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a b s t r a c t

Acoustic wave control is an important issue in living environment. Designing metasurface on scatterers
is expected to control the sound field. However, an effective method to design the metasurface for
large regional control is still lacking. Here we propose a machine-learning optimized method to solve
problem of designing metasurface. According to the relationship between sound pressures at multiple
points, convolutional neural network (CNN) is used to establish the mapping from local sound field
to phase gradient of metasurface, which is further optimized by another CNN. The machine-learning
method on designing metasurface has higher accuracy than the genetic algorithm. Using the machine-
learning optimized method, not only the phase gradient of the metasurface can be obtained according
to sound field, but also regional control of local sound field can be realized. For example, we can realize
8.37 dB intensification and 1.50 dB weakening of sound field at a square with a half-wavelength side.
The metasurface designed by our proposed method is expected to realize noise reduction in large
space, opening an avenue to achieve complex wave manipulation.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic wave control is an important issue in living environ-
ent [1]. The propagation of acoustic wave can be controlled by
sing acoustic metasurfaces with sub-wavelength thickness [2,3].
he metasurface has become an effective method for modulat-
ng phase of scatterings, leading to various applications, such
s focusing reflected waves [4], acoustic diffusers [5], hologra-
hy [6], acoustic communication [7,8], and shaping reverberating
ields [9]. To realize various functionalities, we need design the
hase gradients of metasurfaces. Analytical methods are widely
sed to design the phase gradient of metasurfaces in case the
arget sound field can be described analytically, such as planer
coustic lens [4] and negative refraction [10]. In addition, feed-
ack iterative algorithm from optics [11–13] has been used for
esigning the phase gradients of metasurfaces, which control
ound field at a single point in reverberating field [9] or along lim-
ted lines for acoustic holography [14]. However, regional control
f local sound field, which consists of sound pressures/phases at
ultiple points, has not been reported in the literature.
In fact, the control of local sound field at multiple points is hin-

ered by conventional methods (analytical method and feedback
terative algorithm). For the analytical method, it is difficult to
stablish an analytical model in local sound fields to solve phase
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gradients of metasurfaces. For feedback iterative algorithm [9–
12], there exists large time consumption. However, the sound
pressures/phases at multiple points are dependent, whose inter-
nal relationship is ignored by conventional methods. Machine
learning (ML) is a mathematical tool to find relationships in big
data [15,16] and has been widely used in physics [17–19], data
science [20], computer vision [21], medical imaging-based diag-
nosis [22], and strategic games [23]. In the field of electromag-
netic wave, machine learning can optimize three-dimensional
chiral metamaterials [24] and design metasurfaces [25–27]. In
the field of sound wave, machine learning can speed up the
optimization of bandgap design of acoustic tetrachiral metama-
terials [28]. However, machine learning has not been used to
design the phase gradients of acoustic metasurfaces. Here we
propose a machine-learning optimized method to obtain phase
gradient of the metasurface according to the functionalities of
controlling sound field. Using this proposed method, regional
control of local sound field including intensification/weakening
can be realized, which has the advantage of accuracy and no
problem of divergence (see Fig. 1).

2. Methods

The proposed machine-learning optimized method contains
three steps: data generation, training machine learning model
to predict metasurface, optimizing the phase gradient of the
metasurface according to desired functionality.
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Fig. 1. Acoustic wave control with a reflective metasurface and the procedure for designing phase gradient of metasurface. (a) A sound source excites the sound
ield (X) in space and the sound wave is reflected from the metasurface (model parameter: Y). (b) Three solutions to designing the phase gradient of metasurface:
nalytic method, feedback method and machine learning method.
Fig. 2. Applying machine learning to control sound field. (a) A phase gradient consisting of 0/1-bits is randomly generated. Finite element method is used to
alculate sound fields with different binary sequences of the metasurface. CNN1 is established to predict the sequence of metasurface according to sound field. CNN2
s established to predict the average value of sound pressure field in target region according to sequence. (b) Procedure of machine-learning optimized method.
b
t
a

Step 1: Finite element method is used to generate a mass
f reliable data on absolute sound pressure fields and phase
radients of the metasurfaces, as shown in Fig. 2a. We first digi-
ize the phase gradient of a metasurface into a 0/1-bit sequence
ased on the concept of digital metamaterials [25,29–31]. We
uild an acoustic metasurface with the dimensions of 125 cm
4 cm, whose unit is a rectangle channel with the dimensions
2

of 5 cm × 4 cm. The acoustic wave can enter the channel and
e reflected from the bottom called ‘‘0’’ bit or be reflected from
he top called ‘‘1’’ bit, so that the metasurface can be described
s a binary sequence. We then establish a 75 cm × 125 cm

2D airborne sound field in the simulation software COMSOL 5.2.
Three perfectly matched layers (PMLs) are applied on the upper,
left, and right boundaries, respectively. The lower boundary is
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Fig. 3. Comparisons between machine learning and genetic algorithm on 0/1-bit sequence prediction. (a) Input, 2 × 9 points of sound field. The ML and GA
re then used to predict 0/1-bit sequences. (b) Changes in accuracy with size of sampled data in the same sampling region. (c) Changes in accuracy with distance
etween sampling region and the metasurface. (d) Changing the size of input sound fields and using ML and GA to predict the 0/1-bit sequence of 100 and 25
roups of sound fields to obtain average accuracies, respectively. (e) Inputting 100 groups of 2 × 9 points of sound fields, using the ML and GA to predict the 0/1-bit
equences, and counting errors between the predicted and real sequences.
t
×

he metasurface. A monopole point sound source (MPS) with a
requency of 1000 Hz, amplitude of 1 Pa, and phase zero rad
s applied at the center of the upper boundary. In the acoustic
odeling, the acoustic velocity and density of air are assumed to
e 343 m/s and 1.29 kg/m3. We use MATLAB R2017b to randomly
enerate 250,000 groups of binary sequences of length 25 as the
/1 patterns of metasurfaces, then solve and save corresponding
bsolute sound pressure fields for convolutional neural networks
CNNs) training.

Step 2: CNN1 model is proposed to establish the relationships
rom sound field to metasurface, which is built with Google’s Ten-
orFlow deep learning framework [32]. We use PyCharm Commu-
ity edition (2018.3) to run all Python codes of the CNN models.
he CNN1 model contains one input layer, four or eight convolu-
ional layers, two full connected layers and one output layer. The
nput is the absolute sound pressure field and the output is the
/1-bit sequence of metasurface. The number of feature maps of
ach convolutional layer is set as 50, 100, 200, 400, 800, 1200,
600, and 2000 in order. The convolutional kernel size is chosen
s 3 × 3. For each convolutional layer, we choose Rectified Linear
nit (ReLU) as the activation function. As shown in Fig. 2a, after
he convolutional layers and two full connected layers (F1 and
2), a piecewise constant function (f (x) = 0, when x < 0.5; f (x) =

, when x ≥ 0.5) is used in the output layer (F3) to map the output
of F2 to a binary sequence, which is the pattern of metasurface
predicted by CNN1 according to targeted sound pressure field.
The training set contains 200,000 groups of data, and the test set
contains 50,000 groups of data. Taking the local field in Fig. 2a
as an example, after 103 epochs, the rate of position accuracy,
defined as the ratio of the number of all precisely predicted bits
to the total number of bits in the test set, is 99.32%. Among the
results, we further count all precisely predicted 0/1-bit sequences
and divide the number by the total number of 0/1-bit sequences
in the test set. This ratio defined as the rate of pattern accuracy
is 87.4%. More details are in Supplementary Material.

Step 3: To find the optimal binary sequence for sound field
ontrol, we establish a second convolutional neural network
alled CNN2. To consider the 0/1-bit sequence as 2D data, we
eshape it from 1 × 25 to 5 × 5. CNN2 model is proposed here
to establish the relationship from metasurface to sound field.
The CNN2 model consists of one input layer, five convolutional
3

layers, two fully connected layers and one output layer. The
input is the 0/1-bit sequence of metasurface and the output is
average absolute sound pressure of target region. Here, we use
the average absolute sound pressure as characteristic of the target
region. The number of feature maps of each convolutional layer
is 50, 100, 200, 400 and 800 in order. The convolutional kernel
size is chosen as 3 × 3. ReLU is used as the activation function.
We define loss and maximum error to evaluate the training
effectiveness of CNN2. The loss is the average difference between
predicted value and real value. Maximum error is the maximum
difference between predicted value and real value in the test set.
Taking the binary sequence in Fig. 2a as an example, after 624
epochs, the loss is 1.6 × 10−3 Pa and the maximum error is 0.01
Pa.

After training CNN1 and CNN2, we can obtain optimal target
sound field by changing 0/1-bit sequence, as shown in Fig. 2b.
Groups of numerical real sound fields, which are from the
database of sound fields calculated by FEM, are adapted to unreal
sound fields, via multiplying the absolute pressure of sound field
in the target region by a constant. Groups of the adapted sound
fields are input into CNN1 to obtain groups of 0/1-bit sequences,
which are then input into CNN2 to predict the average values of
sound pressure fields of the target region. By sorting the average
values, the optimal 0/1-bit sequence of metasurface is finally
found according to the functionality of intensification/weakening.
More details are in Supplementary Material.

3. Results

We study the influence of the coverage, density, and position
of sampling points on accuracies. The results are shown in Fig. 3.
We sample the entire sound field, and 76 × 126 points (height
× width) form the densest sampling points, where the space
between these points along the height and width is 1 cm, much
smaller than the wavelength (λ = 34.3 cm). Both rates of position
and pattern accuracy for 76 × 126 points are 100%. We increase
the space of sampling points and obtain 100% accuracies for 14
× 126 sampling points and even remaining 99% pattern accuracy
for 14 × 9. Afterwards, we sample local sound field by keeping
he sampling space unchanged and reducing the height. For 8
9 sampling points, the pattern accuracy reduces to 98%. For
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inimum height of 2 × 9, the pattern accuracy is 87%. Namely,
ven if we only sample two points in the height direction, we
an still get high accuracy by sampling enough points along the
idth. Furthermore, we study the influence of the density of
ampling points on accuracies, as shown in Fig. 3b. The number
f sampling points varies from 2 × 10 to 2 × 6. As the density
f sampling point decreases, the position accuracy reduces from
9.66% to 89.63%, while pattern accuracy reduces from 93.6% to
9.0%. The larger region of sound field covered by the sampling
oints and the denser sampling points, the higher accuracy we
an get. Lastly, the impact of position of the sampling region on
he accuracies is also investigated. As shown in Fig. 3c, for a total
f 2 × 9 points, we change the distance (d) between the sampling
egion and the metasurface from 0.15λ (5 cm) to 1.9λ (65 cm).
As the distance increases, both accuracies decrease, especially
pattern accuracy, which decreases to 80.2% at the distance equal
to 1.9λ. Thus, using local sound fields close to the metasurface
can satisfy the requirement of high accuracies.

Secondly, we compare the accuracy and efficiency of ML
method with that of genetic algorithm (GA). Genetic algorithm
is an optimization algorithm that searches for the global optimal
solution or approaches it and does not need the derivative of the
objective function [33]. GA is used to predict 25 groups of 0/1-bit
sequences with different numbers of sampling points. As shown
in Fig. 3d, the accuracies of GA decrease sharply with decreasing
number of sampling points. For GA, the position accuracy for 76
× 126 points of sound fields, is (88.96 ± 12.13) % and pattern
accuracy is 36%, decreasing to (80.96 ± 15.20) % and 16% for
2 × 9 points of sound fields, respectively. To further compare
the capability of ML and GA to predict the 0/1-bit sequence,
we choose 2 × 9 sampling points of the 10 cm × 125 cm
sound fields, where ML exhibits relative ‘‘low’’ accuracy compared
with sampling denser points. We predict 100 groups of 0/1-bit
sequences using the two methods, and the errors are shown in
Fig. 3e. The accuracy of ML method is high and stable, whereas
that of GA is very low and unstable. For each prediction, ML takes
average time of 7 × 10−4 seconds and GA takes average time
of 2.4 × 104 seconds. The ML method exhibits consistently fast,
which means that the well-trained ML method is suitable for
real-time control of sound field at a large scale.

Finally, based on the advantages of machine-learning op-
timized method, acoustic metasurface is designed to control
regional sound field. We investigate the ability of weakening/
intensification of sound field near/far from the metasurface, re-
spectively. The area of the target region increases from 1 × 1
to 4 × 4 boxes (9 cm × 9 cm for each box). When the target
region is near from the metasurface, as shown in Fig. 4a, the
absolute pressure with 1 × 1 box can be intensified by 8.37 dB or
weakened by 1.50 dB on average, compared with the reference
sound field (Fig. 4c). As the target regions increase in size to
4 × 4 boxes, the effect of intensification decreases to 1.06 dB,
while that of weakening increases to 2.30 dB. When the target
region is far from the metasurface (Fig. 4b), as the corresponding
area increases, the weakening effect decreases from 3.69 dB to
1.97 dB, and the intensification effect decreases from 1.74 dB
to 0.21 dB. For target regions with the same area, the range of
control effect near the metasurface is always larger than that far
from the metasurface.

We provide specific controlled sound fields to intuitively show
the regional control effect. We can achieve a 32.84 dB reduction of
the sound pressure at a given point (Fig. S5). For regional control,
the sound field of target region in Fig. 4d,e is intensified by
2.59 dB and 1.69 dB, respectively, and that in Fig. 4f is weakened
by 2.31 dB. Other controlled sound fields are shown in Fig. S6. We
can control local sound field in a large region, which has not been

realized before.

4

In practice, sound-absorbing materials can be used to ab-
sorb sound energy and reduce noise. Based on our proposed
machine-learning optimized method, the energy distribution of
the sound field can be manipulated by adjusting the phase gradi-
ent of multi-functional metasurface, then sound-absorbing mate-
rials are placed in the region of energy concentration to maximize
the efficiency of sound absorption. Noise reduction in some public
places, such as trains, offices, airplanes, and theaters, where there
is a corridor for walking and people stay on the two sides of
the corridor, is one typical scenario. As shown in Fig. S7, we use
two pieces of sound-absorbing materials in the middle where
energy concentrated, then weaken the sound field on two sides.
Sound-absorbing materials can only influence energy distribution
of local field near them, while the energy distribution of entire
sound field can be tailored by using designed metasurface. By
combining sound-absorbing materials with metasurface technol-
ogy, both the maximum and average pressure of the entire target
region are weakened. For example, the maximum absolute sound
pressure is further weakened by 1.72 dB in the entire target
region, compared with only using sound-absorbing materials.
Prominently, a local region with 1× 3 boxes (9 cm × 27 cm),
which is highlighted in red line, can be weakened by 4.12 dB. We
can also adjust the positions of two pieces of sound-absorbing
materials slightly, then weaken sound field on one side, as shown
in Fig. S8. In this way, a quieter but smaller region can be created.
The maximum absolute sound pressure in the weakened region
is 0.75 Pa, weakened up to 2.7 dB.

Although our proposed metasurface is based on the data of
sound fields with the source of 1000 Hz, this metasurface is still
applicable to control sound fields of other frequencies. Namely,
when the sound source is broadband, the 0/1 sequence obtained
by CNNs can still control regions of sound field. We show the
broadband effect of the machine-learning metasurface for re-
gional control in Fig. 5 and Figs. S8-11. As shown in Fig. 5, the
sound energy in the central 6 × 2 boxes is concentrated with
source frequency ranging from 500 to 2000 Hz, compared with
the reference fields at corresponding frequencies. It means that
the machine-learning optimized method is extraordinary suitable
for controlling sound fields of multiple frequencies, which are
common in scenarios such as offices and venues. However, it
can be drawn that the intensification/weakening effect dimin-
ishes as the frequency moves far away from 1000 Hz, where
active approaches are needed for better broadband effect, such
as piezoelectric actuators [34].

4. Conclusions

In summary, we propose a machine-learning optimized
method to design the phase gradient of acoustic metasurface
for regional control of local sound field. In this method, CNNs
are used to exploit the relationship between sound pressures
at multiple points to solve the problem of inversely designing
metasurface. Using the machine-learning optimized method, not
only the binary sequence of the metasurface can be obtained
according to local sound field, but also regional control of sound
field including intensification and weakening can be realized. The
machine learning method exhibits excellent accuracy in obtaining
the phase gradients of metasurfaces according to local sound
field, which is significantly better than genetic algorithm. The
metasurface designed by the machine-learning optimized method
has potential applications for noise reduction, which opens an
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Fig. 4. Regional control of sound field and the corresponding 0/1-bit sequence. (a) The control effect changes with the increase in the area of target region near
he metasurface. (b) The control effect changes with the increase in the area of target region far from the metasurface. (Region 1 contains box 1, region 5 contains
ll boxes, regions 2, 3, 4 contain boxes 1∼2, 1∼4, and 1∼9, respectively.) (c) Reference sound field with a sequence of all zero-bits. (d) Sound energy is concentrated
n the middle. (e) Sound energy is concentrated on both sides. (f) Sound energy is reduced in the lower-left region.
Fig. 5. Broadband effect of intensification in the middle. (a) Sound fields are intensified in the central 6 × 2 boxes. (b) Intensification effect with the source
requency ranging from 500 to 2000 Hz.
venue to design more complex manipulation of sound field on
emand.
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