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a b s t r a c t

Materials for wave control need to be both anisotropic and spatially distributed. Traditional method
is to first design a microstructure with anisotropic property, and then change geometric parameters
of the microstructure according to analytical theory or numerical calculation. Unlike the traditional
method, mechanical properties of digital materials can be easily tuned by changing the 0/1 ordering
without changing the geometry of digital materials. However, determining suitable orderings of digital
materials according to target properties remains a key challenge. In this paper, we establish a digital
structural genome to solve this problem. By combining the developed machine learning method with
finite element method, we can quickly calculate elastic wave properties of digital materials with all
orderings and finally establish a digital structural genome quickly and accurately. The complete digital
structural genome provides us with a fast approach to design anisotropy and spatial distribution of
materials. Our research unequivocally shows that the establishment of a complete structural genome
database of digital materials is of great significance for inverse design multifunctional structures, and
can opens an avenue to achieve wave control on demand, such as corner cloak and acoustic carpet
cloak.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Wave control has been widely used in different areas, such
s vibration isolation [1,2], wave guiding/modulation [3–6], sub-
avelength lensing [7], focusing [8] and cloaking [9–11]. To
chieve complex wave control, mechanical properties of mate-
ials in functional structures need to be both anisotropic and
istributed spatially [9,10,12]. To realize the required mechanical
roperties, traditional method is to first design a microstructure
ith anisotropic property, and then gradually change geometric
arameters of the microstructure according to analytical theory
r numerical calculation [4,8]. Unlike the traditional method, the
ethod based on digital materials provides a new designing way

or wave control [13–16]. The representative volume element
RVE) of digital materials consists of two different unit cells
0/1-bit unit cell). By introducing the 0/1 ordering of RVE as a
ew designing degree of freedom, the anisotropic and spatially
istributed properties of materials can be easily obtained by
hanging the ordering of a RVE without changing the geometric
arameters [15,16]. If it is possible to quickly determine a suitable
rdering of digital materials according to the target properties,
unctional structures for elastic wave control can be built by using

∗ Corresponding author.
E-mail address: zhangkai@bit.edu.cn (K. Zhang).

1 These authors contribute equally to this work.
ttps://doi.org/10.1016/j.eml.2021.101372
352-4316/© 2021 Elsevier Ltd. All rights reserved.
discretized digital materials with different orderings, as shown
in Fig. 1a. However, the relations between orderings of digital
materials and their corresponding properties are not analytical,
it is infeasible to use analytical methods to find suitable order-
ings. Numerical methods, such as finite element method and
optimization method, would be time-consuming and difficult for
determining a large quantity of orderings. So far, determining
the orderings of digital materials according to required properties
remains a key challenge.

With advancements in computing technology, machine learn-
ing (ML) has been developed to fit mapping between complex
and multidimensional data [17,18]. While ML has already been
successfully applied to computer science [19,20], medicine [21],
and autopilot [22], it rises to prominence only recently in material
science. Numerous properties of crystals and molecular struc-
tures, including the glass transition temperature [23], modulus
[24,25], bandgap [26,27], and topological invariants [28–30], have
been predicted by using machine learning models. However, ML
method has not been used to investigate the effect of different
orderings of digital materials on their mechanical properties. In
this paper, a digital structural genome containing a one-to-one
correspondence between orderings and mechanical properties of
materials is established by a data-driven ML method with high
accuracy. First, data sets which contain digital materials with
different orderings and their corresponding wave properties are

generated by finite element method (FEM). Then, a designed ML
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Fig. 1. Definition and application of digital materials. (a) Discretize functional structure into the structure composed of digital materials. (b) RVEs of digital materials
ith three different orderings. (c) Dispersion curves of RVEs with different orderings.
odel is trained by feeding the data set. Using the well-trained
L model, we predict wave properties of digital materials with
ll orderings to finally establish a complete digital structural
enome. By using the digital structural genome, digital materials
ith suitable orderings can be quickly found to realize complex
nd precise wave control, such as corner cloak and carpet cloak.

. Methods

.1. Generating data by FEM

Digital materials with size of 5 × 5 are shown in Fig. 1b. Two
different unit cells are shown in Fig. 1c, which are composed
of PLA (Young’s modulus, Poisson’s ratio, density are 3.5 GPa,
0.36, 1250 kg/m3, respectively). The stiffness and density of one
unit cell (10 mm × 10 mm square entity) are 3.5 GPa and
1250 kg/m3, and the stiffness and density of another (10 mm
× 10 mm square embedded with a 9.6 mm × 9.6 mm cavity,
0.2 mm wall thickness) are 0.06 GPa and 98 kg/m3. The unit cell
with large stiffness and density is chosen as 1-bit, and another
is 0-bit. To obtain stronger anisotropy, we not only remove the
thin wall but also increase the size of orderings. Another digital
material composed of aluminum is designed with the size of 40
× 40. More details of 40 × 40 digital materials could be found in
Supplementary Information. We combine COMSOL Multiphysics
5.5 to design a program of generating samples for training and
testing. Since the sample space of 5 × 5 digital materials obeys
25-fold Bernoulli distribution, samples for training must follow
the same distribution as the sample space. The program auto-
matically generates RVEs according to the required distribution

and then calls COMSOL to calculate dispersion curves of each RVE.

2

Free triangular element is used to mesh RVEs. Bloch periodic con-
ditions are applied to all boundaries of RVE. The slopes of the first
and second acoustic branches in dispersion curves represent the
wave velocities of quasi-transverse wave and quasi-longitudinal
wave. The program calculates and extracts the values of slopes
in dispersion curves along different three directions, including X-
axis, Y -axis and 45◦ directions. Finally, wave velocities of digital
materials with the corresponding orderings could be saved as
data sets. For 5 × 5 digital materials, 50,000 samples are used for
training and 10,000 samples for testing. For 40 × 40 digital ma-
terials, 150,000 samples are used for training and 30,000 samples
for testing.

2.2. Building ML model

Convolutional neural networks (CNNs) are applied to fit the
mapping between orderings and wave properties. Google’s deep
learning framework TensorFlow 1.7.0 is used to build the ML
model [31]. The structure of the ML model, which consists of nine
convolutional layers and three fully connected layers, is shown in
Fig. 2b. To ensure that outputs have the same dimensions as in-
puts, both convolution kernels with the size of 3 × 3 and ‘‘SAME’’
padding are used after each convolution. Details of the ML model
can be found in the Supplementary Information. Six different
models are built for longitudinal/transverse wave velocities along
X-axis, Y -axis and 45◦ directions. All variable parameters of the
ML model are determined by minimizing the mean relative error
(MRE) between wave velocities calculated by FEM and outputs by
the ML model. To further optimize the ML model, it is necessary
to avoid overfitting and ensure convergence. Here, we propose
two key operations: dropout functions are used between the
last three fully connected layers, while learning rate is set as
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Fig. 2. Complete process of the proposed machine learning method. (a) Using FEM to calculate dispersion curves of digital materials, and extracting wave velocities
from dispersion curves at longwave limit. (b) ML model consisting of nine convolutional layers and three fully connected layers to fit mapping from orderings to
wave properties. (c) Using the well-trained ML model to generate a digital structural genome. Selecting materials with suitable orderings from the digital structural
genome according to target properties.
an exponential decay function instead of a constant or linear
function. The training process can be found in Supplementary
Fig. 1.

10,000 samples from the testing set are fed into the well-
trained ML models to verify accuracy of the ML model. The MRE
for longitudinal/transverse wave velocities along the X-axis, Y -
xis and 45◦ directions are all less than 1.5%. The testing results
re shown in Supplementary Fig. 1. Based on testing, we find that
t takes only 0.27 s to predict the wave properties directly from
he ordering by using the well-trained ML model, while the FEM
eeds about 1000 s to obtain them under the same condition of
omputing power, approximately 3700 times the time taken by
he ML model.

.3. Generating digital structural genome

Since the well-trained ML model is significantly more effi-
ient than FEM in calculating wave properties, a complete digital
tructural genome can be generated. First, we use permutation
unction to generate all orderings (225) and save them as files.
hen, above files are automatically imported into the well-trained
L model to obtain corresponding properties. All orderings and

heir properties compose a complete digital structural genome. It
akes about 6 days to generate the digital structural genome by
sing a computer, whose CPU, RAM and GPU are Intel Xeon Gold
154, 1 TB and NVIDIA GeForce RTX 2080, respectively. As shown
n Fig. 2c, we can obtain the most suitable orderings by searching
he minimal relative error between target wave properties and
ata in our digital structural genome.

. Results

.1. Characteristics of structural genome

In the digital structural genome, the wave properties of digital
aterials with all orderings (225) are plotted in Fig. 3a–c. The
ensity of 5 × 5 digital materials can be adjusted from 192 kg/m3

o 1250 kg/m3. Wave velocity of longitudinal wave along X-axis
hanges from 888 m/s to 2127 m/s, while that along Y -axis direc-
ions varies from 897 m/s to 2130 m/s. Similarly, wave velocity
f transverse wave can be changed from 66 m/s to 975 m/s along
3

X-axis and from 62 m/s to 1004 m/s along Y -axis. The minimum
wave velocities of longitudinal and transverse waves along 45◦

directions are 742 m/s and 975 m/s, which can be tuned to
2127 m/s and 1025 m/s, respectively. Compared with traditional
methods, the method using digital structural genome can design
properties by changing orderings of 0/1-bit unit cells, when ratio
of 0/1-bit unit cells is fixed. For example, when the ratio is 1.5 (15
1-bits and 10 0-bits), wave velocities of longitudinal wave along
X-axis can be changed from 888 m/s to 1791 m/s.

The relations between orderings and their corresponding
properties are governed by Christoffel equation, where Γim, ρ,
c is Christoffel acoustic tensor, static effective density, wave
velocity, respectively.

(
Γim − ρc2δim

)
um = 0. It is noted that,

when the materials become anisotropic, the mode shapes are
quasi-transverse and quasi-longitudinal modes, respectively. The
method of determining and separating modes of anisotropic
materials could be found in Supplementary Information. We
could derive the effective elastic tensor at longwave limit through
Christoffel equation when wave velocities of quasi-transverse
and quasi-longitudinal wave are obtained. More details about
the derivation could be found in Supplementary Information.
Slowness profiles in Fig. 3d show effective elastic tensors of
5 × 5 digital materials. For 40 × 40 digital materials, their
slowness profiles are shown in Fig. 3e and f. Each closed curve
in the Fig. 3d–f represents the anisotropy of digital material
with a certain ordering. When the slowness profile is almost
circular, the effective elastic tensor tends to be isotropic. The
greater the difference between the direction of group velocity
and wavevector, the stronger the anisotropy of the materials. We
define R = C11/C22 to characterize degree of anisotropy, where
C11, C22 is the stiffness along X-axis and Y -axis, respectively. For
5 × 5 digital materials, R ≈ 1. This is consistent with the results
shown in Fig. 3d, where slowness profiles are almost circular. For
40 × 40 digital materials, 0.0011 < R < 985.2170. As seen
in Fig. 3e and f, some slowness profiles are no longer circular.
In the following functional design, according to the required
distribution of elastic tensor and density, we could find orderings
with matched properties in digital structural genome through
Christoffel equations.
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Fig. 3. Structural genome. (a) Velocities of longitudinal and transverse waves with varying numbers of 0-bits along the X-axis (a), Y -axis (b), 45◦ direction (c). (d)
lowness profiles of 5 × 5 digital materials (L-wave). (e) Slowness profiles of 40 × 40 digital materials (L-wave). (f) Slowness profiles of 40 × 40 digital materials
T-wave).
.2. Wave control by designing anisotropy of materials

The digital structural genome established by the proposed
ethod makes it easy to design functional structures for wave
ontrol. We control the propagated direction of energy, i.e., the
irection of group velocity, which is the direction of outer norm
ector of slowness profiles (Fig. 3d–f). Using anisotropic mate-
ials is an effective method to realize the wave control men-
ioned above. Here we use the digital structural genome to design
nisotropy of materials. We consider a scenario that longitudinal
ave is imposed on an internal boundary along 60◦ direction,
nd expect the direction of energy to be deflected 30◦, 15◦ and
◦, respectively. To achieve the desired function of wave control,
ased on the digital structural genome, we first calculate angles
etween direction of group velocity and the wavevector of the
mposed longitudinal wave. Then, we search three orderings of
igital materials by matching the corresponding angles to 30◦,
5◦ and 0◦, respectively. Three orderings and corresponding slow-
ess profiles are shown in Fig. 4a. For each ordering, 30 × 60 RVEs
re used to compose a structure, and FEM simulation is carried
ut to verify the desired function of the structure. We conduct
imulations in COMSOL Multiphysics 5.5. As shown in Fig. 4b.
e impose a Gaussian beam with a frequency of 3 kHz along
0◦ direction. All boundaries of the structures are low reflection
oundary (LRB). Free triangular element is used to mesh the
tructure. As the results shown in Fig. 4b, the angles deflect
0◦, 15◦ and 0◦ in the structures composed of three different
rderings, respectively, which are consistent with the angles from
he slowness profiles in Fig. 4a. This indicates that we can use the
igital materials with different orderings to realize deflection of
nergy.
Based on designing anisotropy of materials, we can further

esign a corner cloak, which makes an object invisible for acoustic
ave. The schematic of the corner cloak is shown in Fig. 4c.
e use the transformation theory to calculate parameters of the

orner cloak. The transformation gradient can be written as

=
∂x
∂X

=

⎡⎢⎢⎣
1 0 0

0
b
c

0

⎤⎥⎥⎦

0 0 0

4

According to the transformation theory, the elastic tensor and
density of the materials in the corner cloak can be easily derived
as

C = κ0

⎡⎢⎢⎣
c
b

1 0

1
b
c

0

0 0 0

⎤⎥⎥⎦
ρ ′

=
c
b
ρ0

where κ0 and ρ0 are the bulk modulus and density of water, and
b/c = 2/3. It is obvious that R = 1.5, which can be achieved
by 40 × 40 digital materials. Therefore, we search the suitable
ordering in the digital structural genome (40 × 40) according
to the transformed elastic tensor and density. We use the digital
material with suitable ordering to compose the triangular corner
cloak, shown in Fig. 4c. Simulations are conducted in COMSOL
Multiphysics 5.5 to verify the corner cloak. Simulation results are
shown in Fig. 4c–d, in which a Gaussian beam with a frequency
of 4.4 kHz is imposed at the left half of the upper boundary.
The two bottom boundaries are free boundary, while others are
plane radiation condition. The results indicate that without the
corner cloak, an incident wave will be reflected at the boundary
according to Snell’s law. But when the corner cloak is applied, the
incident wave propagates along the preset path, which forms an
area that will not be detected by acoustic wave. Based on machine
learning, the digital structural genome includes complete order-
ings which can offers enormous microstructural configuration
compared with traditional methods. Therefore, when designing
anisotropy of materials to control wave, we only need match the
target anisotropy by searching in the digital structural genome
rather than designing the microstructure of RVE.

3.3. Wave control by designing spatially distributed properties of
materials

One of the most famous applications of the transformation
acoustic technique is the carpet cloak. A key challenge is that ma-
terial properties of carpet cloak need to be spatially distributed.
Here, we combine digital structural genome with quasi-conformal
transformation method to design an acoustic carpet cloak. The
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Fig. 4. Wave control by designing anisotropy of materials. (a) Three typic slowness profiles. (b) Achieving directional transmission of energy by using 5 × 5 digital
aterials. (c) Schematic of corner cloak, the corresponding ordering, results of corner cloak. (d). Result without corner cloak.
arpet cloak in this work is shown in Fig. 5a. The bottom-line
C is a parametric curve described by y = 0.2 cos10 (πx/3),

and −0.8 ≤ x ≤ 0.8. The lengths of the carpet cloak are AD
= 2 m and DE = 1 m. First, we map the carpet cloak to the
physical space, i.e., the bottom side of carpet cloak keeps as a
line, and calculate the transformation gradient (Jacobian matrix)
of each point in carpet cloak. According to the quasi-conformal
mapping theory, the Jacobian matrix J can be obtained by solving
the Laplace equation ∇

2u = 0 with Dirichlet boundary condition
and Neumann boundary condition as{
n · ∇u

⏐⏐ABCD,EF = 0 , u
⏐⏐AF ,DE = x

n · ∇v
⏐⏐AF ,DE = 0 , v |EF = y, v |ABCD = 0

We use the partial differential equation solver in COMSOL Multi-
physics 5.5 to solve above Laplace equation. Thus, we obtain the
Jacobian matrix J of each point in the transformed region. Then,
according to the conformal mapping theory, the distribution of
transformed density and bulk modulus can be easily obtained as{

ρ = ρ0
√
1/det (J)

κ = κ0

√
det (J)

The determinant of Jacobian matrix and its’ discrete approxi-
mation are shown in Fig. 5b and e. The discrete approximation
in each unit is the area average of the determinant of Jacobian
matrix. To simplify the design of the cloak, we divide the trans-
formed region into six parts as shown in Fig. 5e. For each part,
we first determine the ratio of 0/1-bit unit cells in RVE according
target density. Then, we determine orderings of RVE to meet the
distribution of bulk modulus. The selected orderings of each part
are shown in Fig. 5d. When we search orderings in the structural
genome, we would choose orderings which could be connected
to others directly. But it should be noticed that a few orderings
may not be connected to other orderings directly, so methods in
Supplementary Information are used to ensure the connection
etween different orderings. The structure composed of materi-
ls with the above orderings is shown in Fig. 5e. To verify the
unction of structure we designed, we carry out the simulation in
OMSOL Multiphysics 5.5. The results are shown in Fig. 5c and f,
n which a Gaussian beam of frequency 3.0 kHz is incident at 45◦
5

from the left side. The bottom boundary is the rigid boundary,
while the other three boundaries are plane radiation conditions.
Fig. 5c shows the result without carpet cloak, and it is obvious
that the incident plane wave is scattered by the rigid bottom
boundary. Differently, the reflected wave keeps as the plane wave
and reflects along 45◦ when the carpet cloak composed of digital
materials is used (Fig. 5f). The Cosine Similarity Index (CSI) is used
to evaluate the performance of the carpet cloaking. CSI is defined
as [32]:

CSI =
Pr

· Po

|Pr | |Po|
=

∑
P r
i P

o
i√∑(

P r
i

)2√∑(
Po
i

)2
where Pr represents pressure amplitude of the rigid plane, and
Po represents pressure amplitude of rigid scatter with or without
cloak. CSI ranges from −1 to 1. The larger CSI, the better the
carpet cloaking performance. The sampling area for calculating
CSI is marked by black dashed box in Fig. 4c and f, which is a 4 m
× 2 m rectangle region. Without the carpet cloaking, CSI is 0.67,
while with the carpet cloaking, CSI is 0.90. The results indicate
that the designed carpet cloak possesses excellent capability of
cloaking. More importantly, when the geometry of carpet cloak
changes, the digital structural genome can still provide us with
digital materials with suitable orderings to achieve the carpet
cloak. Details of the carpet with different geometry can be found
in Supplementary Information.

Compared with traditional methods, we only use two simple
unit cells (0/1-bit) to realize distributed properties, which make
a balance between the simplicity of unit cells and complexity of
wave control. Digital structural genome solves the key problem of
determining the suitable orderings according to the distribution
of target properties. Combined with active control algorithm,
our proposed method can be used as a real-time strategy to
achieve novel tunable functions, such as vibration isolation, wave
guiding/modulation, subwavelength lensing and focusing.

4. Conclusion

In this paper, we design a machine learning model which
can be used to predict wave properties of digital materials with
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Fig. 5. Design carpet acoustic cloaking by using digital materials. (a) The schematic of carpet acoustic cloak. (b) The determinant of transformation gradient of each
oint. (c) Total pressure field of rigid scatter and the sampling area. (d) The selected orderings for carpet cloak. (e) The discrete approximation of the determinant
f transformation gradient. (f) Total pressure field of the cloak and the sampling area.
ifferent ordering. Based on the machine learning model, digital
tructural genomes are quickly established in which digital ma-
erials and their properties have a one-to-one correspondence.
he digital structural genome provides us a fast approach to find
igital materials with the most suitable orderings according to
arget properties. the proposed method can be applied to achieve
ome design of functional structures such as corner cloak and
arpet cloak. Its high accuracy and efficiency show that the pro-
osed method significantly reduces the time needed for inverse
esign, and can be used for novel tunable function with real-time
trategy.
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