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Origami-Based Bistable
Metastructures for Low-
Frequency Vibration Control
In this research, we aim to combine origami units with vibration-filtering metastructures. By
employing the bistable origami structure as resonant unit cells, we propose metastructures
with low-frequency vibration isolation ability. The geometrical nonlinearity of the origami
building block is harnessed for the adjustable stiffness of the metastructure’s resonant unit.
The quantitative relationship between the overall stiffness and geometric parameter of the
origami unit is revealed through the potential energy analysis. Both static and dynamic
experiments are conducted on the bistable origami cell and the constructed beam-like
metastructure to verify the adjustable stiffness and the tunable vibration isolation zone,
respectively. Finally, a two-dimensional (2D) plate-like metastructure is designed and
numerically studied for the control of different vibration modes. The proposed origami-
based metastructures can be potentially useful in various engineering applications where
structures with vibration isolation abilities are appreciated. [DOI: 10.1115/1.4049953]
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1 Introduction
Metamaterials are materials with unique properties that are not

found in natural materials, which were first introduced in the electro-
magnetic field [1]. Then, they have expanded to the field of acoustic
and elastic waves [2,3]. By designing the subwavelength-scale
microstructure, elastic metamaterial can possess peculiar effective
properties, such as negative mass density/bulk modulus [4–6] and
odd elasticity [7–9]. As the metamaterial-based finite structures,
metastructures possess excellent vibration isolation ability, espe-
cially in the low-frequency range [10,11], which can be very benefi-
cial in aerospace and automotive industries where engineering
structures with simultaneous lightweight and vibration-proof abili-
ties are much appreciated [12,13].
Comparing with the Bragg scattering-based phononic crystals,

elastic metamaterials/metastructures can have extremely low-
frequency bandgap that stops long-wavelength wave propagation.
Simple mass–spring models can clearly explain the local resonance
mechanism which introduces a negative effective mass density
inside the bandgap region [14]. Based on this, various metastructure
designs were proposed specifically for low-frequency vibration iso-
lation in some representative engineering structures such as bar,
beam, and plate. Yu et al. investigated flexural vibration isolation
in a Timoshenko beam with ring-like local resonators [15]. Zhu
et al. investigated a cantilever-mass locally resonant microstructure
which is manufactured by laser cutting a single-phase plate, and a
low-frequency bandgap in both in-plate and out-of-plate guided
waves was achieved [16]. Miranda et al. studied a plate-like metas-
tructure with three-dimensional (3D)-printed local resonators [17].
However, the unadjustable resonators fix the metastructures’ band-
gaps which are often too narrow to be useful in many practical
applications.
To solve the narrow bandgap problem, multi-resonator designs

were proposed in passive metastructures. Pai designed a bar-like
metastructure with different spring–mass absorbers separated into
multiple sections to achieve broadband wave absorption [18].
Chen et al. theoretically demonstrated that frequency range for

wave mitigation and/or absorption can be enlarged by introducing
interior dissipative multi-resonators in beam-like metastructures
[19]. The multi-resonator designs sacrifice the overall weight of
the metastructures to achieve the desired broadband purpose. On
the other hand, tunable resonator designs in active metastructures
can avoid added weight or remanufacturing and therefore, are
more suitable for real engineering applications. One way to
achieve tunability is to introduce shunted piezoelectric materials
and control circuits into the metastructures [20–23]. Zhu et al.
experimentally investigated the tunable dynamic behavior of a
metastructure, which is actively controlled by negative capacitance
piezoelectric shunting [22]. Li et al. designed a self-adaptive beam-
like metastructure that is digitally controlled for broadband flexural
wave attenuation [23]. However, active metastructures with piezo-
electric shunting require complicated circuit fabrications and, there-
fore, lead to high costs in realization. In order to avoid any
complexity associated with electromechanical or magneto-
mechanical coupling while still achieving the desired metastrutures’
tunability, new designs of reconfigurable microstructure in a full
mechanical context need to be considered.
Origami is a paper folding technique and becomes an emerging

research frontier due to its ability to transform two-dimensional
(2D) flat sheets into 3D complex structures with reconfigurable abil-
ities [24–27]. The overall mechanical properties of a 3D origami
structure can be programed by its pattern of crease, which intro-
duces various interesting mechanical properties, such as tunable
stiffness, multistability, and coupled deformations [28–31]. Once
obtaining the knowledge about the properties of the side plates,
the creases, and the folding procedure, the mechanical response
of the 3D origami structure can be completely determined. There-
fore, origami with highly designable and tunable abilities offers
new possibilities for functional metastructures. Previous origami-
based metastructure designs have demonstrated that they can
provide desired static as well as dynamic characteristics [32,33].
However, there are few studies on the dynamic properties, espe-
cially the vibration controllability, of the origami metastructures.
In this paper, we first designed a prismatic origami unit and ana-

lyzed its mechanical response based on the minimum energy prin-
ciple. Special attentions were paid on the relationship between the
adjustable stiffness and geometric parameters of the origami unit.
Then, based on the Timoshenko beam theory and transfer matrix
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method, theoretical modeling of a beam-like metastructure with the
origami-based resonant unit was proposed. Tunable bandgap was
obtained based on the bistable origami unit with adjustable stiffness.
Subsequently, both numerical and experimental investigations were
performed on the origami-based metastructure for vibration sup-
pression purposes. Finally, we extended the one-dimensional (1D)
beam-like metastructure to the 2D plate-like metastructure and
numerically proved its ability in the control of vibration modes.

2 Microstructure Design and Experimental Validation
of the Bistable Origami Unit
In this section, the kinematics of the origami unit is first investi-

gated. Then, a theoretical model is developed to obtain the mechan-
ical behavior of the origami unit. Finally, tunable mechanical
behavior as well as the bistability of the origami unit are validated
experimentally.

2.1 Origami Unit and Metastructure. Figure 1(a) shows the
geometry of the unfolded origami structure which can be defined by

three parameters. The first one is the circumradius of the regular
polygon R. Then, N is used to define the number of sides of the
polygon. The angle between OB (the line between the vertex and
the center of the circle) and BA (the edge of the polygon) is given
by α= π/2−π/N, while the angle between CA (the diagonal of par-
allelograms) and AB is β. Therefore, the last parameter is defined
as λ = β/α. By folding and pasting, the flat 2D pattern can be trans-
formed into the 3D origami unit, a polygonal twisted prism whose
top and bottom surfaces are regular polygons surrounded by paral-
lelograms. Each parallelogram can be divided into a pair of triangles
with a crease along its diagonal and a slit between each pair of adja-
cent parallelograms. These slits play important roles in the kinemat-
ics of the 3D origami since they provide the structure with freely
bendable edges. By changing the parameters N and λ, one can
obtain various 3D origami units with monostable or bistable abili-
ties, as shown in Fig. 1(b). By arranging the local resonators,
which are manufactured with the origami units and metal discs,
onto a metal beam, an origami-based beam-like metastructure is
formed and its vibration isolation ability is about to be investigated.
With the proposed origami unit as the key part of the meta-
structure’s cell, bistability-induced tunable bandgaps as well as

Fig. 1 Designed tunable origami-basedmetastructure. (a) Unfolded origami unit with crease patterns consist-
ing of mountain crease lines (shown as blue solid lines) and valley crease lines (shown as red dashed lines).
(b) Design space of the origami unit. Several origami units with varying N, λ are listed in the illustration. The
origami units with the geometric parameters represented by the left region aremonostable structures. The bis-
table structures are on the right. (c) Origami units are introduced into the metastructure which has excellent
vibration isolation. (d ) The bandgap can be easily tuned by switching stable state. (e) By reducing λ, bandgap
moves to a lower frequency range.
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parameter λ-controlled band structures are expected, as shown in
Figs. 1(d ) and 1(e), respectively.

2.2 Theoretical Modeling of the Origami Unit. For the kine-
matics of the 3D origami, the twist movements of the two surfaces
are coupled with their axial motions. Therefore, under the axial
deformation of the 3D origami, the triangular side plates undergo
bending and the overall structure demonstrates a complex twist cou-
pling deformation mode. In order to facilitate the following theore-
tical modeling and analysis, reasonable geometric constraints are
introduced into the deformation processes of the origami structures.
(1) The top and bottom two polygonal plates remain flat and are
only allowed to rotate about the vertical axis during the deformation
process. (2) The diagonal creases of the parallelograms remain
straight, and the length remains constant. (3) The free edge of the
triangular plate can be freely bent to form an arbitrary 3D curve,
but the total length remains unchanged because the surface of the
triangular plate is assumed to be a developable surface. In order
to study the static properties of the proposed origami, a theoretical
model is developed to calculate the variation of energy in an
origami structure during deformation. Finally, we establish the rela-
tionship between the potential energy and the geometrical parame-
ters. Here, all surfaces of the structure are assumed to have a
uniform thickness, and the total energy in the structure is divided
into two parts, one part of the energy is stored in the freely
curved triangular panels which are modeled as shells, while the
other part of the energy is stored in the creases which are
modeled as torsion springs. The total system energy (ET) actually
is the sum of the bending energy (EB) of the panels and the
energy stored in the creases (EC). The mechanical behavior of the
origami structure is determined by the deformation of the panels
and the creases. Due to symmetry, we just need to study the

potential energy of the single parallelogram side instead of whole
structure which includes two panels and three creases, as shown
in Fig. 2(a).
To calculate the bending energy of the panels, we first need to

obtain the shape of the panels at each instantaneous height during
the compression process. At the initial state, all panels are flat
which can be described as plane with a constant Gaussian curvature
equal to zero in mathematics. We assume that the panels subjected
to pure bending throughout the compression process which means
that the Gaussian curvature of the panels remains constant during
compression. So that the panels can be described as developable
surface at each instantaneous height. Here, generalized cones are
used to describe the triangular plates, and the governing pair of
space curves RBBi (u) are the free edge of the triangular panel
which can be described by Bezier curves, as shown in Fig. 2(c).
The free edge of each triangular panel in the local coordinate
system can be represented as

RBBi (u) = [Bx(u), By(u), 0] (1)

where

Bx(u) = 2u(1 − u)px + u2lBBi

By(u) = 2u(1 − u)py

{
(2)

lBBi is the length of the line segment BBi. px, py are the pending
parameters that are used to describe the Bezier curve. Since the
length of the free edge remains the same, the Bezier curve should
satisfy the following equation:

∫
RBB′

ds = LC (3)

Fig. 2 (a) The energy distributions in different structural components of a unit cell. (b) Creases are modeled as linear
torsion springs. (c) Triangular panels are modeled as developable surfaces. (d ) The energy–compression curve of
origami structures for different λ, and (e) The energy–compression curve of origami structures for different N.
(Color version online.)
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The local coordinate system (e′1, e
′
2, e

′
3) is defined as follows:

e′1 =
BBi

|BBi| , e′2 =
AB × ABi

|AB × ABi| , e′3 = e′1 × e′2 (4)

The surface ABBi can be described by the following parametric
equation:

RABBi (u, v) = A + v(RBBi (u) − A), u ∈ [0, 1], v ∈ [0, 1] (5)

The bending energy of a developable surface can be expressed as
a function of the surface integral of the squared mean curvature.
Thus, for the two triangular panels shown in Fig. 2(b)

EB = KB

∫∫
[H2

ABBi (u, v) + H2
BiAiA(u, v)]dS (6)

where KB is the is the bending rigidity of the panels which is a func-
tion of Young’s modulus, Poisson’s ratio, and material thickness;
HABBi (u, v) and HBiAiA(u, v) are mean curvatures of the two surfaces
ABBi and BiAiA, respectively. During compression, the instanta-
neous fold angle of the creases is calculated and the energy stored
in the creases is proportional to the square of the deviation in the
angle from the rest position.
Next, we discuss the part of the energy stored in the crease in

Fig. 2(b). For the crease energy calculation, we consider the
creases to be linear elastic torsional springs. The stiffness of the
creases (KC) was obtained by experimental measurement, and
the detailed process is shown in Appendix A. The energy stored in
the creases is proportional to the square of the difference between
initial and instantaneous angles. Taking the crease AB as an
example, the energy stored in it can be calculated as

(EAB
C )hi =

KC

2

∫B
A
[(φAB)hi − (φAB)h0 ]

2dl (7)

where (φAB)hi is the instantaneous fold angle of the crease AB and
(φAB)h0 is the initial angle. Each side of the origami structure has
three creases, so the crease energy stored in the single side shown
in Fig. 2(b) can be expressed as

EC = (EAB
C )hi + (EABi

C )hi + (EAiBi

C )hi (8)

Thus, the total energy of an origami structure with N sides can be
written as

ET = N(EB + EC) (9)

According to the minimum energy principle, we can get the shape
and energy of the origami structures at each instantaneous height
during compression. Calculating the total energy stored in the
origami structures as a function of the geometric parameters allows
us to understand the folding behavior of the origami structures.

The geometric parameter λ can significantly affect the energy
change of the origami structures as shown in Fig. 2(d ). Different
energy change behaviors represent different folding behavior. If λ
= 0.6, the origami structure only possesses one minimum energy
state at initial state. Therefore, the total energy increases smoothly
when the origami structure is compressed, indicating a monostable
property. If the λ takes a larger value, such as 0.8 corresponding to
the green line demarcated by positive triangle markers in Fig. 2(d ),
there are two local minimum states, meaning a bistable property.
The larger the λ value, the more obvious the bistable property.
Further, the stiffness of the structure can be obtained by calculating
the second derivative of the energy. Although there are two geomet-
ric parameters (λ, N) that can significantly change the shape of the
origami structure, by theoretical calculations, we find that only λ
can have a considerable impact on its mechanical behavior, and the
change of N will not affect the mechanical behavior of the structure,
as shown in Fig. 2(e). This conclusion is confirmed again in subse-
quent experiments.

2.3 Experimental Validations. In order to verify the pro-
posed theoretical model and accurately measure the mechanical
properties of origami structures, several origami structures were
manufactured and tested experimentally. The 2D sheets with
creases patterns are first prepared, and laser cutter (EPILOG
LASER mini 40) is used to cut card papers (180 g, LIANMU
Co.) as previously prepared patterns. There are three kinds of
lines in the illustration, as shown in Fig. 3(a). Black lines represent
edges of 2D patterns and are cut off at 100% speed, 20% power, and
200 Hz frequency. The blue solid lines and red dashed lines repre-
sent mountain and valley creases, respectively. They are cut at
100% speed, 20% power, and 80 Hz frequency to form sprocket
holes like postage stamps. After the sheet being cut into the
desired pattern, as shown in Fig. 3(b), it is then folded along
the creases with the red dashed lines forming valley creases and
the blue solid lines forming mountain creases. Small trapezoid
papers at the end of the side edge are folded to form a new plane,
and the 3D origami structure can be maintained by gluing them
together, as shown in Fig. 3(c).
In order to study the static properties of the origami structure, an

electronic universal testing machine (KEXIN WDW-20) is used to
perform uniaxial compression tests with displacement control. As
described previously, the origami structure is a twist coupling struc-
ture, which means that compressing the origami structure will result
in relative rotation of the upper and lower polygon surfaces. So, in
order to obtain the authentic force–compression curve of origami
structures in a free rotation environment, a special rotating platen
with a double row angular contact ball bearing is designed and man-
ufactured, as shown in Fig. 4(a). The rotating platen can support
axial force but allow the free rotation of lower surfaces when
fixing the upper surface. The loading speed was set to 10 mm/min

Fig. 3 (a) 2D design diagram with crease patterns, (b) the flat sheet cut with laser cutter, and (c) 3D origami
structure (Color version online.)
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in all tests, and the conditions at the end of the test were set suffi-
ciently large to ensure that the origami structure was completely
folded at the end. During the experiment, the compression
process of the origami structure was recorded with a camera to
study the deformation of the origami structure.
N and λ are two important geometric parameters of the origami

structure which can significantly change the geometric shapes of
the structures. In order to explore the relationship between these
two parameters and the static properties of the origami structure,
we carry out uniaxial compression of the origami structure with dif-
ferent parameters. The experimental results are shown in Fig. 5
where the geometric parameter λ can be adjusted to significantly
change the mechanical properties of the origami structure, as
shown in Figs. 5(a) and 5(b). When λ equals to 0.6 or 0.7, the
energy of the origami structure increases monotonically, implying
monostable property. When λ equals to 0.8 or 0.9, the origami struc-
ture is bistable. However, the geometric parameter N does not sig-
nificantly affect the mechanical properties of the origami structure,
as shown in Figs. 5(c) and 5(d ). These experimental results are in
agreement with the theoretical results in Figs. 2(d ) and 2(e).

3 Microstructure Design and Experimental Validation
of One-Dimensional Origami-Based Metastructure
In this section, we study the flexural vibration isolation in the

one-dimensional origami-based metastructure consisting of a Timo-
shenko beam and LR origami microstructures. The band structure of
flexural wave propagation in the beam is calculated with the transfer
matrix method. Also, we experimentally validated that the vibration
isolation zone can be actively tuned through different stable states
or geometrical parameter λ of the origami-based metastructure.

3.1 Theoretical Model of the One-Dimensional
Metastructure. The vibration isolation ability of a Timoshenko
beam with periodical LR structures has been investigated [15]. In
this study, to form an adaptable bandgap, the unadjustable springs
are replaced with the origami structures as shown in Fig. 6(a).
First, for a simplified dynamic model, the tilting motion of the
disc and the twist coupling of the origami structure are not consid-
ered. Therefore, the disc functions as a lumped mass with only
translational motion in the vertical direction and the effect of the
disc’s shape can be ignored for the resonant frequency calculation,
as shown in Fig. 6(b). Then, the governing equation for the

Timoshenko beam can be written as follows:

EI

ρS

∂4y(x, t)
∂x4

−
I

S
1 +

E

κG

( )
∂4y(x, t)
∂x2∂t2

+
∂2y(x, t)
∂x2

+
ρI

κGS

∂4y(x, t)
∂t4

= 0

(10)

where ρ, E, and G are the density, Young’s modulus, and shear
modulus, respectively; S is the cross-sectional area; κ is the Timo-
shenko shear coefficient; and I is the area moment of inertia with
respect to the axis perpendicular to the beam axis. Since only the
steady-state response will be considered in this section, the
bending deformation at x can be written as

y(x, t) = X(x)eiωt (11)

From Eqs. (10) and (11), the amplitude X(x) of the bending dis-
placement can be determined as

X(x) = Ak−31 ek1x + Bk−32 ek2x + Ck−33 ek3x + Dk−34 ek4x (12)

where

kj = (−1)[j/2]
��������������������������
[α + (− 1)j

���������
α2 + 4β

√
]/2

√
, j = 1, 2, 3, 4,

α = −
ρω2

E
−
ρω2

κG
and β =

ρSω2

EI
−
ρ2ω4

EκG

[ j/2] is the largest integer less than j/2.
For the nth unit cell, X(x) can be written as

Xn(x
′) = Ank

−3
1 ek1x

′
+ Bnk

−3
2 ek2x

′
+ Cnk

−3
3 ek3x

′
+ Dnk

−3
4 ek4x

′
(13)

where x′ = x− na, na≤ x≤ (n+ 1)a. The equilibrium condition for
the nth resonator along the vertical direction is

fn(t) − mZ̈n(t) = 0 (14)

where fn(t) is the interactive force between the local resonator and
the beam, and Zn(t)=Vne

iωt is the displacement of the nth local
resonator at the position x= na. Then, the interactive force can be
calculated as

fn(t) = k[y(xn, t) − Zn(t)] = k[Xn(0) − Vn]e
iωt = Fne

iωt (15)

where k is the effective spring stiffness of the origami structures,
which is a function of the origami structure’s geometric parameter

Fig. 4 (a) Uniaxial compression experimental setup with the origami structure. (b) The
origami structure at four instantaneous heights in a uniaxial compression experiment.
The first and last images correspond to the fully expanded and folded state of the
origami structure, respectively. From the figure, we can see that the side triangular
plates of the origami structure are a generalized cone during compression.
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λ at its current stable state. To be specific, the energy–compression
curve is first calculated with the theoretical method introduced in
Sec. 2.2. Then, the effective spring constant is obtained by calculat-
ing the second derivative of the energy with respect to the compres-
sion. Substituting Eq. (15) into Eq. (14) leads to

Vn =
k

k − mω2
Xn(0) (16)

Applying the continuity conditions of displacement, displace-
ment gradient, bending moment, and shear force at the interface
between nth and (n−1)th cell, we have

Xn(0) = Xn−1(a) (17a)

X′
n(0) = X′

n−1(a) (17b)

EIX′′
n(0) = EIX′′

n−1(a) (17c)

EIX′′′
n (0) − Fn = EIX′′′

n−1(a) (17d)

Substituting Eqs. (13), (15), and (16) into Eq. (17), the following
equation can be obtained:

KΨn = HΨn−1 (18)

where

K =

k−31 k−32 k−33 k−34
k−21 k−22 k−23 k−24
k−11 k−12 k−13 k−14

1 + Fk−31 1 + Fk−32 1 + Fk−33 1 + Fk−34

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (19)

H =

k−31 ek1a k−32 ek2a k−33 ek3a k−34 ek4a

k−21 ek1a k−22 ek2a k−23 ek3a k−24 ek4a

k−11 ek1a k−12 ek2a k−13 ek3a k−14 ek4a

ek1a ek2a ek3a ek4a

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (20)

Ψn =

An

Bn

Cn

Dn

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (21)

F =
−1
EI

mkω2

k − mω2
(22)

Based on Eq. (18), the wave transfer relation between the nth cell
and (n−1)th cell can be given as

Ψn = TΨn−1 (23)

where T =K−1H is the transfer matrix between the two adjacent
cells.

Fig. 5 Results of the uniaxial compression test of the origami structure: (a) force–compres-
sion response of origami structures with N=4 and R=42.4 mm for various λ values, (b) energy–
compression response of origami structures with N=4 and R=42.4 mm for various λ values, (c)
force–compression response of origami structures with λ=0.9 and R=30 mm for various N values,
and (d ) energy–compression response of origami structures with λ=0.9 and R=30 mm for various
N values
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To calculate the band structure of the metastructure, Bloch
theorem can be applied to the boundaries of the unit cell as

Ψn = eiqaΨn−1 (24)

where q is the wavenumber in the x-direction. From Eqs. (23) and
(24), we can obtain the eigen-value problem

|T − eiqaI| = 0 (25)

From which the band structure can be determined. Naturally, the
bandgap of the origami-based beam can be adjusted by manufactur-
ing origami structures with different λ as shown in Fig. 6(c). Speci-
fically, when λ is large than 0.7, bistable structures can be obtained
which will provide a unique way to switch stable state and adjust the
bandgap in situ.
Based on the transfer matrix T, in Eq. (23), the transmission

behavior of a metastructure beam containing ten origami unit
cells is studied. Bistable origami unit cells (N= 4, λ= 0.9) is used
in this case to demonstrate the adjustability of the metastructure
beam. The effective stiffness of the two stable states of the
origami structures can be obtained from the previous static experi-
ments. In Fig. 7, a displacement excitation is applied at the left end
of the finite beam and the frequency response function (FRF), which
is defined as the ratio between the right end displacement response
and the excitation as a function of frequency, can be obtained by
setting the boundary conditions as

X0(0) = u0 (26a)

X′
n(0) = 0 (26b)

EIX′′
N (a) = 0 (26c)

EIX′′′
N (a) = 0 (26d)

Here, the harmonic excitation displacement, u0, is applied to the
left end of the finite beam along transverse direction and the right
end of the beam is free.
The FRFs of the metastructure beams containing the same

stable-state unit cells are first investigated. First, it is shown in
Fig. 7(c) that the vibration isolation regions appear in the shaded
areas. Second, by switching from the first stable state to the
second stable state, the second resonance peak of the solid blue
curve disappears, which falls into the vibration isolation region
at the second stable state (red shaded area). Third, new resonance
peaks appear on both sides of the vibration isolation zones for the
metastructure beam, which is due to the positively enlarged vibra-
tions (can also be explained by zero effective mass density before
and after the negative effective mass density region) happened
before and after the origami cells’ LR frequency ranges. These
phenomena can also be observed in the experiment results (in
Fig. 10(b)). Further, the FRFs of two kinds of hybrid combinations
are also studied, as shown in Figs. 7(d )–7( f ). In one combination,
two sections of different unit cells can be found in the metastruc-
ture beam, where the left and right sections consist of five first
stable-state and five second stable-state origami structures, respec-
tively, as shown in Fig. 7(d ). In the other combination, the first
stable state and second stable state arranged alternately, as
shown in Fig. 7(e). By comparing the FRF results of the two com-
binations, it can be found that both combinations have two vibra-
tion isolation zones which are caused by the resonance of the first
stable state and second stable state, respectively. Also, the way that
the mass being placed on each resonator significantly affects the
metastructure beam response, which is investigated numerically
in Appendix B.

3.2 Experimental Validation. In order to make the origami-
based metastructure beam have adjustable vibration isolation
ability, bistability as well as adjustable stiffness are designed in
each unit cell. By gluing the origami microstructure (N= 4,
R = 28.3 mm) with a mass disk, the resonant unit cell of the metas-
tructure is fabricated. The lattice constant is 78 mm, the thickness of
the mass disk is 5 mm, radius is 28.3 mm, and the material of the
disc is aluminum, with the same material parameters as the beam
(Table 1). Figure 8(a) shows two different stable states of a unit
cell. The origami unit cells are periodically arranged on beams to
make one-dimensional metastructures. The experimental setup for
the vibration test is shown in Fig. 8(b). The beam is fixed on a
shaker (LDS V406) which is powered by a power amplifier (LDS
LPA600). White noise excitation signal with bandwidth from 0 to
250 Hz is generated by the shaker. The response of the beam is cap-
tured by an accelerometer which is attached to the other end of the
beam. Both input signal and output signal are processed by the
dynamic analyzer (Dactron PHOTON+TM) and transmitted to
the PC. The amplitude transmission coefficient is defined as the
ratio of the output signal from the accelerometer with respect to
the input signal from the shaker.
An FE-based metastructure beam with origami-based local reso-

nant unit cells is first built and investigated from comparison pur-
poses, as shown in Fig. 9(a). A force excitation is applied at the
left end of the beam, while the acceleration response at the right
end is calculated. The FRF is defined as the ratio of the acceleration
response with response to the force excitation as a function of fre-
quency. In order to validate the FE result, the vibration isolation
zones calculated by FE and theoretical models are compared in
Fig. 9(b). It can be found that the lower edge of the vibration isola-
tion zone fits well. But, the upper edge of the vibration isolation
zone has some deviations, which is due to the fact that the masses
are point-connected to the beam by springs in the theoretical
model, while the mass discs are face-contacted to the beam by
origami unit cells in the FE model. In addition, there will be signif-
icant friction and damping in the experiments. In order to com-
pensate that the effect of damping is studied and an FE model
with damping ratio ζ= 0.1 is established. After introducing the

Fig. 6 (a) The 3D model of a beam with origami-based LR struc-
tures, (b) the simplified model, and (c) bandgap control by the
stable states and geometric parameter λ of origami. The lines
demarcated by blue triangle markers, and red circle markers
represent the edges of the bandgap corresponding to the first
and second stable state of the origami structures, respectively.
(Color version online.)
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damping, the FE result is in good agreement with the experimental
result, as shown in Fig. 9(c). The numerical simulation is performed
by using the commercial finite-element software ANSYS 18.2.
Figure 10 demonstrates the experimental results of the vibration

tests on the manufactured metastructure beams. Figure 10(a)

illustrates the measured stiffness–compression curves for λ= 0.9
and λ = 0.7 unit cells. The three states represented by the blue,
green, and purple dots are marked on the curves, which are corre-
sponding to the first stable state of the λ= 0.9 unit cell, the
second stable state of the λ= 0.9 unit cell, and the monostable
state of the λ= 0.7 unit cell, respectively. The highlighted regions
are the identified metastructure’s vibration isolation zones by com-
paring with the transmission result of the empty beam with no local
resonators, as shown in Figs. 10(b) and 10(c). To be specific, the
position of the vibration isolation zone is determined by looking
for the lowest valley below the empty beam and the vertices of
valley or the intersection points with empty beam are used as crite-
rions for the edges of the vibration isolation zone. Figure 10(b)
compares the measured transmission results obtained from the

Fig. 7 The 3Dmodel of a beamwith (a) first stable state and (b) second stable state of the origami
structures. (c) FRFs of the finite metastructure beams from the transfer matrix method. The black
dashed line, the blue solid line, and the red dotted line represent the FRF of the empty beam,
metastructure beam with first state origami structures and second state origami structures,
respectively. (d ) The 3D model of a beam with two sections. Left section consists of five first
stable-state origami structures, and right section consists of five second stable-state origami
structures. (e) The 3D model of a beam with ten origami structures which first stable state and
second stable state arranged alternately. (f ) FRFs of the finite metastructure beams from the
transfer matrix method. The blue solid line and the red dotted line represent the FRF of the metas-
tructure beam shown in (d and e), respectively. The vibration isolation zones are highlighted by
the shaded areas. (Color version online.)

Fig. 8 (a) First and second stable states of the origami unit cell and (b) 1D origami-based metas-
tructure and the vibration test setup

Table 1 Geometrical and material parameters of the beam

Geometrical parameters Material parameters

Thickness t= 5 mm Young’s modulus 68.9 GPa
Width b= 40 mm Mass density 2670 kg/m3

Length L= 800 mm Poisson’s ratio 0.33
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metastructure beam with the λ= 0.9 unit cell at the first stable state
and that at the second stable state. It can be found that the vibration
isolation zone moves to the lower frequency range when the unit
cell switches from the large stiffness state (first stable state) to the
low stiffness state (second stable state). The same trend can be
found when comparing the results of metastructure with decreasing
λ (lower stiffness) units, as shown in Fig. 10(c). With the effective
stiffness of origami structures in Fig. 10(a), the theoretical vibration
isolation zones (marked with red dashed lines) can be obtained. For
the lower edges of the vibration isolation zones, good agreements
between theoretical and experimental results can be found.
However, due to the material dissipation and friction-induced struc-
ture damping which is not considered in the theoretical model, the

width of vibration isolation zones measured by the experiment is
larger than those obtained from the theoretical model [34]. Particu-
larly, for the second stable state of the λ= 0.9 unit cell, the folded
structure brings intense friction between the papers which will
aggravate the damping effect of the structure, which result in signif-
icantly wider zone than that obtained theoretically.

4 Origami-Based Metastructure Plate
In this section, the origami cells are arranged periodically in a two-

dimensional fashion to form a plate-like metastructure, as shown in
Fig. 11. The vibration shapes of the metastructure plate under

Fig. 9 (a) A practical structural model of the metastructure beam with origami-based local resonant unit cells. (b)
FRFs of the finite metastructure beams from FE method without damping. The black dashed line, the blue solid
line, and the red dotted line represent the FRF of the empty beam, metastructure beam with first state origami struc-
tures and second state origami structures, respectively. The vibration isolation zones are highlight by the shaded
areas. The lower and upper edges of the theoretical vibration isolation zones are marked with black dash-dotted
lines, and (c) FRFs of the finite metastructure beams considering damping. The blue solid line and red dashed
line represent the experimental result and FE result, respectively. (Color version online.)

Fig. 10 (a) Stiffness–compression curve and (b and c) experimentally measured amplitude–frequency curves of origami-
basedmetastructure. The test result drawn with blue, green, and purple correspond to states 1, 2, and 3 in (a), respectively.
The black dashed line corresponds to the test result of empty beam. The vibration isolation zones measured experimen-
tally are highlighted with shaded areas. The lower and upper edges of the theoretical vibration isolation zones are marked
with red dashed lines. (Color version online.)
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forced vibration are investigated. The sides of the plate are free, and
an out-of-plane displacement excitation is applied at the center of the
plate with an excitation frequency of 28 Hz which falls right in the
vibration isolation zone for second stable state. When all the unit
cells are in the second stable state, the wave stops propagating omni-
directionally, as shown in Fig. 11(a). Thanks to the bistability, we
can independently adjust the stable state of each unit cell and, there-
fore, form a custom-designed plate vibration shape. It is also very
easy to switch the unit cells’ stable states by just dialing in or out
the origami structures. Therefore, one can change the pattern of the
2D metastructure as we want. Here, we demonstrate that the number
of axes of symmetry of vibration shapes can be changed accordingly
by adjusting certain origami unit cells. Figure 11(b) shows the vibra-
tion shape with two axes of symmetry, while Figs. 11(c) and 11(d )
show the two different vibration shapeswith only one axis of symme-
try. It can be seen that the vibration mode of the metamaterial plate
can be controlled by the attached origami units above.

5 Conclusions
In the study, a prismatic bistable origami unit was introduced in the

design of metastructures for vibration control purposes. With the
adjustable origami unit, a 1D beam-likemetastructure was fabricated
with its vibration isolation zone being actively tuned through differ-
ent compression loadings. A 2D plate-like metastructure was also
designed and numerically studied for the control of different vibra-
tion modes. The proposed origami-based metastructures can be
potentially useful in various engineering applications where struc-
tures with and vibration-proof abilities are appreciated.
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Appendix A: Measurement of the Effective Stiffness of
Creases
The effective stiffness of the creases is very important for the car-

rying capacity of the origami structure and also affects the mechan-
ical properties of the proposed metastructure. However, the bending
motion of the creases induces plastic deformation which makes the
accurate determination of the crease’s stiffness very difficult in an
analytical way. Therefore, we design an experimental device, as
shown in Fig. 12, for the crease’s stiffness measurement. In the

Fig. 11 Different vibration shapes of 2D origami-based plate-like metastructure
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experiment, moment applied to the crease can be calculated byM=
FL cos (θ), where F is measured by force sensor (KT-5KG). The
angle of the crease can be calculated by θ = arcsin (X/(2L)),
where X can be directly measured. Therefore, the effective stiffness
of the crease can be obtained as kc=M/θ.

Appendix B: The Effect of Additional Mass on
Metastructure Beam Response
In order to study the effect of the mass placed on resonators on

the behavior of metamaterial beam, we calculated the FRFs of the
finite metastructure beams which have different attached mass
discs as shown in Fig. 13. If the mass of the discs is reduced, the
vibration isolation zone of the metamaterial beam moves to high
frequency region. On the other hand, the metamaterial beam has a
lower frequency vibration isolation region when the mass of the
discs is increased.
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