk2
11 þ b2lþ b l2 þ v2ð Þ þ v2l� 2cl

� �

bk11 þ blc v2 þ l2 þ cþ blð Þ þ v2cl2

ð29cÞ

Substituting the expression of E X2½ � into the

relationship k11 ¼ 1 þ 3aE X2½ �, and taking a cyclic

procedure on it, the convergence value of k11 and

E X2½ � can be determined. Meanwhile, the averaged

output power has the simple form

E Pout½ � ¼ bE V2
� �

ð30Þ

4.2 Efficiency calculation

Efficiency, the ratio of the net electrical output power

to the net mechanical input power, is an important

performance metric. Based on the efficiency analysis

of directly excited [50] and parametrically excited [53]

PEHs, the input mechanical energy, actually, is

influenced by the phase difference between the

dynamical response and the deterministic excitation.

Our recent study has found that by taking advantage of

the energy balance equation of electromechanical

coupling system, mathematical expressions on the

input mechanical energy and the output electrical

energy can be generated naturally and rational

efficiency analysis can be achieved [49, 53]. In this

subsection, the energy conversion efficiency of the

NPEHs with a resonant circuit under white Gaussian

noises is examined via the mean power balance

equation.

The Itô stochastic equation describing the NPEHs

with a resonant circuit has an invariant H expressed as

follows

H ¼ 1

2
1 þ v2
� �

X2 þ 1

2
X02 þ 1

4
aX4 þ 1

2
vX þ Vð Þ2

þ 1

2c
vX0 þ V 0ð Þ2�vX vX þ Vð Þ

ð31Þ

The differential of this invariant in the Itô sense

becomes
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dH ¼ oH

oX
dX þ oH

oX
dX0 þ oH

oV
dV þ oH

oV 0 dV 0 þ 1

2

o2H

oX02 dX0ð Þ2

þ 1

2

o2H

oV 02 dV 0ð Þ2þ o2H

oX0oV 0 dX0ð Þ dV 0ð Þ

ð32Þ

Taking the mathematical expectation on both sides

of Eq. (32) and keeping the terms up to the order ds
yields the mean power balance equation

(a) (b)

0 2 4 6 8 10
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20
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50
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20

MCS
50

MCS
100

Fig. 4 Variation of (a) mean square voltage and (b) efficiency with time constant c. b = 1, l = 0.1, v = -0.6, 2D = 0.05, a = 0 (ELT0

and MCS0), a = 10 (ELT10 and MCS10), a = 20 (ELT20 and MCS20), a = 50 (ELT50 and MCS50), a = 100 (ELT100 and MCS100)

(a) (b)

Fig. 5 Variation of (a) mean square voltage and (b) efficiency with nonlinearity a. b = 1, l = 0.1, v = -0.6, 2D = 0.05, c = 0 (ELT0

and MCS0), c = 1 (ELT1 and MCS1), c = 2 (ELT2 and MCS2), c = 3 (ELT3 and MCS3), c = 4 (ELT4 and MCS4)
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dE H½ �
ds

¼ D� lE X02� �

� vb
c
E X0V 0½ � � b

c
E V 02� �

ð33Þ

where D is the net input power supplied by ambient

noise, denoted by E Pin½ �, lE X02½ � represents the power

dissipated by the mechanical damping. Revisiting

Eq. (28), in the steady state, the net output power

bE V2½ �, dissipated by the load resistance and denoted

by E Pout½ �, is equal to vbE X0V 0½ �=c plus bE V 02½ �



c.

Therefore, the efficiency of the NPEHs under white

Gaussian noises can be given in the following simple

form

g ¼ E Pout½ �
E Pin½ � ¼

bE V2½ �
D

ð34Þ

Evidently, the averaged power input is just in

proportion with respect to the noise intensity. We note

that the variation of the efficiency with respect to the

dimensionless system parameters is actually the same

as that of the averaged output power, due to the fact

that the averaged input power is a constant for the

NPEHs excited by white Gaussian noises.

Equation (29), Eq. (30), and Eq. (34) indicate that

performance metrics are associated with all the

dimensionless parameters involving the mechanical

system and the electrical system. Therefore, in order to

achieve a high performance, we need take compre-

hensive consideration of all factors, including ambient

excitation, material, structure and circuit element.

5 Results and discussion

In this section, mean square voltage and energy

conversion efficiency (averaged power output) as

typical performance metrics obtained in Sect. 4 by

means of equivalent linearization technique (ELT) are

now examined. In addition, Monte Carlo simulations

(MCS) of the original system (3) are implemented to

validate the theoretical results, as expressed by circles

and dots in Figs. 4, 5, 6, 7, 8, 9.

Figure 4 shows that the variation of the mean

square voltage and the efficiency (averaged power

Fig. 6 Variation of mean square voltage (ELTV and MCSV)

and efficiency (ELTE and MCSE) with time constant b. l = 0.1,

v = -0.6, 2D = 0.05, a = 10, c = 2

Fig. 7 Variation of mean square voltage (ELTV and MCSV)

and efficiency (ELTE and MCSE) with mechanical damping l.

b = 0.6, v = -0.6, 2D = 0.05, a = 10, c = 2

Fig. 8 Variation of mean square voltage (ELTV and MCSV)

and efficiency (ELTE and MCSE) with electromechanical

coupling v. b = 0.6, l = 0.1, 2D = 0.05, a = 10, c = 2
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output) with respect to the time constant c for five

different nonlinearities. It is evident that c has quite an

influence on the performance metrics of the NPEHs

with a resonant circuit. As c is increased, the mean

square voltage and efficiency (averaged power output)

peak at the same certain optimal value corresponding

to a nonlinearity level. For the linear scenario (a = 0),

the maximum performance metrics with a resonant

circuit arises when the intrinsic frequency of the

electrical system is equal to that of the mechanical

system, which can be regarded as a perfect matching

condition between two oscillatory systems. As the

nonlinearity a is increased, the optimal c shifts toward

the larger value but the maximum value of perfor-

mance metrics almost keeps a constant, just like the

linear scenario. This intriguing phenomenon can be

explained that the increased nonlinearity increases the

nonlinear frequency of the mechanical system and

thus drives the electrical system to shift its linear

resonant frequency toward the larger value to maxi-

mize the energy transport from the mechanical system

to the electrical system. Note that the results obtained

by ELT have a perfect match with those of MCS when

the linear scenario is considered and the error is

slightly amplified when the nonlinearity increases.

On the other hand, Fig. 5 depicts the variation of

performance metrics with respect to the nonlinearity a
for five different time constant c. It is clearly seen that

the variation law of performance metrics contains two

different features depending on c. Specifically, when c
is smaller than the optimal value of the linear scenario,

as a is increased, the performance metrics decreases

monotonically. However, when c is larger than the

optimal value of the linear scenario, as a is increased,

the performance metrics peak at the different optimal

a value, but share the same maximum value as that of

the linear scenario (a = 0, c = 1). That means that, for

real applications, it is important even for PEHs which

do not intentionally incorporate nonlinearities. To be

specific, since most mechanical systems of PEHs

exhibit some inherent stiffness nonlinearities with

hardening cubic type, once its nonlinear coefficients

are determined by analytical or experimental method,

then, the optimal operating time constant c of the

electrical system should be chosen such that the

appropriate combination of nonlinearity and time

constant can help maximize the performance metrics.

Such coupling effect between nonlinearity and time

constant as a unique characteristic, in contrast to the

NPHEs with a purely resistive circuit [39], actually,

provide an opportunity to extend the scope of appli-

cations of the NPEHs with a resonant circuit.

Picking up a set of optimal parameters (a = 10,

c = 2), the influences of the time constant b, mechan-

ical damping l, electromechanical coupling v, and

also ambient noise intensity 2D on performance

metrics are shown in Figs. 6, 7, 8, 9, respectively.

For the purely inductive circuit scenario (b = 0), as we

(a) (b)

Fig. 9 Variation of mean square voltage (ELTV and MCSV) and efficiency (ELTE and MCSE) with noise intensity 2D (a) 0–0.1,

(b) 0.1–50. b = 0.6, l = 0.1, v = -0.6, a = 10, c = 2
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expect, the mean square voltage reaches the maximum

value. As b is increased gradually from zero, the mean

square voltage decreases dramatically, and then tends

to a small value. Nevertheless, the efficiency increases

rapidly until reaching the maximum value at b = 0.6

and then decrease slowly, see Fig. 6. Figure 7 demon-

strates that the performance metrics monotonically

decrease as the mechanical damping l is increased. It

is noteworthy that, if unnecessary loss in the electrical

system, such as dielectric loss and current leakage, is

ignored, mechanical damping as the only irreversible

dissipation factor, will adversely influence the perfor-

mance, and the overall energy conversion efficiency

delivered by the ambient noise to the net electrical

energy tends to 100% as l is infinitely reduced

[49, 50, 53]. As shown in Fig. 8, the stronger the

electromechanical coupling is, the higher performance

the NPEHs occupy. In fact, performance of the PEHs

with a resonant circuit can converge toward the

maximum faster than the PEHs with purely resistive

circuit as the coupling level is enhanced [49]. Conse-

quently, there is no need to infinitely improve the

electromechanical conversion factor of piezoelectric

materials. Figure 9 reveals that the mean square

voltage monotonically increases as the noise intensity

is increased, while the efficiency peak at the optimal

value 2D = 0.05 and then drop dramatically as the

noise intensity is increased further, that is, the

variation law of the mean square voltage with respect

to the noise intensity does not coincide with that of the

efficiency. Moreover, the result of the NPEHs with a

resonant circuit depicted by Fig. 9 is different with

that of the linear scenario (refer to [49]). In the linear

scenario, mean square voltage and averaged power

output proportionally increase with the noise intensity,

while efficiency always remains constant. The features

in this nonlinear scenario can actually be explained

that increased noise intensity essentially alters the

values of optimal parameters combination involving

the nonlinearity a and time constant c. It is imaginable

that dynamic tuning the values of optimal parameters

combination in this nonlinear scenario will lead the

performance to degenerate to the linear scenario. In

addition, it is inspiring to see that, although the error

between ELM and MCS is gradually amplified with

the noise intensity, the error will always be controlled

within 20% even if the NPEHs are excited by severe

random noises.

6 Conclusion

In this investigation, we theoretically and numerically

study the performance of a nonlinear piezoelectric

energy harvester with a resonant circuit operating

under broadband random excitations. New dimen-

sionless transformations which can seize the essential

property of two-way electromechanical coupling are

employed to attain a dimensionless dynamical system.

Two scenarios, namely the purely inductive circuit and

the resistive–inductive circuit, are considered. The

exact stationary solution and the direct equivalent

linearization solution available to the strong two-way

coupling electromechanical system are, respectively,

obtained for such two scenarios. The variation law of

the performance metrics with dimensionless parame-

ters is revealed and the optimal parameter values for

which the performance is maximized are discussed.

Monte Carlo numerical simulations are also imple-

mented to validate the theoretical predictions.

For the purely inductive circuit scenario, the exact

stationary solution of probability density function of

the voltage output and the closed-form expressions of

the mean square voltage, velocity and displacement

are obtained. It is clearly seen that, in order to

maximize the mean square value of the voltage output,

the mechanical damping should be minimized and the

noise intensity should be as large as possible.

For the resistive–inductive circuit scenario, the

approximate solution of mean square voltage and

averaged power output are derived by the moment

method of random process theory, based on the

equivalent linear electromechanical system. Energy

conversion efficiency, the ratio of the electrical power

net output to the mechanical power net input, is also

analyzed by means of energy balance equation.

Results indicate that the maximum performance

metrics occur when the intrinsic frequency of the

electrical circuit system matches the nonlinear fre-

quency of the mechanical system. Selecting appropri-

ate parameters combinations involving nonlinearity a
and time constant c can design outperformed NPEHs.

The time constant b should also be optimized to attain

the maximum averaged power output and efficiency.

There seems to be a limit performance of the

harvesters as the electromechanical coupling contin-

uously enhances, that suggests researchers to reason-

ably evaluate the cost-effectiveness ratio of

piezoelectric materials. For the general passive
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NPEHs with fixed system parameters, from the

perspective of improving the efficiency, an optimal

noise intensity exists in the range of weak excitation

level. This inspires us to evaluate the harvester’s

performance using a set of figures of merit, such as

mean square voltage, averaged power output, effi-

ciency, etc. It is noteworthy that the direct equivalent

linearization method produces rational results even for

the severe noise and nonlinearity. That feature

immensely broadens the scope of possible application

of the direct equivalent linearization method.

The analytical expressions derived in this paper are

useful in quantifying the performance of the NPEHs

with a resonant circuit when the mechanical system is

excited by white Gaussian noises. The importance of

the present study is to provide a simple but effective

analysis strategy by applying the method of nonlinear

stochastic dynamics combined with the energy bal-

ance equation to design vibration-based energy har-

vesters in the more practical setting.
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