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Abstract
In this paper, we propose to use time-domain transient analysis to compute the response of structures in a wide frequency
band by means of Fourier transform. A time-domain adjoint variable method is then developed to carry out the sensitivity
analysis of frequency-domain objective functions. By using the concept of frequency response function, it turns out that both
the objective function and its sensitivity information at multiple frequencies can be obtained by one original simulation and
at most one adjoint simulation, respectively. It is also demonstrated that some commonly used performance indices, e.g.,
dynamic compliance and input power, are indeed self-adjoint; thus, no extra adjoint simulations are needed, which makes the
sensitivity analysis extremely efficient. An obvious distinction between the proposed method and the traditional frequency
domain methods is that in our method, the frequency response curves in a wide band can be obtained in each iteration
with no extra costs. It follows that it is easy to track the evolution of the frequency response curve in our method, which is
essential in both computational and engineering sense. Several numerical examples are tested to show the effectiveness of
the proposed method.

Keywords Topology optimization · Adjoint variable method · Time-domain analysis · Fourier transform ·
Frequency-domain objectives

1 Introduction

Topology optimization has been known as one of the most
challenging and promising methodologies in structural opti-
mization. It has been well studied to find the optimal dis-
tribution of materials in the design domain to minimize a
specified objective function subject to certain constraints.
Until now, more focus is placed on statics-related topology
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optimization, while not so much attention has been paid
on dynamics-related topology optimization. The dynamic
response analysis normally requires more thought about
certain obstacles, including the localized modes (Pedersen
2000), the possible non-differentiability of the eigenfre-
quencies (Seyranian et al. 1994; Du and Olhoff 2007b; Zhou
et al. 2017), the higher computational expense (Liu et al.
2012; Yoon 2010), the disjointed design subspaces (Olhoff
and Du 2016), etc.

Generally speaking, there are three typical categories of
research in the dynamics-related topology optimization:

1. First, the emphasis is placed on the eigenfrequencies of
structures. In these papers, either the eigenfrequencies
in some fixed order (Seyranian et al. 1994; Zhou
et al. 2017; Huang et al. 2010; Zhan et al. 2009; Ma
and Kikuchi 1995; Dı́az and Kikuchi 1992) or the
eigenfrequency gap (Du and Olhoff 2007b; Jensen and
Pedersen 2006; Halkjær et al. 2006) is chosen as the
objective function.

2. Second, the steady-state frequency response of struc-
tures is chosen as the topic. Structural response under
the harmonic excitation with fixed frequencies or in
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a frequency range is minimized (Jensen 2007). Nor-
mally, the objective functions can be selected as the
dynamic compliance (Silva et al. 2019; Zhang and
Kang 2016; Ma et al. 1993; Yoon 2010; Niu et al.
2018; Jensen 2007; Olhoff and Du 2008; Venini and
Ceresa 2018, 2019), the input power (Jog 2002; Du and
Olhoff 2007a; Silva et al. 2020), or the displacement of
some specified nodes of interest (Liu et al. 2015; Yoon
2010; Jung et al. 2015; Shu et al. 2011), etc.

3. Third, the transient response of structures when subject
to a time-domain excitation is taken into account.
Usually the maximum displacement (Zhao and Wang
2017, 2016) in a time range, or the total energy in
given elements (Le et al. 2012; Zhao and Wang 2016)
is defined as the objective functions to find the optimal
topologies.

As stated by Kang et al. (2006) in his review paper, the
main themes for time-domain dynamic topology optimiza-
tion problems can be categorized as three parts, namely
the treatment of time-dependent constraints, calculation of
design sensitivity, and approximation. In order to improve
the efficiency of time-domain topology optimization, Zhao
and Wang (2017) propose to use an aggregation functional
to transform the original problem formulation into one that
is more computational tractable when minimizing the max-
imum response of the structure over the complete vibration
phase in the time-domain. Venini (2016) describes and com-
pares the time-domain and frequency-domain approaches
for the minimization of the dynamic compliance of vis-
coelastic thin beams forced by transient loads. As an
approximation method, the equivalent static loads method
(Kang et al. 2001; Choi and Park 2002; Park and Kang 2003,
2011) is proposed to solve dynamic response structural opti-
mization problems more efficiently by solving a sequence of
related static optimization problems with the same objective
and constraint functions as the original problem.

Since the dynamic response analysis normally requires
much more computational cost than static analysis, the
efficiency of both the simulation and the optimization
algorithms is of great importance. Liu et al. (2012)
make use of the first and second derivatives of dynamic
responses to approximate the dynamic displacement and
stress and transform the constrained optimization problems
into unconstrained problems by means of interior point
penalty function method in the optimization of a plane
frame structure. Zhao and Wang (2016) and Liu et al. (2015)
investigate two representatives of the model reduction
methods, i.e., the mode displacement method and mode
acceleration method, for time-domain response problems
from the perspective of accuracy and efficiency and
compare these two methods with direct integration-based
approach. It is found that when the number of time steps

is large the mode acceleration method is superior to the
mode displacement method in accuracy and also superior
to the direct integration method in efficiency. Also, Yoon
(2010) compares some model reduction schemes, e.g., mode
superposition, Ritz vector, quasi-static Ritz vector methods
from the point of efficiency and accuracy for topology
optimization in the frequency domain. Another possibility
in reducing the computational burden with structural
dynamic response is to use the Padé approximation
(Jensen 2007). As commercial software can usually run
the computation-intensive finite-element analysis much
more efficiently than homemade codes, some researchers
try to utilize the professional software as black-boxes to
find the FEA solution while implementing the topology
optimization algorithms in their homemade codes (Calvel
and Mongeau 2007; Jung et al. 2015).

The sensitivity analysis which obtains the derivatives
information of responses w.r.t. the design variables is
the basis of gradient-based design optimization. Dutta
and Ramakrishnan (1998) handle the problem that the
design sensitivities for structures under transient dynamic
loads are sensitive to the space and time discretization
by using an adaptive mesh for a reasonably fine but
constant time step. Two discrete approximation methods,
namely the differentiate-then-discretize and discretize-then-
differentiate approach, are discussed by Jensen et al. (2014).
It is showed that (Jensen et al. 2014) inconsistency may
exist in the differentiate-then-discretize approach but can be
resolved by tuning the time step when solving the motion
equation and using more accurate numerical integration
formula (e.g., trapezoidal integral formula or Simpson
integral formula) in sensitivity analysis procedure. Gu et al.
(2000) implement the precise time integration method to
find the solution to the motion equation and the sensitivity
for linear and nonlinear transient heat conduction and
structural transient dynamics problems.

Different objective functions have been used in the
dynamic response topology optimization. Jog (2002)
proposes two objective functions for the minimization of
structural vibration subjected to the periodic loading: (1) the
global one, which in this paper is called as the input power,
denotes the dissipated power done by the damping force,
and has important implications from the viewpoint of noise
reduction; (2) the local one considers the vibrations at points
of interest. Another commonly used objective function is
the dynamic compliance (Olhoff and Du 2016; Silva et al.
2019), which is defined as the inner product of harmonic
force amplitude and displacement amplitude in frequency
domain. Depending on different perspectives, the dynamic
compliance can be interpreted as either a global index
(denoting the sum of elemental kinetic energy, potential
energy, and dissipated energy) or a local index (denoting the
weighted sum of the deformation at loaded region).
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It is well known that the dynamic response topology
optimization problems are highly nonlinear and may have
many disjointed design sub-space, therefore a generalized
incremental frequency-domain method is proposed by
Olhoff and Du (2016). The basic idea of this method is
to conduct the dynamic response topology optimization
from different initial excitation frequencies such that
different evolutions of the frequency response curve can be
performed during the optimization, making it possible to get
away from unwanted local optimum with fixed excitation
frequency.

To the best knowledge of the authors, in the community
of structural topology optimization, there is no research on
using time-domain methods in conjunction with frequency-
domain objectives. In this paper, we propose to use time-
domain transient analysis to find the structural response in
a wide frequency band by means of Fourier transform. The
superiority of the proposed method is obvious when the
frequency band of interest is wide. What’s more, the adjoint
sensitivity analysis for the frequency-domain objective
functions is deduced in detail and the self-adjointness of
the dynamic compliance and input power is demonstrated,
where the concept of frequency response function plays a
key role.

The remaining parts of this paper are arranged as follows.
In Section 2, the traditional frequency-domain method is
briefly reviewed, after that the time-domain method and
the transformation between time domain and frequency
domain are introduced. In Section 3, three commonly
used performance indices in dynamic response topology
optimization are formulated with respect to the frequency
band of interest. The topology optimization workflow
is described in Section 4. In Section 5, the sensitivity
analysis of the objective functions is illustrated, which takes
full advantage of the frequency response function. Some
numerical examples and discussions are given in Section 6
where the effectiveness and efficiency of the proposed
approach are verified. The conclusions are summarized in
Section 7. In Appendix, the Newmark method to solve the
motion equation is outlined and the approximation of FT via
FFT is illustrated.

2 Obtaining structural response in a wide
frequency band by time-domain transient
analysis

2.1 Traditional frequency-domainmethod

Let M , C, K ∈ R
N×N denote the global mass, damping,

and stiffness matrix of the system, and u, q ∈ R
N denote the

global displacement and load vector, here N is the number
of dofs in the FEA model, then the motion equation of a

multiple-degrees-of-freedom vibration system driven by a
cosinusoidal force can be given by:

Mü + Cu̇ + Ku = q(t) = Q cos(ωt). (1)

Besides (1), appropriate boundary conditions and initial
conditions should be set. In this paper, we consider the zero
initial condition:

u(t = 0) = 0, u̇(t = 0) = 0. (2)

In frequency-domain method, it is a common practice to
express the harmonic excitation in a complex form:

q(t) = Q cos(ωt) = Re{Qejωt }. (3)

Here, j = √−1 is the imaginary unit. Suppose that the
steady-state solution of (1) can also be expressed as the
complex exponential form:

u = Re{Uejωt }, (4)

then by substituting (4) into (1) and cancelling out the time-
related term ejωt , we can get the frequency-domain motion
equation as:

(−ω2M + jωC + K)U = Q. (5)

Thus, the displacement (in frequency domain) can be
expressed as:

U =
(
−ω2M + jωC + K

)−1
Q. (6)

Throughout this paper, we use lowercase letters for time-
domain vectors, e.g., u(t), while uppercase letters for the
corresponding frequency-domain vectors, e.g., U(ω).

2.2 Time-domainmethod and the transformation
between time domain and frequency domain

Now, we seek to directly solve the motion (1) in time
domain by time integration methods, such as Newmark
method, generalized-α method, etc. The details of these
time integration methods are beyond the scope of this paper;
the readers are recommended to Zhang et al. (2018) for
references. A coarse outline of these methods is given here
and a brief summary of the Newmark method is given in the
Appendix section.

Recall that the motion equation is given by:

Mü + Cu̇ + Ku = q(t). (7)

In time integration methods, in order to find the structural
response in a wide frequency band, the excitation q(t) is
chosen judiciously to include the frequency components in
the desired frequency band. For simplicity, we consider the
following excitation form:

q(t) = qa · g(t), (8)

577



P. Zhou et al.

where q is the magnitude of the applied load in the loaded
region Sq , a ∈ {0, 1}N is the spatial distribution pattern
while g(t) is the time varying rule. The entries in a are
either 0 (in the unloaded region) or 1 (in the loaded region):

ai =
{

1, i ∈ Sq,

0, i /∈ Sq,
(9)

i = 1, 2, · · · , N . Both q and a are constant throughout
the optimization procedure. We take g(t) to be the Gauss
impulse, and its time domain expression is given by:

g(t) = exp

[
− (t − t0)

2

σ 2

]
. (10)

Its spectrum is given by the Fourier transform of (10):

G(ω) =
∫ ∞

−∞
g(t)e−jωtdt

= σ
√

π exp

(
−σ 2ω2

4

)
exp(−jωt0)

= Gr(ω) + jGs(ω), (11)

where Gr(ω) and Gs(ω) are the real and imaginary parts of
G(ω), resp. The highest frequency component in the Gauss
impulse is given by:

fmax =
√

2.3

πσ
. (12)

In order to make the excitation at t = 0 small enough so that
no instant shock would act on the structural system at the
beginning of simulation (which would introduce unwanted
high-frequency components into the system and slow down
the convergence of numerical simulations), the time delay
parameter may be taken as:

t0 = √
20σ ≈ 4.5σ . (13)

(13) leads to the initial excitation to be a rather small value:

g(t = 0) = e−20 ≈ 0 (14)

In time integration methods, the simulation time [0, T ],
where T is the final time, is discretized into small time
intervals such that a time series can be given:

{
0Δt, 1Δt, · · · , (n − 1)Δt

}
(15)

where Δt is the time increment and n is the total number of
sampling points, they are related to T by

T = (n − 1)Δt . (16)

Upon completion, the time integration methods would
give the structural response at the discrete time series,

ui(t) = {ui(0Δt), ui(1Δt), · · · , ui((n − 1)Δt)
}

(17)

where ui(t) is the time response at i-th dof. The displace-
ment vector can now be expressed as:

u(t) =

⎡
⎢⎢⎢⎣

u1(t)

u2(t)
...

uN(t)

⎤
⎥⎥⎥⎦ , (18)

Velocity and acceleration can also be obtained at the same
time:

u̇(t) =

⎡
⎢⎢⎢⎣

v1(t)

v2(t)
...

vN(t)

⎤
⎥⎥⎥⎦ , ü(t) =

⎡
⎢⎢⎢⎣

a1(t)

a2(t)
...

aN(t)

⎤
⎥⎥⎥⎦ . (19)

In the Appendix section, we give a brief review of the
Newmark method, which will be used in this paper to find
the solution to (7). An important feature of the Newmark
method (and indeed all the direct integration methods) is
that the triangular decomposition needs to be executed only
once during a simulation.

Now that the time response is at hand, the frequency
response can be derived by means of Fourier transform:

U(ω) =

⎡
⎢⎢⎢⎣

U1(ω)

U2(ω)
...

UN(ω)

⎤
⎥⎥⎥⎦ , (20)

where

Ui(ω) =
∫ T

0
ui(t)e

−jωtdt

=
∫ T

0
ui(t) cos(ωt)dt − j

∫ T

0
ui(t) sin(ωt)dt

= Uri(ω) + jUsi(ω)

(21)

where i = 1, 2, · · · , N , Uri(ω) and Usi(ω) are the real and
imaginary parts of Ui(ω), resp.

Similarly, the spectrum of the excitation can be given by:

Q(ω) =

⎡
⎢⎢⎢⎣

Q1(ω)

Q2(ω)
...

QN(ω)

⎤
⎥⎥⎥⎦ = qaG(ω) = qa[Gr(ω) + jGs(ω)],

(22)

where G(ω) has been given in (11).
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In practice, the integration in (11) and (21) can be
replaced by the discrete Fourier transform (DFT) which has
fast algorithms (FFT), c.f. the Appendix section.

3 Performance indices in dynamic response
topology optimization

In this section, we briefly review some common perfor-
mance indices that have been used in dynamic response
topology optimization. Since all these indices are defined
in the literature for the purpose of single frequency excita-
tion, they will be generalized to be used in occasions where
responses in a wide frequency band may be favored.

3.1 Dynamic compliance

Dynamic compliance is a generalization of the static
compliance which has been used frequently in the area of
structural topology optimization. It is usually defined as:

c(ω) =
∣∣∣Q�U(ω)

∣∣∣ . (23)

In our case, both Q and U can be complex and dependent
on frequency, so we use the following definition of dynamic
compliance:

c(ω) =
∣∣∣Q�(ω)U(ω)

∣∣∣ ,

=
√

T 2
1 (ω) + T 2

2 (ω),

(24)

where

T1(ω) = qGr(ω)T3(ω) − qGs(ω)T4(ω), (25a)

T2(ω) = qGr(ω)T4(ω) + qGs(ω)T3(ω), (25b)

T3(ω) =
∑
i∈Sq

Uri(ω), (25c)

T4(ω) =
∑
i∈Sq

Usi(ω), (25d)

C.f. (9), Sq is the set of dofs where loads are applied. Gr

and Gs are defined in (11). Since c(ω) also varies w.r.t.
frequency, its integral form would be a proper objective
function in our cases:

J1 =
∫ ωb

ωa

c(ω)dω, (26)

where [ωa, ωb] is the frequency band of interest.

3.2 Input power

Input power is defined as the time-averaged power done by
the harmonic excitation force:

p(ω) = 1

T0

∫ T0

0
q(t) · v(t)dt

= 1

T0

∫ T0

0
Re{Qejωt } · �{V ejωt }dt

= 1

T0

∫ T0

0
Re{Qejωt } · �{jωUejωt }dt

= Re

{
−1

2
jωQ�(ω)U∗(ω)

}

= −1

2
ωq
∑
i∈Sq

[Gr(ω)Usi(ω) − Gs(ω)Uri(ω)]

= 1

2
ωqGs(ω)T3(ω) − 1

2
ωqGr(ω)T4(ω) (27)

where

T0 = 2π

ω
(28)

is the period for the harmonic excitation force with angular
frequency ω. The symbols Gr and Gs are defined in (11).

It should be noted here that the expression of (27) is more
general than the ones that have been used in the literature,
but can degenerate into the ones in the literature by setting
Gs(ω) = 0. Obviously, one can find that the expression here
is more applicable in a general sense.

To consider the input power in a frequency band, we use
the following integral form as an objective function:

J2 =
∫ ωb

ωa

p(ω)dω (29)

It can be showed that in time-average sense the input
power is equal to the dissipated power done by the damping
force1. Thus, by minimizing the input power, the noise
radiation can be reduced. So, this index has great importance
from the viewpoint of noise control (Jog 2002).

3.3 Displacements at specific locations

Sometimes, it is desired to control the displacements at
specific locations: in this case, the performance index can
be taken as Yu et al. (2013) and Jensen (2007):

J3 =
∫ ωb

ωa

∣∣∣L�U

∣∣∣ dω

=
∫ ωb

ωa

√(
L�U r

)2 + (L�U s

)2
dω, (30)

1Note that in time-average sense, neither elastic force nor inertial force
makes contribution to the active power.
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where L is a vector has 1 in the dofs of interest while 0
elsewhere.

4 Topology optimization workflow

In this section, we briefly review the workflow of density-
based topology optimization methods.

In density-based topology optimization methods, the
material properties (e.g., Young’s modulus E and the mass
density ρ) in the i-th element are interpolated using the
fictitious density ξ̃i ∈ [0, 1] as:

Di = ξ̃
p
i D0 + (1 − ξ̃

p
i )Dmin, (31)

ρi = ξ̃iρ0 + (1 − ξ̃i )ρmin (32)

where i = 1, 2, · · · , m; m is the number of elements in the
FEA model; D0 and ρ0 are the elasticity matrix and mass
density of the stiffer solid material; Dmin = 0.1D0 and
ρmin = 0.1ρ0 are the elasticity matrix and mass density of
the softer base material. Note that we use the bi-material
model here.

ξ̃i is related to ξ by the filtering procedure:

ξ̄i =
∑m

k=1 Wikξk∑m
k=1 Wik

, (33)

and projection procedure (Xu et al. 2010; Wang et al. 2011),

ξ̃i = tanh(β0η) + tanh(β0(ξ̄i − η))

tanh(β0η) + tanh(β0(1 − η))
, (34)

where i = 1, 2, · · · , m.
In (33), the filter coefficient Wik is defined as

Wik = W̄ik∑m
k=1 W̄ik

,

W̄ik = max
{
rmin − dist(�e

i , �
e
k), 0

}
,

i, k = 1, 2, · · · , m.

(35)

In (34), β0 is a parameter controlling the strength of
the projection procedure. During the optimization process,
β0 will gradually increase from 1 to 64, making the final
optimized layout crisp and clear. η = 0.5 is the threshold
for the fictitious density. In (35), rmin is a predefined value
for filter radius, and dist(�e

i , �
e
k) is the Euclidean distance

between i-th element and k-th element.
The global stiffness matrix is the assembly of elemental

stiffness matrices. In light of (31), the global stiffness matrix
can be given by:

K =
m∑

i=1

[
ξ̃

p
i K i,0 + (1 − ξ̃

p
i )K i,min

]
. (36)

where K i,0 and K i,min are the stiffness matrices for i-th
element (i = 1, 2, · · · , m) if it is filled with the stiffer
and softer materials, respectively. Both K i,0 and K i,min are
constant throughout the optimization.

The global mass matrix is the assembly of elemental
mass matrices. In light of (32), the global mass matrix M

can be written as:

M =
m∑

i=1

[
ξ̃iM i,0 + (1 − ξ̃i )M i,min

]
(37)

where M i,0 and M i,min is the elemental mass matrix of i-
th element (i = 1, 2, · · · , m) if it is filled with the stiffer
and softer materials, resp. M i,0 and M i,min are constant
throughout the optimization.

Notice that the summation symbols in (36) and (37)
denote the famous assembly procedure of finite elements,
not the algebraic summation.

The commonly used Rayleigh damping model is utilized
in this paper to define the damping matrix:

C = αM + βK . (38)

Here, α and β should be carefully determined since they
fully control the decay manner of the time-domain response.
In this paper, it is assumed that the modal damping ratio
ζ is approximately 0.1 in the frequency band [5, 200] Hz
considered in the numerical examples of the present paper,
so α and β can be given by
[
α

β

]
= 2ζ

ωa + ωb

[
ωaωb

1

]
. (39)

By substituting ωa = 2π · 5 rad/s, ωb = 2π · 200 rad/s,
ζ = 0.1 into (39), we can find that

α = 6.1299s−1, β = 1.5527 × 10−4 s (40)

5 Sensitivity analysis

In this section, we carry out the sensitivity analysis of the
performance indices introduced in Section 3. The sensitivity
analysis is based on adjoint variable method. We will use b

to denote the design variable in this section.

5.1 Sensitivity analysis of a general function

First of all, let us assume a general objective function given
by

Ψ =
∫ T

0
ψ(u, b, t)dt, (41)

where b is the design variable and should be the fictitious
density in topology optimization problems, and u is the
state variable in the motion (7). Both the beginning time
t = 0 and the final time t = T are fixed throughout the
optimization process.

Finding the sensitivity of Ψ w.r.t. the design variable b

under the motion (7) is by no means an easy task. Fortunately,
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this hard work has been completed in the literature and we
simply cite the result here (Choi and Kim 2005),

∂Ψ

∂bk

=
∫ T

0

[
∂eψ

∂bk

+ λ� ∂R

∂bk

]
dt, (42)

where ∂eψ/∂bk is the explicit partial derivative of ψ w.r.t.
bk , λ(t) is the adjoint solution while ∂R/∂bk is given by

∂R

∂bk

= ∂q

∂bk

− ∂M

∂bk

ü − ∂C

∂bk

u̇ − ∂K

∂bk

u. (43)

One may notice that the term ∂R/∂bk is independent with
the objective function Ψ .

For the performance indices used in this paper, i.e., J1,
J2, J3, they are not explicitly dependent on the design
variable b. So, the first part in the integral kernel (i.e.,
∂ψ/∂bk) is zero, which can lead to a simpler form of the
sensitivity formula:

∂Ψ

∂bk

=
∫ T

0
λ� ∂R

∂bk

dt . (44)

In addition, in this paper, we do not consider the design-
dependent loads, so (43) can be simplified as well:

∂R

∂bk

= −∂M

bk

ü − ∂C

bk

u̇ − ∂K

bk

u. (45)

The differential of the mass matrix, damping matrix, and
stiffness matrix over the design variable can be found from
the SIMP interpolation scheme (36) and (37).

The adjoint solution λ(t) must be found by solving an
adjoint ODE given by Choi and Kim (2005):
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̂(τ = 0) = 0

λ̂,τ (τ = 0) = 0

M�λ̂,ττ (τ )+C�λ̂,τ (τ )+K�λ̂(τ )= ∂ψ̂�

∂u
(u, b, τ )

(46)

Here, λ̂(τ ) is the time-reversed version of λ(t),

τ(t) = T − t, t (τ ) = T − τ, (47)

so λ(t) can be recovered by reversing the time axis again,

λ(t) = λ̂(T − t). (48)

λ̂,τ and λ̂,ττ are the first and second derivatives of λ̂ w.r.t.τ ,
resp. In this paper, we use the hat symbol to identify a
variable that is evaluated in the reversed time axis.

Since M, C, K are all symmetric matrices in our case,
(46) can be rewritten as:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̂(τ = 0) = 0

λ̂,τ (τ = 0) = 0

Mλ̂,ττ (τ ) + Cλ̂,τ (τ ) + Kλ̂(τ ) = ∂ψ̂�

∂u
(u, b, τ )

(49)

By comparing (49) and (7), one can find that the adjoint
system is indeed almost the same as the original system,
the only difference lies in the right-hand side. So, we can
easily find the adjoint solution using the same FEA solver
by replacing the excitation q(t) with the adjoint excitation

q̂(τ ) = ∂ψ̂�

∂u
(u, b, τ ). (50)

We note here that the adjoint excitation is simply the
derivative of the integral kernel ψ w.r.t. the state variable u,
but needs to be reversed in the time axis.

5.2 Sensitivity of Ui (ω)

Now, we derive the sensitivity of Ui(ω), i.e., the displace-
ment spectrum at a specific dof, w.r.t. the design variable b.
This sensitivity information is the basis for the sensitivity of
J1, J2, and J3.

As shown aforehand, Ui(ω) is the Fourier transform of
ui(t):

Ui(ω) =
∫ T

0
ui(t)e

−jωtdt = Uri(ω) + jUsi(ω), (51)

where

Uri(ω) =
∫ T

0
ui(t) cos(ωt)dt,

Usi(ω) = −
∫ T

0
ui(t) sin(ωt)dt,

(52)

are the real and imaginary parts of Ui , resp. By comparing
(51) with (41), one can find that now the integral kernel is

ψ = ui(t)e
−jωt . (53)

By substituting this integral kernel into (50) and keep in
mind the time reversing rule (47), we can give the adjoint
excitation as

q̂(τ ) = I ie
−jω(T −τ), (54)

where I i is an identity vector that has 1 in i-th entry while
0 elsewhere.

As mentioned many times, the intention of this paper is
to efficiently deal with performance indices in a frequency
band. But as shown in (54), for each frequency ω, there is a
corresponding adjoint excitation q̂ i (τ ). So it seems that the
adjoint simulation should be executed every once for each
frequency point of interest, making the sensitivity analysis
extremely inefficient. How to resolve this issue? Here, we
can take advantage of the linearity nature of the structural
system to execute (at most) only one adjoint simulation to
find the adjoint solution for all frequency points of interest.
Instead of directly using (54) as the adjoint excitation, it is
wiser to choose the adjoint excitation as:

q̃(τ ) = I ig(τ ). (55)
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The difference between (54) and (55) lies in that now we
use the Gauss impulse as the time-varying rule, thus the
spectrum of both the adjoint excitation and adjoint solution
fully covers the frequency band of interest. It follows that the
sensitivity in the frequency band can be found by (at most)
one adjoint simulation.

Let λ̃(τ ) denote the adjoint solution under the excitation
q̃(τ ). Then, the spectrum of them can be given by:

Q̃(ω) = I iG(ω) (56)

Λ̃ =

⎡
⎢⎢⎢⎣

Λ̃1(ω)

Λ̃2(ω)
...

Λ̃N(ω)

⎤
⎥⎥⎥⎦ (57)

where

Λ̃k(ω) =
∫ T

0
λ̃k(τ )e−jωτ dτ (58)

is the spectrum of the adjoint solution at k-th dof, and can
be found through FFT of λ̃k(τ ).

Now that the spectra of both the (adjoint) excitation and
response are at hand, the frequency response function (FRF)
can be given by:

Hki(ω) = Λ̃k(ω)

G(ω)
= Akie

jϕki , k = 1, 2, · · · , N (59)

where Aki and ϕki are the amplitude and phase of the FRF,
resp.

Due to the linearity of the system, now we can directly
write out the adjoint solution under the harmonic excitation
q̂ i (τ ) by scaling its amplitude with Aki and shifting its
phase with ϕki :

λ̂(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1i exp [j (ϕ1i − ωT + ωτ)]

A2i exp [j (ϕ2i − ωT + ωτ)]
...

ANi exp [j (ϕNi − ωT + ωτ)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (60)

By reversing the time axis, the adjoint solution in normal
time axis can be given by:

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1i exp [j (ϕ1i − ωt)]

A2i exp [j (ϕ2i − ωt)]
...

ANi exp [j (ϕNi − ωt)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (61)

Since the adjoint solution is available, now it is straightfor-
ward to use (44) to find the sensitivity information, and we
repeat it here:

∂Ui(ω)

∂bk

=
∫ T

0
λ� ∂R

∂bk

dt . (62)

5.3 Self-adjointness of T3(ω) and T4(ω)

By investigating the expressions for c(ω) (c.f. (24)) and
p(ω) (c.f. (27)), one may find that the sensitivity of these
two terms can be easily obtained with the help of the chain-
rule after the sensitivity of T3(ω) and T4(ω) is resolved.
Take T3(ω) as an example, now we seek to prove that
this term is in fact self-adjoint; thus, no additional adjoint
simulation is needed to find its sensitivity. We repeat the
expression of T3(ω) here:

T3(ω) =
∑
i∈Sq

Uri(ω),

=
∑
i∈Sq

[∫ T

0
ui(t) cos(ωt)dt

]
. (63)

By comparing (63) with (41), one can find that now the
integral kernel is

ψ =
∑
i∈Sq

ui(t) cos(ωt). (64)

By using the conclusion in the previous subsection, now
we can directly write out the adjoint excitation for T3(ω) as

q̂r (τ ) = a cos [ω(T − τ)] = aRe {exp [jω(τ − T )]} ,

(65)

where a is the spacial distribution of the loads as defined in
(9).

One may find that the excitation (65) is simply the
combination of the real parts of (54). What’s more, by
comparing (65) with (8) it can be found that the adjoint
excitation here has exactly the same distribution with the
original excitation. We have known that the excitation q(t)

leads to the structural response u(t):

q(t) = qag(t) → u(t) = [u1(t), · · · , uN(t)]�,

Q(ω) = qaG(ω) → U(ω) = [U1(ω), · · · , UN(ω)]�.

(66)

So we can now define the FRF from the excitation q(t) to
response ui(t) as

Hi(ω) = Ui(ω)

qG(ω)
= Aie

jϕi , i = 1, 2, · · · , N (67)

where Ai and ϕi are the amplitude and phase of the FRF,
resp.
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Thus, the response of the structural system under (65) can
be readily given by taking advantage of the linearity of the
structural system:

λr (τ ) = Re
{

exp [jω(τ − T )] Aie
jϕi

}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 cos (ϕ1 + ωτ − ωT )

A2 cos (ϕ2 + ωτ − ωT )

...

AN cos (ϕN + ωτ − ωT )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
(68)

By reversing the time axis, the adjoint solution in normal
time axis can be given by:

λr (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 cos (ϕ1 − ωt)

A2 cos (ϕ2 − ωt)

...

AN cos (ϕN − ωt)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (69)

One may notice that (68) and (69) are simply the
combination of the real parts of (60) and (61), resp.

In a similar manner, T4(ω) can be rewritten as

T4(ω) =
∑
i∈Sq

Usi(ω),

= −
∑
i∈Sq

[∫ T

0
ui(t) sin(ωt)dt

]
. (70)

By comparing (70) with (41), one can find that now the
integral kernel is

ψ = −
∑
i∈Sq

ui(t) sin(ωt). (71)

The adjoint excitation can be given by

q̂s(τ ) = −a sin [ω(T − τ)]

= aIm {exp [jω(τ − T )]} , (72)

which is the combination of the imaginary parts of (54). So
the adjoint solution can be given by

λs(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 sin (ϕ1 − ωt)

A2 sin (ϕ2 − ωt)

...

AN sin (ϕN − ωt)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (73)

One may notice that (73) is simply the combination of the
imaginary parts of (61).

After the adjoint solutions are available, the sensitivity of
T3(ω) and T4(ω) can be readily given by

∂T3(ω)

∂bk

=
∫ T

0
λ�

r

∂R

∂bk

dt, (74a)

∂T4(ω)

∂bk

=
∫ T

0
λ�

s

∂R

∂bk

dt . (74b)

5.4 Sensitivity of c(ω) and J1

The expression of c(ω) is given in (24). Since both ∂T3/∂bk

and ∂T4/∂bk are available, finding the sensitivity of c(ω) is
now only a matter of chain rule:

∂c(ω)

∂bk

= ∂c

∂T3

∂T3

∂bk

+ ∂c

∂T4

∂T4

∂bk

, (75)

where

∂c

∂T3
= ∂c

∂T1

∂T1

∂T3
+ ∂c

∂T2

∂T2

∂T3

= q

c
(T1Gr + T2Gs) (76)

∂c

∂T4
= ∂c

∂T1

∂T1

∂T4
+ ∂c

∂T2

∂T2

∂T4

= q

c
(−T1Gs + T2Gr) (77)

Now, the sensitivity of J1 can be given by:

∂J1

∂bk

=
∫ ωb

ωa

∂c(ω)

∂bk

dω. (78)

The integration here can be evaluated using numerical
integration technique.

5.5 Sensitivity of p(ω) and J2

The expression of p(ω) is given in (27). Since both ∂T3/∂bk

and ∂T4/∂bk are available, finding the sensitivity of c(ω) is
now only a matter of chain rule:

∂p(ω)

∂bk

= ∂p

∂T3

∂T3

∂bk

+ ∂p

∂T4

∂T4

∂bk

, (79)

where

∂p

∂T3
= 1

2
qωGs(ω), (80a)

∂p

∂T4
= −1

2
qωGr(ω). (80b)

Now the sensitivity of J2 can be given by:

∂J2

∂bk

=
∫ ωb

ωa

∂p(ω)

∂bk

dω. (81)
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5.6 Sensitivity of J3

C.f. (30), J3 is defined as the integration with respect to the
frequency band of interest:

J3 =
∫ ωb

ωa

∣∣∣L�U

∣∣∣ dω

=
∫ ωb

ωa

√(
L�U r

)2 + (L�U s

)2
dω

=
∫ ωb

ωa

√
J 2

3r + J 2
3sdω (82)

where J3r and J3s are

J3r = L�U r =
∑
i∈Sl

ui(t) cos(ωt), (83a)

J3s = L�U s = −
∑
i∈Sl

ui(t) sin(ωt), (83b)

where Sl is the set of dofs of interest. By comparing (83)
with (41), one can find that now the integral kernel is:

ψr =
∑
i∈Sl

ui(t) cos(ωt), (84a)

ψs = −
∑
i∈Sl

ui(t) sin(ωt). (84b)

The adjoint excitations are:

q̂r (τ ) = LRe {exp [jω(τ − T )]} , (85a)

q̂s(τ ) = LIm {exp [jω(τ − T )]} . (85b)

In practice, we will use the adjoint excitation as

q̃(τ ) = Lg(τ). (86)

Suppose that the adjoint response under q̃(τ ) is given by
λ̃(τ ), then the frequency response function can be given by

H (ω) =

⎡
⎢⎢⎢⎣

H1(ω)

H1(ω)
...

HN(ω)

⎤
⎥⎥⎥⎦ , (87)

where

Hi(ω) = Λ̃(ω)

G(ω)
= Aie

jϕi ,

Λ̃(ω) =
∫ T

0
λ̃i (τ )e−jωτ dτ .

(88)

Thus, the adjoint response under q̂r (τ ) and q̂s(τ ) can be
given by:

λ̂r (τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 cos (ϕ1 + ωτ − ωT )

A2 cos (ϕ2 + ωτ − ωT )
...

AN cos (ϕN + ωτ − ωT )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (89a)

λ̂s(τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 sin (ϕ1 + ωτ − ωT )

A2 sin (ϕ2 + ωτ − ωT )
...

AN sin (ϕN + ωτ − ωT )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (89b)

After time reversing, the adjoint solutions in normal axis are
given by:

λ̂r (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 cos (ϕ1 − ωt)

A2 cos (ϕ2 − ωt)
...

AN cos (ϕN − ωt)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (90a)

λ̂s(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1 sin (ϕ1 − ωt)

A2 sin (ϕ2 − ωt)
...

AN sin (ϕN − ωt)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (90b)

After the adjoint solutions are available, the sensitivity of
J3r (ω) and J3s(ω) can be readily given by:

∂J3r (ω)

∂bk

=
∫ T

0
λ�

r

∂R

∂bk

dt, (91a)

∂J3s(ω)

∂bk

=
∫ T

0
λ�

s

∂R

∂bk

dt . (91b)

So, finally the sensitivity of J3 can be given by

∂J3

∂bk

=
∫ ωb

ωa

[
J3r

J3

∂J3r (ω)

∂bk

+ J3s

J3

∂J3s(ω)

∂bk

]
dω (92)

6 Numerical examples

6.1 Bi-material plate under transient pressure loads

In this example, we consider the square plate under transient
pressure loads, as shown in Fig. 1. Properties of the stiffer
material are E0 = 210GPa, ρ0 = 7830kg/m3, and ν = 0.3.
The softer material’s properties are Emin = 0.1E0, ρmin =
0.1ρ0, and ν = 0.3. Geometry parameters are as follows:
edge length � = 1 m, load thickness t = 0.01 m. for
amplitude q = 10N nodes. all Damping parameters α and
β are given in (40). The objective is to optimize the plate to
minimize the dynamic compliance in a specified frequency
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Fig. 1 A bi-material plate. The exterior edges are all fixed. Uniform
pressure loads are applied on the upper surface

range, so the mathematical model for this example can be
formulated as:

find ξ = [ξ1, ξ2, · · · , ξm]�

minimize J1 =
∫ ωb

ωa

c(ω)dω

subject to

⎧⎪⎨
⎪⎩

Mü + Cu̇ + Ku = q(t)

m∑
i=1

ξ̃iVi ≤ γ

m∑
i=1

Vi

(93)

where the admissible material usage of the stiffer material
is γ = 50%, c(ω) is defined in (24) and (25), [ωa, ωb] is the
predefined excitation frequency band that is kept unchanged
during the optimization procedure. The plate is modelled
using quadrilateral shell elements. In order to perform a
time domain analysis, as discussed in Section 2.2, the Gauss
impulse pressure loads with uniform spacial distribution are
applied to the plate. The total simulation time is T =1 s,
time step Δt = 5 × 10−4 s. The plate is discretized into
40×40 shell elements. Newmark method is used to simulate
the transient response of the structure.

The c(ω) curves for the initial design (i.e., the uniform
design with each elemental fictitious density equal to the
volume fraction γ = 50%) are shown as the dotted black
line in Fig. 2, from which it can be found that the first
resonant frequency2 is f1 =55.66 Hz, and there is only one
resonance peak in [0, 200] Hz. Based on this observation,
four cases of the frequency range will be considered:

1. [ωa, ωb] = [40, 50] Hz, i.e., the frequency band of
interest is lower than the first resonant frequency.

2. [ωa, ωb] = [50, 60] Hz, i.e., the frequency band of
interest covers the first resonant frequency.

3. [ωa, ωb] = [60, 70] Hz, i.e., the frequency band of
interest is larger than the first resonant frequency.

4 [ωa, ωb] = [40, 70] Hz. This range is the union of the
previous three ranges.

2Note that we use the term resonant frequency, rather than
eigenfrequency, since the resonance frequencies are only a subset
of the eigenfrequencies depending on the excitation location and
direction.

Fig. 2 c(ω) curve of the initial design and different optimized designs
in example 1

Topology optimization results under different frequency
range requirements are shown in Figs. 3, 4, 5, and 6, resp.;
some key statistics are listed in Table 1, the c(ω) curves
of these final optimized designs are shown in Fig. 2. In
the contour plots of the final optimized designs, 0 denotes
the softer material while 1 represents the stiffer material.
Since the values of c(ω) would have different magnitudes
in different designs, the dB scale is used in Fig. 2 to make
these curves easy to identify, i.e.:

c(ω) {dBJ} = 20 × lg c(ω) {J} . (94)

By the way, since we use the time step Δt = 5 × 10−4,
from the theory of FFT, we can know that the sampling
frequency and frequency resolution are:

fs = 1

Δt
= 2000Hz � 200Hz, (95a)

Δf = 1

T
= 1Hz, (95b)

resp. From the Nyquist theorem, we know that the c(ω)

curve is trustworthy in the frequency range [0, 200] Hz.
An obvious distinction between our method and the

traditional frequency-domain methods is that in our method
the frequency response curve far beyond the frequency band
of interest can be easily obtained in each iteration, which on
the contrary is a time-consuming task in frequency-domain
methods (where a series of steady-state dynamic analysis
is needed). It follows that in our method it is easy to track
the evolution of the frequency response curve; this feature
is important in both computational and engineering sense.

From Fig. 2 (the blue line) and Table 1, we know that
the first resonant frequency of the optimized design in Case
(1) is f1 = 91.80 Hz, which is significantly greater than
that in initial design. This implies that if the frequency
band of interest is lower than the first resonant frequency
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Fig. 3 Topology optimization results of the square plate in example 1
when frequency range is [40, 50] Hz

in the initial design, then by minimizing J2 we in fact
implicitly increase the first resonant frequency. The final
optimized layout in Fig. 3 shows that the majority of the
stiffer material is distributed along the exterior edges where
the fixed boundary condition is applied: this is consistent
with the higher resonant frequency.

From Fig. 2 (the yellow line) and Table 1, we know that
the first resonant frequency of the optimized design in Case
(3) is f1 = 44.92 Hz, which is lower than that in initial
design. This implies that if the frequency band of interest
is higher than the first resonant frequency in the initial
design, then by minimizing J2 we in fact implicitly decrease
the first resonant frequency. The final optimized layout in
Fig. 5 shows that the majority of the stiffer material is
distributed in the near-center region which is more prone to

Fig. 4 Topology optimization results of the square plate in example 1
when frequency range is [50, 60] Hz

Fig. 5 Topology optimization results of the square plate in example 1
when frequency range is [60, 70] Hz

deformations under the pressure excitation, this is consistent
with the lower resonant frequency.

In case (2) and case (4), the frequency band of interest
contains the resonant frequency f1 in the initial design.
In these cases, the optimization algorithm would judge
between the profits of decreasing and increasing the
resonant frequency and make decisions based on which one
leads to better performance. From the orange and purple
lines in Fig. 2, we know that the resonance frequencies in
these two cases are all driven to the right side.

It is interesting to notice that the performance of case
(1) is better than that of case (3) in frequency range
[60, 70] Hz. In Table 1, J1(60 ∼ 70 Hz) of case (1) is
1.5344 × 10−3 J, while case (3) is 2.6413 × 10−3 J. This
can be explained by the fact that gradient-based numerical

Fig. 6 Topology optimization results of the square plate in example 1
when frequency range is [40, 70] Hz
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Table 1 Performance of
different optimized designs in
example 1

Case label Frequency range (Hz) f1(Hz) J1(×10−3 J)

40∼50 Hz 50∼60 Hz 60∼70 Hz 40∼70 Hz

Initial design - 55.66 10.1657 25.8603 6.7483 45.9423

Case (1) 40∼50 91.80 1.5057 1.4074 1.5344 4.7617

Case (2) 50∼60 93.75 1.5152 1.4018 1.5022 4.7319

Case (3) 60∼70 44.92 35.7247 7.1036 2.6413 47.4743

Case (4) 40∼70 83.98 1.4399 1.4136 1.6938 4.8644

optimization algorithms are all greedy and shortsighted
and that the dynamic topology optimization problems have
many disjointed design subspaces (Olhoff and Du 2016). By
looking into Fig. 2, it can be found that driving the resonant
frequency to the right direction would make J1(60 ∼
70 Hz) become larger in the first stage since the resonance
peak would pass by the frequency range. The optimization
algorithm thus makes decision that the resonant frequency
should be driven to the left, ignoring the fact that driving
the resonant frequency to the right side would eventually
produce more profits. This phenomenon has been noticed
by Olhoff and Du (2016) and the Generalized Incremental
Frequency method has been proposed to circumvent this
problem.

By comparing the frequency response curves in different
cases, it can be found that the larger the first resonant
frequency is, the smaller c(ω) becomes at resonance. This
is due to the presence of damping in the FEA model, so the
vibration amplitudes would become smaller as the resonant
frequency becomes larger.

In order to verify the vibration state of the plate in our
simulation, in Fig. 7, we show the time-domain vibration
history of the central node in case (3) in the final iteration

Fig. 7 Time-domain vibration history of the central node in case (3)
of example 1 in the final iteration

as an example. Since the optimized design in case (3) has
the smallest value of first-order resonant frequency, it would
vibrate more violently than the others. From Fig. 7, one
can find that the structure does converge to a nearly static
state at the final simulation time T =1 s. This indicates
that the damping parameters α, β and the simulation time
T are all correctly determined. It should be noted here that
if these parameters (i.e., α, β, T ) are not reasonable, the
structure will either still have residual vibration at the end
of the simulation, or stop the vibration prematurely. The
former will cause the Fourier transform to be inaccurate,
and the latter will cause the high-frequency response to be
completely suppressed.

It can be found that (cf. Fig. 5) in some final optimized
designs not all the design variables converge to {0, 1}.
There are two possible reasons for the “gray” elements in
the final optimized design. The first one may be that the
optimizing algorithm has not “truly” converged at the end of
the iteration since we set the maximum allowable iterations
as 100 in all the tested numerical examples. So, the iteration
may stop before the design totally converges to {0, 1} if
the maximum number of iterations is reached. Another
possible reason is that in vibration attenuation design, it
may be helpful to improve the response characteristics of
the structure by setting some soft materials (i.e., “gray”
element) in the appropriate positions.

6.2 Rectangular plate under point load

In this example, we consider the rectangular plate under
point load, as shown in Fig. 8. Material properties are the

A

B

Fig. 8 Rectangular plate under point load. The left and right edges are
fixed. A concentrated load is applied at the 1/4 of the vertical symmetry
line (i.e., point A)
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same as the previous example. Geometry parameters are as
follows: length � = 1 m, width w = 0.4 m, thickness
t = 0.005 m. Load amplitude q = 1000N. The objective
is to optimize the plate to minimize the input power in a
specified frequency range, so the mathematical model for
this example can be formulated as:

find ξ = [ξ1, ξ2, · · · , ξm]�

minimize J2 =
∫ ωb

ωa

p(ω)dω

subject to

⎧⎪⎨
⎪⎩

Mü + Cu̇ + Ku = q(t)

m∑
i=1

ξ̃iVi ≤ γ

m∑
i=1

Vi

(96)

where the admissible material usage of the stiffer material is
γ = 50%, p(ω) is defined in (27), [ωa, ωb] is the predefined
excitation frequency band that is kept unchanged during
the optimization procedure. The plate is modelled using
50 × 20 quadrilateral shell elements. Total simulation time
is T =2 s; time step Δt = 5 × 10−4 s.

In the previous example, there is only one resonance peak
in the frequency range [0, 200] Hz. As shown in the black
dotted line in Fig. 9, the rectangular plate has four resonance
peaks in [0, 200] Hz in the initial design in this example:
17.09Hz, 32.23Hz, 91.8Hz, and 119.1Hz. We consider three
cases in this example:

1. [ωa, ωb] = [10, 20] Hz, i.e., the frequency range of
interest contains the first resonant frequency.

2. [ωa, ωb] = [20, 80] Hz, i.e., the frequency range of
interest contains the second resonant frequency.

Fig. 9 p(ω) curve of the initial design and different optimized designs
in example 2

Fig. 10 Topology optimization results of the rectangular plate in
example 2 when frequency range is [10, 20] Hz

3. [ωa, ωb] = [80, 160] Hz, i.e., the frequency range
of interest contains the third and fourth resonant
frequencies.

The final optimized designs are shown in Figs. 10, 11,
and 12, resp., while the p(ω) curves for these designs are
shown in Fig. 9. Some statistics are listed in Table 2. Similar
to the previous example, we use the dB scale in Fig. 9:

p(ω) {dBW} = 20 × lg p(ω) {W} . (97)

From Table 2, one can find that each optimized design
behaves much better than the rest designs in the frequency
range it is optimized. In detail, the J2 value of case (1) is the
best in the frequency range [10, 20] Hz, case (2) is the best
in the frequency range [20, 80] Hz, and case (3) is the best in
the frequency range [80, 160] Hz. This can also be verified

Fig. 11 Topology optimization results of the rectangular plate in
example 2 when frequency range is [20, 80] Hz
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Fig. 12 Topology optimization results of the rectangular plate in
example 2 when frequency range is [80, 160] Hz

from Fig. 9. This observation is different from the previous
example where only one resonance peak exists.

By looking into Fig. 9, it can be found that in all cases
the resonance peaks are either driven out of the frequency
range of interest or suppressed into a rather small value.
This verifies the ability of our method to tune the structural
frequency response in a wide frequency range. Furthermore,
because the efficiency of our time-domain optimization
method is not influenced by the number of frequencies of
interest, it can optimize the structural dynamic response in
the whole frequency band of interest in a very efficient
manner. The traditional frequency-domain optimization
methods, however, are difficult to compromise between the
optimization efficiency (which means that the sampling
frequency cannot be too high) and the optimization effect
(which requires the sampling frequency is sufficiently high).

In Fig. 13, we give the time-domain vibration history
of the loaded point in case (2) in the final iteration. From
Fig. 13, we know that the structure does converge to a nearly
static at the end of simulation T =2 s.

In order to compare the efficiency of the Newmark
method with the frequency-domain method, we compare the
solution time in each iteration by the Newmark method and
the traditional frequency-domain method (i.e., by directly
solving the linear system (5)) and list the results in Table 3.

Fig. 13 Time-domain vibration history of the node where concentrated
load is applied in case (2) of example 2 in the final iteration

The frequency resolution in both methods is 1 Hz. Accord-
ing to the Nyquist theorem, the dynamic response obtained
by Newmark method with Δt = 5 × 10−4 s is accurate up
to 1000 Hz, so in Table 3 we test four frequency ranges for
the case of directly solving (5). Also, two mesh sizes are
tested. From Table 3, it can be found that directly solving
the linear system (5) is slower than the Newmark method
when the frequency range of interest is wide. If the fre-
quency range of interest is narrow, however, direct solving
(5) can be faster than the Newmark method. We comment
here that our method is by no means limited to the New-
mark method as the solver to the motion equation. Other
more efficient methods, e.g., the model reduction method,
the subspace method, etc., can be freely used as the solver
of the motion equation in our method with almost no change
in the framework.

6.3 Shell structure under point load with J3
as the objective function

In this example, we still consider the rectangular plate which
is the same as that in Section 6.2, but now we use J3 as
the objective function, i.e., the displacement at Point B as

Table 2 Performance of
different optimized designs in
example 2

Case label Frequency range(Hz) J2(W)

10∼20 Hz 20∼80 Hz 80∼160 Hz

Initial design - 0.5666 0.4835 0.2402

Case (1) 10∼20 0.0034 0.9471 0.0661

Case (2) 20∼80 0.6010 0.0478 0.0839

Case (3) 80∼160 0.1479 0.7156 0.0043
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Table 3 Solution time of motion equation by Newmark method and
frequency-domain method

#Mesh Time (s)

Newmark Directly solving (5)

[10, 20] [20, 80] [80, 160] [0, 1000]
Hz Hz Hz Hz

50 × 20 1.6627 0.9750 4.9172 6.6173 86.3970

100 × 40 10.4312 4.5129 24.1984 32.0152 414.9453

shown in Fig. 8 is of interest, so the mathematical model for
this example can be formulated as:

find ξ = [ξ1, ξ2, · · · , ξm]�

minimize J3 =
∫ ωb

ωa

∣∣∣L�U

∣∣∣ dω

subject to

⎧⎪⎨
⎪⎩

Mü + Cu̇ + Ku = q(t)

m∑
i=1

ξ̃iVi ≤ γ

m∑
i=1

Vi

(98)

where the admissible material usage of the stiffer material
is γ = 50%, J3 is defined in (30), [ωa, ωb] is the predefined
excitation frequency band that is kept unchanged during the
optimization procedure, L ∈ {0, 1}N is a N-dimensional
vector whose entries are 1 at the vertical dof of Point B while
0 elsewhere. In this case, the objective function is no longer
self-adjoint but the adjoint solution needs to be executed
only once. We also consider three cases:

1. [ωa, ωb] = [10, 20] Hz.
2. [ωa, ωb] = [20, 80] Hz.
3. [ωa, ωb] = [80, 160] Hz.

Fig. 14 |U(ω)| curve of the initial design and different optimized
designs in example 3

Fig. 15 Topology optimization results of the rectangular plate in
example 3 when frequency range is [10, 20] Hz

Fig. 16 Topology optimization results of the rectangular plate in
example 3 when frequency range is [20, 80] Hz

Fig. 17 Topology optimization results of the rectangular plate in
example 3 when frequency range is [80, 160] Hz
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Table 4 Performance of
different optimized designs in
example 3

Case label Frequency range (Hz) J3(mm)

10∼20 Hz 20∼80 Hz 80∼160 Hz

Initial design - 4.7289 3.0496 0.3947

Case (1) 10∼20 0.2973 4.1349 0.2021

Case (2) 20∼80 2.9384 1.2001 0.0953

Case (3) 80∼160 1.2029 5.5552 0.0018

The curve of Ui(ω), where i corresponds to the z

directional dof at point B, for the initial design and different
optimized designs is shown in Fig. 14. The final optimized
layouts are shown in Figs. 15, 16, and 17, resp. Some
statistics are listed in Table 4, from which it can be found
that the optimized design always behaves the best among
the three cases in the frequency range it is defined. This
observation is the same as that in Section 6.2.

Similar to previous examples, we use the dB scale in
Fig. 14:

U(ω) {dBmm} = 20 × lg U(ω) {mm} . (99)

One may notice that the final layouts in this example
are all symmetric about both the horizontal and vertical
centerline, while in Section 6.2 the final layouts are only
symmetric about the vertical centerline. This is reasonable
since in Section 6.2 the concentrated load is applied at point
A (c.f. Figure 8) which is not located at the horizontal
centerline and the objective considers only the response at
this point. In this example, the concentrated load is applied
at node A but the response at node B is of interest, making
the final optimized designs symmetric about the horizontal
centerline as well.

7 Conclusion

A novel time-domain method for the topology optimization
of continuum with frequency-domain objectives is pro-
posed, which is especially efficient and preferable when
the wide frequency band response is of interest since only
one time-domain simulation is enough to find the structural
dynamic response throughout the frequency band of inter-
est. The adjoint sensitivity analysis of some commonly used
objectives is carried out and it turns out that the dynamic
compliance and the input power are all self-adjoint; thus,
no extra adjoint simulation is needed, making the sensitivity
analysis procedure very efficient.

Through several examples, the effectiveness of our
method is demonstrated. According to the numerical results,

different final optimized designs would be generated with
different frequency ranges of interest. In engineering
practice, the performance of structures is always evaluated
in a frequency range, either wide or narrow. So, considering
the dynamic performance of structures in a frequency range
is important not only in the theoretic sense but also in the
engineering practice sense, which is exactly the value of our
method.

In this paper, the Newmark method, which is a repre-
sentative of the direct integration methods, is used to find
solutions to the motion equation. But our methods can be
freely generalized to be used with other solution methods of
the motion equation, e.g., the model reduction method and
the subspace method.
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Appendix

A.1: A brief summary of Newmarkmethod

The Newmark method for the solution of the motion (7) can
be outlined as follows. Note that, some symbols, e.g., β, γ ,
L, have different meaning with the ones used in previous
sections.

1. Initialization

(1) Form the global matrix K, C, M .
(2) Calculate ü0 with the given initial condition

u0, u̇0.
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(3) Using prescribed parameters Δt , β, γ to calculate
the integral constants

c0 = 1

βΔt2
c1 = γ

βΔt

c2 = 1

βΔt
c3 = 1

2β
− 1

c4 = γ

β
− 1 c5 = Δt

(
γ

2β
− 1

)

c6 = Δt(1 − γ ) c7 = γΔt

(a) Form the effective stiffness matrix

K̂ = K + c0M + c1C

(b) Triangular decomposition of K̂

K̂ = LDL�

An important observation here is that the triangular
decomposition is executed only once in each simulation
ahead of the time marching step.

2. Time marching: for every time step,

(1) Compute the effective loads at t + Δt

q̂ t+Δt =q t+Δt + M (c0ut + c2u̇t + c3üt ) +
C (c1ut + c4u̇t + c5üt )

(2) Compute the displacement at t + Δt

LDL�ut+Δt = q̂ t+Δt

(3) Compute the acceleration and velocity at t + Δt

üt+Δt = c0 (ut+Δt − ut ) − c2u̇t − c3q̈ t

u̇t+Δt = u̇t + c6üt + c7üt+Δt

A.2: Using FFT to approximate FT

Throughout this paper we use the FT to define the spectrum
of a time series signal, i.e.:

X(f ) =
∫ +∞

−∞
x(t)e−jωtdt (100)

The Parseval theorem of the FT indicates that the energy in
time domain and frequency domain is equal:
∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(f )|2 df (101)

If the time series is sampled at discrete time with
sampling frequency fs ,

x(t) = {x0, x1, · · · , xn−1
}
, (102)

then the DFT of this discrete time series is given by

X(f ) = {X0, X1, · · · , Xn−1
}
, (103)

where

Xk =
N−1∑
n=0

x(n) exp

(
−j

2π

N
nk

)
(104)

The Parseval theorem of the DFT is given by

n−1∑
k=0

|xk|2 = 1

n

n−1∑
k=0

|Xk|2 , (105)

which can be rewritten as
n−1∑
k=0

|xk|2 dt =
n−1∑
k=0

|dt · Xk|2 df (106)

By comparing (106) and (101), we can find that in order to
use DFT to approximate FT, the spectrum obtained by DFT
should be scaled:

Xsc
k = Xk · dt . (107)

We apply this scale in all the numerical examples. In
MATLAB, this procedure can be easily done by the
following codes:

X = fft(x)*dt; (108)

The sampling frequency fs , the sampling interval Δt , and
the frequency resolution Δf are related by:

fs = 1

Δt
, Δf = fs

n
(109)
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Zhou P, Du J, Lü Z (2017) Topology optimization of freely
vibrating continuum structures based on nonsmooth optimization.
Struct Multidiscip Optim 56(3):603–618. https://doi.org/10.1007/
s00158-017-1677-5

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

593

https://doi.org/10.1002/nme.2065
https://doi.org/10.1007/s00158-013-1024-4
https://doi.org/10.1016/j.cma.2015.06.019
https://doi.org/10.1016/S0045-7949(00)00127-9
https://doi.org/10.1016/S0045-7949(00)00127-9
https://doi.org/10.1007/s00158-005-0575-4
https://doi.org/10.1016/j.jmps.2011.09.002
https://doi.org/10.1016/j.jmps.2011.09.002
https://doi.org/10.3233/SAV-2012-0685
https://doi.org/10.1007/s00158-014-1218-4
https://doi.org/10.1007/s00158-017-1859-1
https://doi.org/10.1007/s00158-016-1574-3
https://doi.org/10.1023/A:1024799727258
https://doi.org/10.1023/A:1024799727258
https://doi.org/10.1007/s00158-010-0530-x
https://doi.org/10.1007/s00158-010-0530-x
https://doi.org/10.1016/j.jsv.2011.07.026
https://doi.org/10.1016/j.jsv.2011.07.026
https://doi.org/10.1016/j.jsv.2018.12.030
https://doi.org/10.1016/j.jsv.2019.114989
https://doi.org/10.1016/j.compstruc.2016.07.012
https://doi.org/10.1002/eqe.3028
https://doi.org/10.1007/s00158-013-0907-8
https://doi.org/10.1007/s00158-013-0907-8
https://doi.org/10.1109/ICMTMA.2009.497
https://doi.org/10.1007/s00158-016-1607-y
https://doi.org/10.1007/s00158-016-1607-y
https://doi.org/10.1007/s00158-015-1328-7
https://doi.org/10.1007/s00158-015-1328-7
https://doi.org/10.1016/j.compstruc.2017.05.002
https://doi.org/10.1016/j.compstruc.2017.05.002
https://doi.org/10.1007/s00158-017-1677-5
https://doi.org/10.1007/s00158-017-1677-5

	Topology optimization with frequency-domain objectives using time-domain...
	Abstract
	Introduction
	Obtaining structural response in a wide frequency band by time-domain transient analysis
	Traditional frequency-domain method
	Time-domain method and the transformation between time domain and frequency domain

	Performance indices in dynamic response topology optimization
	Dynamic compliance
	Input power
	Displacements at specific locations

	Topology optimization workflow
	Sensitivity analysis
	Sensitivity analysis of a general function
	Sensitivity of Ui()
	Self-adjointness of T3() and T4()
	Sensitivity of c() and J1
	Sensitivity of p() and J2
	Sensitivity of J3

	Numerical examples
	Bi-material plate under transient pressure loads
	Rectangular plate under point load
	Shell structure under point load with J3 as the objective function

	Conclusion
	Appendix A 
	A.1: A brief summary of Newmark method
	A.2: Using FFT to approximate FT
	References




