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Extremal materials are elastic metamaterials with rank-deficient elasticity tensor. Due to this novel prop-
erty of the elasticity tensor, extremal materials (especially pentamode materials) show outstanding per-
formance in various wave manipulation applications. However, until now there is still a lack of a
systematic and general design methodology that is applicable for all kinds of extremal materials. In this
study, we proposed to design extremal materials by using topology optimization techniques without any
prior knowledge about the geometric symmetry of the unit cell, thus more anisotropic materials can in
principle be designed. Besides the number of zero eigenvalues of the elasticity tensor, the corresponding
eigenvectors (usually called the soft modes of the extremal materials) can also be customized in our
method. We use a two-step design strategy to accomplish the design of the microstructures. Several
numerical examples are shown to verify the effectiveness of the optimization framework in designing
extremal materials with and without constraints on soft/hard modes. Numerical results reveal that the
proposed method can design extremal materials with arbitrary values of soft or hard modes. The pro-
posed methodology can be easily extended to three-dimensional case. Our works pave the way for
exploring the rich property of extremal materials.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Metamaterial, a kind of man-made materials, possesses exotic
effective properties from structure rather than directly from its
composition [1]. Building upon the success of electromagnetic
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and acoustic metamaterials, researchers working on mechanical
metamaterials strive at obtaining extraordinary or extreme elastic-
ity tensors and mass-density tensors to thereby mold static stress
fields or the flow of longitudinal/transverse elastic vibrations in
unprecedented ways [2]. The research domain of mechanical meta-
materials normally includes auxetics with negative Poisson’s ratio
[3], light-weight metamaterials with strong stiffness [4], metama-
terials with negative parameters (mass densities and elastic mod-
uli) [5], as well as the pentamode metamaterials which are
virtually a special kind of extremal materials [6].

In continuum mechanics, the fourth-rank elasticity tensor cijkl is
used to describe the mechanical properties of a linear-elastic mate-
rial, also known as the Hookean solid. Traditional elastic contin-
uum’s elasticity tensor is symmetric and positive definite. The
minor symmetry (i.e., cijkl ¼ cjikl ¼ cijlk) is a direct consequence of
the conservation of angular momentum, while the major symme-
try (i.e., cijkl ¼ cklij) holds due to the existence of a strain energy
function in a conservative system. The positive definiteness prop-
erty results from the basic thermodynamics, i.e., the strain energy
must be a positive quantity that vanishes only in the undeformed
state [7]. In other words, in order to deform a material the strain
energy should be expended. A direct result of the positive definite-
ness property is that all the eigenvalues of the elasticity tensor cijkl
are positive.

Milton [6] generalized the concept of linear-elastic material to
include the ones whose microstructure can contain judiciously-
designed mechanisms such that no elastic strain energy is
expended to deform the microstructure in some specified deforma-
tion modes (termed as the soft modes in this paper). Within this
generalization, the eigenvalues of the elasticity tensor can
approach zero, and the elasticity tensor cijkl is now only positive
semi-definite. In that case, the eigenvector of the elasticity tensor
corresponding to the zero eigenvalue characterizes the soft mode.
Similarly, the eigenvectors corresponding to the non-zero eigen-
values is called hard modes here. In this regime, linear-elastic mate-
rials (in three-dimensional case) can be classified respectively into
nullmode, unimode, bimode, trimode, quadramode and penta-
mode materials depending on the number of zero eigenvalues of
the elasticity tensor cijkl. In two-dimensional case, however, only
the nullmode, unimode and bimode materials exist since the elas-
tic matrix is of dimension 3� 3. The elasticity tensor of the null-
mode, unimode, and bimode materials have no, one, and two
zero eigenvalues, respectively.

The elasticity tensor of pentamode material has only one non-
vanishing eigenvalue. Isotropic pentamode meta-materials can
thus only support hydrostatic stress and is soft for any other stress
states. Due to their water-like wave properties and solid nature,
such kind of materials show great potential for underwater acous-
tic applications. Since their first fabrication by Kadic et al. [8], they
have been widely investigated in recent years [9–12]. Acoustic
simulation and experimental testing results based on planar penta-
mode with honeycomb-like microstructure indicate that the
designed pentamode material mimics water’s acoustic properties
over a wide frequency range [9,12]. Underwater acoustic cloak
which is fascinating for engineering applications can be realized
by annular graded solid pentamode microstructures [9], later
experiment has been conducted to demonstrate the feasibility of
the underwater pentamode cloak [13]. It is also found that the
metamaterials made of solid constituents are inherently imperfect
since small shear resistance is not only unavoidable but also neces-
sary for the stability of structure [9]. The shear resistance will incur
the shear resonance, which can be suppressed by adding appropri-
ate damping [10]. A metasurface with graded honeycomb penta-
mode unit cell can convert underwater cylindrical wave into
plane wave [11]. Since only quasi-static material properties are
2

considered, such metasurface is broadband and allows a high
transmission ratio due to the matched impedance between the
pentamode material and water. Excellent wavefront manipulation
such as anomalous refraction, generation of non-diffracting Bessel
beam, and sub-wavelength flat focusing can be realized by employ-
ing a gradient velocity to redirect refracted waves and pentamode
metamaterials to improve impedance matching between the meta-
surface and the background medium [14]. An inhomogeneous
acoustic metamaterial lens based on spatial variation of refractive
index for broadband focusing of underwater sound is also reported
[15]. The index gradient follows a modified hyperbolic secant pro-
file designed to reduce aberration and suppress side lobes. The gra-
dient index lens is comprised of pentamode microstructures with
tunable quasi-static bulk modulus and mass density. This design
approach has potential applications in medical ultrasound imaging
and underwater acoustic communications.

Apart from pentamode materials, there are also some works
devoted to the study on other kind of extremal materials. Auxetic
materials can be used to design unimode materials, of which the
only easy deformation mode is dilation [16]. Unimode metamate-
rials made from rotating rigid triangles exhibit the anomalous
property of negative linear compressibility along loading direction
in which the Poisson’s ratio is larger than 1 [17]. Milton con-
structed a large family of non-linear bimode materials using rigid
bars, pivots and actuators [18]. Recently, the wave properties of
different quadramode materials based on material symmetry are
also investigated [19]. A quadramode based out-of-plane shear
wave polarizer is validated both theoretically and numerically,
which effectively prevents the mode conversion at the interface
between the solid and liquid phases [19].

So far the most widely studied pentamode microstructures are
diamond-like ones in 3D case or honeycomb-like ones in 2D case,
both of which were suggested by Milton using clever arrangements
of mechanisms in the unit cell [6]. As an alternative, the topology
optimization approach can be used as a powerful tool to explore
other potential pentamode microstructures in a much more effec-
tive and efficient manner [20]. Topology optimization attempts to
find optimal layout of (macroscopic or microscopic) structures
under given objective functions and constraints. In the cases of
microstructures, many new and innovative microstructures can
be found by means of topology optimization with appropriately
formulated objective functions (e.g., maximizing the ratio between
the bulk and shear modulus [21], maximizing the broadband wave
manipulation ability [22], achieving an ultra-lightweight high-
performance micro-lattice [23]). These works all took advantage
of the symmetry of the unit cell, which reduced the number of
design variables for high computation efficiency but also limited
the region of search space. Therefore, in this study the symmetry
of the unit cell will not be taken into consideration in advance so
as to explore as many microstructures as possible. In addition,
the eigenvectors of elasticity matrix have not been paid enough
attention in all the current works, but they do have a huge impact
on the subsequent application of extremal materials. For example,
the positive and negative honeycomb are both bimode materials.
The biggest difference between them is that the hard mode of
the former is ½1;1;0�> while the latter is ½1;�1;0�>. Comparing to
the positive honeycomb, the negative ones can be applied to split-
ting the mode of waves [24]. Therefore, in terms of applications of
extremal materials, the design method should take the eigenvec-
tors into consideration.

Although the idea of extremal metamaterials with zero eigen-
values has been proposed for over 25 years since Milton’s land-
mark work [6] and various microstructures have been proposed
from that on, there is still a lack of a systematic and general
approach to design the microstructures of the extremal metamate-
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rials. In particular, no framework is available in the literature to
design an extremal metamaterial with specified number of zero
eigenvalues and with prescribed soft or hard mode at the same
time. This study is intended to fill this gap to establish a systematic
framework to design the extremal metamaterials.

In this paper, we follow the idea of Milton’s early work that tries
to construct general extremal metamaterials with arbitrary prede-
termined soft or hard mode [6], but here we make use of the struc-
tural optimization, or more specifically, the topology and shape
optimization methods. The remaining parts of this paper is orga-
nized as follows. In Section 2, the properties of extremal materials
are briefly reviewed, where the Kelvin notation is used due to its
convenience in matrix expressions. The overall optimization
framework and detailed optimization models of different kinds of
extremal metamaterials are elaborated in Section 3. The numerical
homogenization method of the extremal metamaterials are given
in Section 4. In order to make the whole optimization workflow
effective and robust, there are quite a lot of implementation strate-
gies that should be taken into consideration when solving the opti-
mization problem. All these implementation details are discussed
in Section 5. In Section 6 we discussed in detail the rigid rotation
process of the unit cell. Relevant properties of the rotation process
are also covered, based on which it can be found that all the rotated
strain tensor can be classified by their first principal invariants,
thus greatly reducing the searching scope of the numerical opti-
mization process. In Section 7, the entire optimization flow is
demonstrated by a series of numerical examples. We successively
show in this section how to design two-dimensional extremal
metamaterials without and with constraints on the soft modes
and/or hard modes. Finally, the concluding remarks are given in
Section 8.
2. A brief review on the extremal materials and design target

In this section, we briefly illustrate some basic properties of the
two dimensional extremal materials. The Kelvin notation1 [27–29]
will be used to express the second-rank stress and strain tensors
as well as the fourth-rank elasticity tensor in matrix form, which
is more computationally tractable. Shortly, the sufficient and neces-
sary conditions for all types of two dimensional extremal materials
are derived based on the characteristic polynomial of the elasticity
tensor.

For a linear-elastic material, the constitutive relation between
strain and stress is given by

c : e ¼ r; ð1Þ
where c ¼ cijkleiejekel is the well-known fourth-rank elasticity ten-
sor, ei is the Cartesian basis vector; r and e are the stress and strain
second-rank tensors, respectively.

Let k and v denote the eigenvalue and second-rank eigentensor
of c, then it holds that,

c : v ¼ kv : ð2Þ
Comparing Eqs. (1) and (2) we know that when ðk;vÞ composes an
eigen-pair of c, the second-rank tensors v and kv indeed make up a
pair of strain and stress of the linear material. In this sense, v and kv
can be called as the easy strain and easy stress when k ¼ 0, and hard
strain and supporting stress when k > 0 [6]. In this paper, however,
we simply call v the soft mode if k ¼ 0 and the hard mode if k > 0.

It is not easy to work directly with the two-dimensional fourth-
rank elasticity tensor c, so it is desirable to convert the tensor form
into a more numerically-tractable matrix form. There are various
ways to achieve this goal, of which the most common one is the
1 It is also called as the Mandel notation [25,26] by some authors in the literature.

3

Voigt notation. However, Mehrabadi and Cowin [29] demonstrated
that the Voigt notation is non-tensorial in the sense that the eigen-
values of the elasticity tensor c are in general not the eigenvalues of
its Voigt notation counterpart C½ �Voigt. The inverse and contraction
of c cannot be computed by the inverse and multiplication of
C½ �Voigt, either.

In this paper we choose to express the elasticity tensor with the
less-famous Kelvin notation, which is originated from Kelvin’s sem-
inal work [27,28] on the decomposition of the elasticity tensor.
Using Kelvin notation, Eq. (1) can be rewritten as a matrix form2,

rf g ¼ C½ � ef g; ð3Þ
where the vector representations of the stress and strain tensors
are,

rf g ¼
r11

r22ffiffiffi
2

p
r12

8><>:
9>=>;; ef g ¼

e11
e22ffiffiffi
2

p
e12

8><>:
9>=>;; ð4Þ

while the matrix representation of the elasticity tensor is

C½ � ¼
c1111 c1122

ffiffiffi
2

p
c1112

c1122 c2222
ffiffiffi
2

p
c2212ffiffiffi

2
p

c1112
ffiffiffi
2

p
c2212 2c1212

264
375: ð5Þ

Note that we use the braces �f g and brackets ½�� to emphasize that
they are the vector and matrix representations of tensors,
respectively.

It has been demonstrated that the components of the elasticity
matrix C½ � in 2D indeed correspond to a three-dimensional second-
rank tensor [29], implying that the elasticity tensor cijkl can be fully
represented by the matrix C½ �. This way the eigenvalues, inverse,
and contraction of the elasticity tensor can be directly computed
by using C½ � without resorting to the original fourth-rank tensor
cijkl [30]. For example, it is easy to prove that the fourth-rank tensor
cijkl and the matrix C½ � have exactly the same eigenvalues. Another
benefit from the Kelvin notation is that the eigenvalues of C½ � do
not change under coordinate system transformations, which is
consistent with the tensorial nature of cijkl.

Using Kelvin notation, the eigenvalue problem Eq. (2) can also
be written in the matrix form,

C½ � vf g ¼ k vf g; ð6Þ
where C½ � and vf g are the Kelvin notations of c and v , respectively.
Eq. (6) can be equivalently written as

k I½ � � C½ �ð Þ vf g ¼ 0f g; ð7Þ
where I½ � is the identity matrix.

In order to find the eigenvalue k corresponding to a nontrivial
eigenvector v , a characteristic equation can be formulated from
Eq. (7),

det k I½ � � C½ �ð Þ ¼ k3 þ C2k
2 þ C1kþ C0 ¼ 0; ð8Þ

where the coefficients in Eq. (8) can be expressed as the polynomi-
als of cijkl,

C2 ¼ �cijij ¼ �tr C½ �ð Þ;
C1 ¼ 1

2 cijijcklkl � cijklcijkl
� �

;

C0 ¼ �det C½ �ð Þ:

8><>: ð9Þ

The Einstein’s summation rule is applied throughout this paper; tr
(�) and det(�) stand for the trace and determinant of a square matrix,
respectively. The derivation of Eq. (8) is by no means trivial and we
obtain it following the Faddeev-LeVerrier algorithm [31].
2 Note that all the matrix expressions in this paper refer to the two-dimensional
case, but can be easily extended to the three-dimensional case if needed.
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Let ki (i ¼ 1;2;3) denote the roots of the cubic Eq. (8), then by
using the fundamental theorem of algebra, Eq. (8) can be rewritten
asY3
i¼1

ðk� kiÞ ¼ 0: ð10Þ

Applying Vieta’s formulas to Eq. (8) and keeping in mind that all the
eigenvalues ki are non-negative (due to the basic thermodynamic
restrictions), the sign of each coefficient can be determined,

C2 6 0; C1 P 0; C0 6 0: ð11Þ
By using the fundamental theorem of algebra, the condition of such
two-dimensional extremal materials can be given by,

C2 6 0;
C1 > 0;
C0 ¼ 0;

8><>: for unimode materials; ð12Þ

C2 < 0;
C1 ¼ 0;
C0 ¼ 0:

8><>: for bimode materials: ð13Þ

It should be noted here that Eqs. (12) and (13) indeed show the
sufficient and necessary conditions of the two-dimensional uni-
mode (with one zero eigenvalue) and bimode materials (with
two zero eigenvalues), respectively. For any linear-elastic material
whose elasticity matrix is known, the coefficients C0;C1;C2 can be
computed by Eq. (9). Then the material is definitely a unimode
material if Eq. (12) holds true. On the other hand, the coefficients
C0;C1;C2 computed from a unimode material would also defi-
nitely satisfy Eq. (12). For bimode materials, similar conclusions
can be drawn.

Besides the prescribed number of zero-eigenvalues of elasticity
matrix, the eigenvectors (soft or hard modes) are taken into con-
sideration in our design target of two-dimensional extremal mate-
rials. The performance index Err is used here to evaluate the degree
of matching between the calculated soft or hard modes of the opti-
mized microstructures and the prescribed ones. In detail, the per-
formance index Err is given by

Err ¼ C½ � vdf g � k vdf gk k22; ð14Þ
where C½ � is the elasticity matrix of the optimized result, and vdf g is
the prescribed eigenvector( vdf g ¼ vsf g for unimode and
vdf g ¼ vhf g for bimode). k is the eigenvalue in the eigenpair
ðk; vdf gÞ.

3. Optimization framework

In this paper we concentrate on the periodic medium, i.e., the
composites with periodic unit cells (See Fig. 1). The periodicity fea-
ture implies that under macroscopic loads all physical quantities
(e.g., displacement, strain, stress, etc.) should have the same period
with the geometry. Therefore, it is possible to take advantage of
mathematical tools to calculate quantitatively the exact values of
the effective characteristics. In Fig. 1 the black lines represent the
bars while the red dots denote the joints. The joints here indeed
simulate the pivot joints, thus no moments can be transmitted
by these joints. This way the bars can only support axial loads
and the periodic unit cells can be designed to have some intrinsic
mechanisms.

The optimization framework here essentially refers to the two-
dimensional unit cell, which contains two main optimization
steps, i.e., the topology optimization step and the shape optimiza-
tion step. The first step aims to obtain the layout of microstruc-
ture while the second step attempts to tune the nodal
4

coordinates of the microstructure so that it can better match
the soft/hard mode with prescribed ones. Very often, a series of
micro-structures of extremal materials can be obtained by simply
using the first step, i.e., the topology optimization. Still, the sec-
ond step can act as a safeguard that the proposed approach can
design extremal materials with arbitrary predefined soft/hard
modes.
3.1. A general introduction on the design flow

Since only periodic medium is considered, we focus on the
design of the unit cell of extremal material. The flowchart and dia-
gram of the design flow of the extremal materials considering the
prescribed soft or hard mode are shown in Fig. 2. There are two
stages in the design flow, and the task of each stage is outlined
as follows.

(1) In Step 1, we use topology optimization approach to design
the microstructures of the extremal materials. As illustrated
in Fig. 3, we use the ground structure as the starting point of
our optimization. In the ground structure [20], every two
nodes are connected by a pin-jointed truss element. In
Fig. 3(b), the nodes are marked by red dots while the bars
are marked by black lines. Due to the periodicity of the unit
cells, there is no bars on the left and bottom edges,
otherwise the cross-sectional areas of the bars in the
microstructure would not be all the same. In Fig. 3(a) we list
the labels of the nodes. For such a ground structure with
n� n nodes, the number of the possible bars is
Nbar ¼ C2

n2 � 2C2
n ¼ n4�3n2þ2n

2 . In the light of the topology opti-
mization approaches, the cross-sectional area of the i-th bar
element is attached to a design variable fi 2 ½0;1�. As the
conventions of structural topology optimization approaches,
the i-th bar element will be retained in the final optimized
design if fi ¼ 1 while discarded if fi ¼ 0. It is well-known
that rigid rotation of the unit cell leads to transformation
of all the entries of the elasticity tensor. Under this transfor-
mation, the eigenvalues ki would not change, but the eigen-
vectors v i would change accordingly. Thus, a specific layout
of unit cell indeed corresponds to enormous number of
eigenvectors. In order to take advantage of this property,
we add the rotation angle h around z axis into the optimiza-
tion formulation in the first step (cf. Fig. 2b) and and Sec-
tion 3.2). More details of the rotation process can be found
in Section 6. In Fig. 2 (b) we show the evolution of one unit
cell during the optimization. As can be seen from Fig. 2 (b),
after the first step both the layout and the rotation angle
are altered.

(2) In Step 2, we intend to find a more precise solution based
on the result from the first step by shape optimization. A
postprocessing process is executed at the end of Step 1 so
that a clear and concise interpretation of the layout of
the unit cell can be available. Then the locations of all
the nodes in the unit cell are chosen as the design variables
in this step. The rotation angle keeps unchanged during the
this step to avoid the optimization problem to be too com-
plicated. The lattice vectors of the unit cell will also stay
unchanged during the this step, avoiding extra computa-
tion cost.

As shown in Fig. 2 (a), two thresholds g1 and g2 are introduced
to help algorithm judge the workflow by comparing to the value of
performance index Err. If Err > g1, it means the precision of solu-
tion is too coarse, thus further loops in Step 1 are needed. If
g1 < Err < g2, it means that the precision is acceptable for Step 1



Fig. 2. (a) Design flowchart of 2D extremal materials considering predefined soft or hard mode. (b) A diagram showing the evolution of the unit cell during the two
optimization steps.

Fig. 1. Periodic unit cells. The left side shows the periodic media composed of tessellations of unit cells, the right shows one basis of the unit cell. Red dots denote the corner
nodes in the lattice, black lines denote the bars.
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but not for Step 2, so further loops in Step 2 are needed. If Err < g2,
it means that the precision is acceptable for both Step 1 and Step 2,
so can be output. In Fig. 2 (a), there are two lines linking with the
box End. One represents that the algorithm find a good enough
solution by utilizing both Step 1 and Step 2, while the other one
reveals that the solution can be obtained with only Step 1. Mean-
while, there is a counter g2 in the second loop. If g2 is larger than
a predefined number (say 50), the algorithmwill enter back to Step
1 and such process can be regarded as the loop between Step 1 and
2. The loop between Step 1 and 2 is necessary because the contin-
5

uous failure of Step 2 implies that the results obtained in Step 1 is
not good enough.

The implementation details of all these steps will be elaborated
in Section 5. In the following subsections we carry out the mathe-
matical models of Step 1 and Step 2.
3.2. Optimization model in Step 1

In this paper, we want to design the extremal materials with
prescribed number of soft modes. The only soft or hard mode of



Fig. 3. Two-dimensional ground structure model of the unit cell.
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the designed extremal materials should be consistent with the pre-
scribed ones. On the other hand, the topology optimization meth-
ods use continuous variable fi 2 ½0;1� to show the existence of i-th
bar (fi ¼ 0 reveals that i-th bar will be discarded in the optimized
design, while fi ¼ 1 shows that it will be retained). Sometimes (e.g.
when fi ¼ 0:2) it is vague to justify whether a bar should be
retained or discarded, so the optimization method should be care-
fully formulated to get rid of such occasions. Another issue needs
to be considered is the intersection and overlapping of different
bars. In the ground structure the intersection and overlapping
occur everywhere, but in the optimized design these phenomena
should be avoided. In summary, the optimization results should
fulfill the following requirements,

� The number of soft modes of deformation must be precisely
equal to the given ones. For example, if we are to design the uni-
mode material, then the optimization results should have only
one soft mode of deformation. The number of zero eigenvalue
of the elasticity matrix must be exactly 1.

� The optimization results should be clear. That is to say, we want
all the design variables to approach either 1 or 0 when the opti-
mization process is completed. If there are many design vari-
ables with intermediate values between ð0;1Þ, the design
results are hard to interpret.

� With manufacturing constraints considered, intersection or
overlapping among the bars in the unit cell is not allowed.

Suppose the elasticity matrix of the optimized results before
rotation is C½ � and rotation angle is h, the elasticity matrix of the

rotated one ½Ĉ� can be expressed as:

½Ĉ� ¼ NðhÞ½ � C½ � NðhÞ½ �>: ð15Þ
where NðhÞ½ � is the rotation transformation matrix which is only
dependent on the rotation angle h. The detailed expressions of
NðhÞ½ � will be elaborated in Section 6.

Two-dimensional unimode materials have only one zero eigen-
value. Therefore, we aim at designing such kind of extremal mate-
rial with the desired soft mode vsf g. If vsf g;0ð Þ composes the

eigenpair of ½Ĉ� which has only one zero eigenvalue, we have

½Ĉ� vsf g ¼ 0 � vsf g ¼ 0f g: ð16Þ
6

Therefore, the performance index for unimode materials Errs can be
stated as:

Errs ¼ ½Ĉ� vsf g
��� ���2

2
; ð17Þ

and the mathematical model for the optimization of two-
dimensional unimode materials can be formally given as

find f; hf g ¼ f1; f2; � � � ; fNbar
; h

� �>
min f f; hð Þ ¼ c1

XNbar

i¼1

fið1� fiÞ þ c2 ff g> M½ � ff g � C2
2

s:t:

C2 6 �0:1
C1 P 0
C0 ¼ 0
Errs 6 g1

8>>><>>>:
ð18Þ

where fi is design variables of topology optimization which deter-
mines the existence of the i-th bar, Nbar is the total number of design
variables. Ciði ¼ 0;1;2Þ is the coefficient of the characteristic equa-
tion (cf. Eq. (8)).

The objective function in Eq. (18) warrants some special atten-
tion. The first part of the objective function is used to control the
grey elements, which is an annoying problem in the topology opti-

mization methods. The judiciously selected function
PNbar

i¼1 fið1� fiÞ
is a unimodal function of each design variable fi, i.e., the function
obtains the maximum when fi ¼ 0:5 while the minimum when
fi ¼ 0 or 1. In other words, the first part of the objective function
drives the design variable to get away from the intermediate value
ð� 0:5Þ. The second term is the penalty function which can effec-
tively avoid the existence of the intersection and overlapping bars
in the unit cell. M 2 0;1f gNbar�Nbar is a logic matrix showing the
intersection and overlapping status of every pairs of bars. Genera-
tion of the logic matrix M½ � will be given in the Section 5. The coef-
ficients c1 ¼ 10�5; c2 ¼ 1 are use to tune the strength of the two
penalty terms. The third part of the objective function aims at min-
imizing the coefficient of the quadratic item C2 (cf. Eqs. (8)), which
is equivalent to drive C2

2 as large as possible. Such condition is not
mandatory in finding the unimode materials but it can enhance the
optimization performance.

Although the third term in the objective function means to
drive C2

2 as large as possible, there are occasions where the opti-



Fig. 4. Classification of the nodes in the unit cell.
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mization algorithm gets stuck in unwanted local optimum, i.e., the
elasticity matrix is nearly a null matrix. In order to get rid of the
meaningless solutions, we add the first constraint (cf. Eq. (18)) to

emphasize that the sum of the diagonal of ½Ĉ� should not be smaller
than a predefined positive value. Note that C2 is the negative of the

sum of the diagonal of ½Ĉ�, so it should not be greater than a prede-
fined negative value. The first three constraints are the necessary
and sufficient conditions of the unimode materials (cf. Eq. (12)).
The last constraint is added to require that the designed extremal
material should behave softly in a prescribed soft mode vsf g.
Numerically it is not practical to expect that ½Ĉ� vsf g

��� ���
2
exactly

equals to 0. Instead, the boundary threshold g1 is introduced.
Two-dimensional bimode materials have only one nonzero

eigenvalue. Let vhf g denotes the desired hard mode (supporting

stress) which is also the eigenvector of the elasticity matrix ½Ĉ� that
has only one non-zero eigenvalue, we have

½Ĉ� vhf g ¼ kmax � vhf g: ð19Þ
Therefore, the performance index for bimode Errh can be stated as:

Errh ¼ ½Ĉ� vhf g � kmax � vhf g
��� ���2

2
; ð20Þ

and the mathematical model for the optimization of two-
dimensional bimode materials can be formally given as

find f; hf g ¼ f1; f2; � � � ; fNbar
; h

� �>
min f f; hð Þ ¼ c1

XNbar

i¼1

fið1� fiÞ þ c2 ff g> M½ � ff g � C2
2

s:t:

C2 6 �0:1
C1 ¼ 0
C0 ¼ 0
Errh 6 g1

8>>><>>>:
ð21Þ

The objective function for the bimode materials are exactly the
same as that of the unimode ones. The first constraint in Eq. (21)
is also the same as that in Eq. (18). The second and third constraints
are the necessary and sufficient conditions of bimode materials. The
final inequality constraint guarantees that the hard mode of the
bimode material follows the prescribed hard mode. kmax is the only
non-zero eigenvalue (also the maximal one). Due to the Vieta’s for-
mula, we know that

k1 þ k2 þ k3 ¼ �C2 ¼ trð½Ĉ�Þ: ð22Þ
So kmax can be approximated by

kmax ¼ trð½Ĉ�Þ; ð23Þ
if the other two eigenvalues are close enough to 0. The approxima-
tion in Eq. (23) makes it easy to compute the sensitivity information
of the constraint function.

Although the penalty terms of the grey elements and intersec-
tion or overlapping are list in the objective function, the solution
may still encounter such unwanted phenomenon. In addition,
there may be redundant bars (i.e., bars that have no stress when
the overall materials is subjected to external loads) in the solution
optimized by Step 1. Therefore, postprocessing should be applied
to deal with such situations, and the details of the postprocessing
will be introduced in Section 5.

3.3. Optimization model in Step 2

As illustrated in the previous subsection, the design of extremal
materials is highly nonlinear in that there are many material, geo-
metric and algebraic issues to be taken into consideration. There-
7

fore, only a small part of extremal materials with predefined soft
or hard mode can be found within merely Step 1 (since only finite
number of nodes can be present in the design domain). In Step 1
the nodes stays fixed during the optimization process. Hence,
shape optimization model is developed in this subsection to alter
the locations of the nodes such that the configurations of the
designed results by Step 1 can be modified to improve the accuracy
of the soft or hard mode. The design variables nf g in this stage are
the positions of the nodes in the unit cell.

Before introducing the mathematical model, the nodes in the
unit cell need to be classified. As shown in Fig. 4, the 16 nodes
can be divided into three types. The four red nodes located at the
corners belong to the first type, and are called the corner nodes.
The blue nodes lying at the border of the unit cell belong to the sec-
ond kind, and are called the border nodes. The remaining green
ones belong to the third type, and are called the internal nodes.

In order to maintain the lattice vectors, the corner nodes (cf. the
red circles in Fig. 4) are fixed and not allowed to move. Hence the
movable nodes are the border and internal nodes. The movable
range of every internal node is limited in a square with length 1.
As an example, the movable range of the internal node 6 is shown
as the pink square in Fig. 4. We note here that the range of each
movable nodes is arranged in this way to ensure that the moved
configuration would not suffer from intersection or overlapping
and at the same time can have sufficient searching space. Suppose
that the coordinates of the i-th internal node before and after mov-
ing can be represented as ðxi; yiÞ and ðnix; niyÞ, the movable range

requires that nix � xi
��� ��� � 0:5 and niy � yi

��� ��� � 0:5.

As for border nodes (cf. the blue circles in Fig. 4), the movement
range of them is larger than that of internal nodes. Let a ¼ 3 denote
the length of the basic lattice vector, and d ¼ 0:1 the minimum
allowable distance between different nodes. The movable range
of every border node is limited in a rectangle with size of
1� ða� 2dÞ. For example, the movable range of the border node
8 is shown as the orange rectangle in Fig. 4. Especially, its movable
range in y direction is ðd; a� dÞ in case that the border nodes get
too close to the corner nodes, and its x-coordinate’s range is
ða� 0:5; aþ 0:5Þ for avoiding the overlap of nodes. In addition,
due to the periodicity of the border nodes in the unit cell, the coor-
dinates of Node 5 will alter synchronously with Node 8. Therefore,
the design variable na1 ;ix and na1 ;iy here controls the positions of i-th

pair of nodes associated by the lattice vector a1f g. Likewise, na2 ;jx

and na2 ;jy denotes the positions of jth pair of nodes associated by
the lattice vector a2f g. If there are 2 border nodes on the same
edge, the relative position of them could not be changed during
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the optimization. Take Node 8 and 12 in Fig. 4 for example, the y
coordinates of Node 8 (na1 ;1y ) and Node 12 (na1 ;2y ) should always sat-

isfy na1 ;2y � na1 ;1y > d. Note that if the node on the border has no
counterpart to form a node pair by the lattice vectors, it would
not be treated as the border node.

Based on the above discussions, the mathematical model of the
unimode and bimode materials design with desired mode require-
ments in this step can respectively be formulated as

find nf g ¼ n1x ; n
1
y ; � � � ; nN1

x ; nN1
y ; na1 ;1x ; na1 ;1y ; na1 ;2x ; na1 ;2y ;

h
na2 ;1x ; na2 ;1y ; na2 ;2x ; na2 ;2y

i>
min f nið Þ ¼ C½ � bv s

	 
�� ��2
2

s:t:

nix � xi
��� ��� � 0:5; i 2 0;1; . . . ;N1f g

niy � yi
��� ��� � 0:5; i 2 0;1; . . . ;N1f g

na1 ;jx � a
��� ��� � 0:5; j 2 1;2f g

d 6 na1 ;jy 6 a� d; j 2 1;2f g

na2 ;ky � a
��� ��� � 0:5; k 2 1;2f g

d 6 na2 ;kx 6 a� d; k 2 1;2f g
na1 ;1y � na1 ;2y 6 �d

na2 ;1x � na2 ;2x 6 �d

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð24Þ

and

find nf g ¼ n1x ; n
1
y ; � � � ; nN1

x ; nN1
y ; na1 ;1x ; na1 ;1y ; na1 ;2x ; na1 ;2y ;

h
na2 ;1x ; na2 ;1y ; na2 ;2x ; na2 ;2y

i>
min f nið Þ ¼ C½ � bv h

	 
� kmax � bv h
	 
�� ��2

2

s:t:

nix � xi
��� ��� � 0:5; i 2 0;1; . . . ;N1f g

niy � yi
��� ��� � 0:5; i 2 0;1; . . . ;N1f g

na1 ;jx � a
��� ��� � 0:5; j 2 1;2f g

d 6 na1 ;jy 6 a� d; j 2 1;2f g

na2 ;ky � a
��� ��� � 0:5; k 2 1;2f g

d 6 na2 ;kx 6 a� d; k 2 1;2f g
na1 ;1y � na1 ;2y 6 �d

na2 ;1x � na2 ;2x 6 �d

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð25Þ

Eqs. (24) and (25) are the optimization models of unimode and
bimode materials in Step 2, respectively. The only difference
between Eqs. (24) and (25) lies in the objective function. nf g con-
tains the changing coordinates of the movable nodes in the unit cell.
Hence, the first part of the variables in Step 2 are the x and y coor-
dinate of the internal nodes. N1 here denotes the number of internal
nodes. The second part is the x and y coordinates of the border
nodes pair which are related by a1f g. The final part is the x and y
coordinates of the border nodes pair which are related by a2f g. Lim-
ited by the number of nodes ð4� 4Þ in the ground structure, the
maximum number of internal nodes is 4. The maximum number
of the border node pair is 4, too. Thus, the maximum number of
the design variable in Step 2 is 4� 2þ 2� 2þ 2� 2 ¼ 16. The first
and second constraints show the upper and lower bounds of the
coordinates corresponding to the internal nodes. For border nodes
lying at the right boundary of the design domain, the movable space
is characterized by the third and fourth constraints. Likewise, the
8

lower and upper bounds of the nodes located on the top boundary
of the design domain can be defined. If there are two pairs of border
nodes on the same edge, extra constraint na2 ;1x � na2 ;2x 6 �d;d ¼ 0:1
should be added to the optimization model to prevent the border
nodes from getting too close. Such constraints can help to get rid
of possible intersection or overlapping.

4. Numerical homogenization of the extremal materials

In order to calculate the effective elasticity tensor c of a unit
cell, the homogenization technique needs to be used. In this paper
we take advantage of the Cauchy-Born rule based numerical
homogenization method that we proposed in a recent work [32].
For completeness we briefly outline the main steps of the homog-
enization process. The readers can refer to [32] for a detailed dis-
cussion on this topic.

4.1. Finite element procedures to compute the strain energy density

As in usual finite element analysis, the global stiffness matrix
K½ � 2 R

ndof�ndof and the load vector Ff g 2 R
ndof are available after

finite element discretization. The displacement vector uf g 2 R
ndof

can be found by minimizing the total potential,

PðuÞ ¼ 1
2

uf g> K½ � uf g � uf g> Ff g: ð26Þ

The potential expressed by Eq. (26) has not included appropriate
boundary conditions. In our cases, we should apply the Cauchy-
Born periodic boundary condition [32] that relate the displacement
of opposite nodes on the exterior boundaries of the unit cell. Here it
suffices to know that the Cauchy-Born periodic boundary condition
can be expressed in a linear form of the displacement vector,

A½ � uf g ¼ bf g; ð27Þ
where A½ � 2 R

m�ndof is a coefficient matrix containing constant coef-
ficients, b 2 Rm is related to the prescribed strain field �e exerting on
the unit cell. Eq. (27) adds m constraints to the system, so the
potential expressed by Eq. (26) should be slightly modified to
include these constraints,

Pð uf g; wf gÞ ¼ 1
2

uf g> K½ � uf g � uf g> Ff g
þ wf g> A½ � uf g � bf gð Þ; ð28Þ

where wf g 2 R
m is the Lagrangian multiplier (and indeed reveals the

reaction forces at the constrained nodes). Explicit expressions of A½ �
and bf g will be given in later sections.

According to the minimum total strain energy principle, the true
displacement of a system would minimizes the total potential.
Thus to find the true displacement field, we seek to solve the extre-
mum condition,

dP ¼ 0 )
@P
@ uf g ¼ K½ � uf g � Ff g þ A½ �> wf g ¼ 0;

@P
@ wf g ¼ A½ � uf g � bf g ¼ 0:

8>><>>: ð29Þ

Eq. (29) can be rewritten in a more compact form,

K½ � A½ �>
A½ � 0

" #
uf g
wf g

� �
¼ Ff g

bf g

� �
: ð30Þ

Eq. (30) (or equivalently Eq. (29)) is the state equation of the
microstructure. Upon solution of Eq. (30), the displacement of the
unit cell can be found. Then, the strain energy density w can be
expressed as,
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w ¼ 1
2V

uf g> K½ � uf g; ð31Þ

where V denotes the volume of the unit cell.

4.2. The homogenized elasticity tensor

The elasticity tensor of the composite material that are regarded
as periodic arrangements of unit cells can be found from the point
view of strain energy density w, which can be expressed as,

w ¼ 1
2
rij�eij ¼ 1

2
cijkl�eij�ekl; ð32Þ

where �eij denotes the prescribed strain field exerting on the unit cell,
cijkl denotes the homogenized elasticity tensor. In matrix form, Eq.
(32) can be rewritten as,

w ¼ 1
2

�ef g> C½ � �ef g: ð33Þ

Time again, we emphasize that the fourth-rank elasticity tensor and
second-rank strain tensor should be written in the Kelvin notation
whenever they appear in the matrix expressions. Comparing Eqs.
(31, 33), we know that the components of cijkl can be found by mak-
ing different choices of �ef g. For example, in two-dimensional prob-
lems we can set

�eð1Þ
� � ¼ 1 0

0 0


 �
;or equivalently �eð1Þ

	 
 ¼
1
0
0

8><>:
9>=>; ð34Þ

, then by substituting Eq. (34) into (33) and (31) we know that

wð1Þ ¼ 1
2
c1111 ¼ 1

2V
uf g> K½ � uf g: ð35Þ

Note that we use the superscript ð1Þ to reveal that this is the first test
case to calculate the components of the elasticity tensor.

Therefore, once the prescribed strain exerting on the unit cell
and the strain energy density w are known, the corresponding
component of the elasticity tensor can be obtained. In summary,
the elastic moduli of materials in two-dimension can be calculated
as follows,

c1111 ¼ 2w 1ð Þ; e
� 1ð Þ
h i

¼ 1 0
0 0


 �
;

c2222 ¼ 2w 2ð Þ; e
� 2ð Þ
h i

¼ 0 0
0 1


 �
;

c1212 ¼ 2w 3ð Þ; e
� 3ð Þ
h i

¼ 0 0:5
0:5 0


 �
;

c1122 ¼ w 4ð Þ � 1
2 c1111 þ c2222ð Þ; e

� 4ð Þ
h i

¼ 1 0
0 1


 �
;

c1112 ¼ w 5ð Þ � 1
2 c1111 þ c1212ð Þ; e

� 5ð Þ
h i

¼ 1 0:5
0:5 0


 �
;

c2212 ¼ w 6ð Þ � 1
2 c2222 þ c1212ð Þ; e

� 6ð Þ
h i

¼ 0 0:5
0:5 1


 �
:

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

ð36Þ
5. Optimization implementation

The previous two sections give a brief overview of the overall
optimization framework without in-depth study on the implemen-
tation details. In this section, all these details will be covered,
including assembly of the global stiffness matrix, implementation
of the Cauchy-Born boundary condition and derivation of the sen-
sitivity information. Some special strategies to improve the opti-
mization effectiveness and efficiency are also elaborated. For
example, a logic matrix M½ � is proposed to circumvent the intersec-
9

tion and overlapping of the bars in the unit cell, which is shown to
be very useful according to our numerical experience. Moreover, to
pursue clear and concise microstructures, the postprocessing pro-
cess is introduced into the optimization framework to simplify
the results from Step 1. The detailed flowchart of the optimization
Step 1 and 2 are shown in Fig. 5.

In Step 1, we should first specify the properties of bars in
ground structure (like Young’s modulus E, maximum cross-
sectional area of bars S0), size of the unit cell a, scale of nodes mesh
(nx � ny) and prescribed eigenvector vdf g. The logic matrix M½ � is
generated subsequently. The element stiffness matrices K i½ � and
the global stiffness matrix K½ � can be formulated and assembled
in terms of the topology design variables ff g. By applying
Cauchy-Born periodic condition, the displacement vector uf g can
be calculated. Thus, the effective elasticity matrix C½ � can be
obtained by using the homogenization method mentioned in Sec-
tion 4. Then the values of objective function f ð ff g; hÞ and con-
straints gð ff g; hÞ can be calculated. The sensitivity of objective
function f ð ff g; hÞ and constraints gð ff g; hÞ can be given by the chain
rule if the sensitivity of elasticity matrix is known. Then the stop-
ping criteria can be checked. There are two kinds of stopping crite-
ria in the optimization process. First, the rule of maximum
iterations is checked. The optimization process would stop once
the number of iterations exceed the maximum allowable itera-
tions. Second, the KKT tolerance is checked. If the KKT condition
[33] is satisfied within prescribed precision, the optimization pro-
cess would stop as well. If any one of the stop criteria is satisfied,
the optimization process stops. Otherwise, the design variables
will be updated by the optimization algorithm (e.g. the fmincon

function in MATLAB).
The process of Step 2 is similar to that of Step 1. However, there

are some notable differences between them. First, the input data of
Step 2 is the result from Step 1. Second, postprocessing procedure
only exists in Step 1. Furthermore, the logic matrix M½ � is intro-
duced in step 1 to deal with the intersection and overlapping
between bars. In step 2, intersection is avoided by the classification
of nodes and the restriction of the movable range of different types
of nodes. So the use of the logical matrix M½ � can be avoided in this
step.

5.1. Stiffness matrix of the unit cell in Step 1

Now we illustrate how to obtain the global stiffness matrix of
the unit cell as shown in Fig. 3.

In Fig. 6 we show a truss element. As mentioned earlier, the
truss element can only undergo elongation or shortening when
subject to external loads. So there are only two degrees-of-
freedom, i.e., ½�u1; �u2�>, in the local coordinate system of the truss
element O�x. In contrast, there are four degrees-of-freedom, i.e.,
½u1;v1;u2;v2�>, in the global coordinate system Oxy. For i-th bar
in the ground structure, the stiffness matrix K i½ � in global coordi-
nate system Oxy is,

K i½ � ¼ ½T i�> �K i
� �

T i½ �; ð37Þ
where T i½ � is the transformation matrix,

T i½ � ¼ cosa sina 0 0
0 0 cosa sina


 �
; ð38Þ

and a is the angle between the bar and the x-axis in the global coor-
dinate system. The stiffness matrix of i-th bar in local coordinate
system O�x is,

�K i
� � ¼ EiSi

Li

1 �1
�1 1


 �
; ð39Þ



Fig. 6. A truss element and its displacements in local and global coordinate system.

Fig. 5. The flowchart of optimization process on design of extremal materials with prescribed soft or hard mode.
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where Ei; Si; Li denote Young’s modulus, cross-sectional area, and
length of the i-th bar, respectively. We borrow the idea of the SIMP
formula, which is famous in solving topology optimization prob-
lems of continuum. The main idea is to use fictitious topology
10
description variable to show the presence of an element. Under this
idea, the cross-sectional area of i-th element can be given by,

Si ¼ f3i S0 þ 1� f3i
� �

Smin; ð40Þ
where S0 denotes the maximum cross-sectional area, which equals
1 throughout this paper. Smin represents the virtual cross-sectional
area of the bar when no solid materials are filled. Smin equals
10�10, a very small number (but not zero) to prevent numerical sin-
gularity. Therefore, according to Eq. (37), the relation between fi
and K i½ � can be written as,

K i½ � ¼ f3i ½K0� þ 1� f3i
� �½Kmin�; ð41Þ

where ½K0� and ½Kmin� denote the stiffness matrix with cross-
sectional area S0 and Smin, respectively. The global stiffness matrix
of the whole unit cell can be obtained by assembling the stiffness
matrix of all the truss elements,

K½ � ¼
XNbar

i¼1

K i½ �: ð42Þ

Note that the summation symbol in Eq. (42) does not mean the
algebraic summation operator, but the well-known assembly proce-
dure in finite element analysis.
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5.2. Cauchy-Born boundary condition in Step 1

To simplify the description of Cauchy-Born boundary condition,
a design domain of square unit cell discretized by 3� 3 nodes as
shown in Fig. 7 is taken as an example. The lattice vectors of the
unit cell are a1f g and a2f g. Independent nodes on the boundary
of the structure are the ones with indices 1, 2 and 4. The other
nodes on the boundary are closely related to the independent ones
by the lattice vectors under prescribed macroscopic strain field �e.
The relation can be given by

u1f g ¼ 0;0½ �>;
u1f g þ e

�h i
a1f g ¼ u3f g;

u4f g þ e
�h i

a1f g ¼ u6f g;

u1f g þ e
�h i

a2f g ¼ u7f g;

u2f g þ e
�h i

a2f g ¼ u8f g;

u1f g þ e
�h i

a1f g þ a2f gð Þ ¼ u9f g;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð43Þ

where uif g stands for the displacement vector of i-th node. The
node labels can be found from Fig. 7. Eq. (43) can be easily rewritten
in a matrix form like Eq. (27). The global displacement vector
uf g 2 R18 consists of the displacements of all nodes in the unit cell.
Here, i-th node has two degrees of freedom ½ui;v i�>.

5.3. Sensitivity of elasticity matrix in Step 1

Upon solution of the state Eq. (30), the displacement field of the
whole unit cell can be available under the prescribed strain field.
After that, the strain energy density w can be obtained by Eq.
(31). Then components of the elasticity tensor can be obtained
by Eq. (36).

From the workflow to calculate cijkl, we know that the core issue
of the sensitivity analysis is to find the derivative of the strain
energy density w w.r.t. the design variable fi. In the light of the
well-known adjoint sensitivity analysis method [34], the strain
energy can be equivalently rewritten as,

U wf g; ff gð Þ ¼ 1
2

uf g> K½ � uf g

þ lu

	 
> K½ � uf g � Ff g þ A½ �> wf g� �
þ lw

n o>
ð A½ � uf g � bf gÞ; ð44Þ
Fig. 7. The Cauchy-Born boundary condition of the unit cell with 3� 3 nodes.
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where, fi is the design variable, lu

	 
 2 Rndof and lw

n o
2 Rndof are

two Lagrangian multipliers introduced to facilitate the computation
of the sensitivity information considering the state Eq. (30). Note
that U 	 w (since the state Eq. (30) should always be satisfied).
The Lagrangian multipliers are added here intentionally. In princi-

ple, lu

	 

and lw

n o
can take any values in Rndof , but we will judi-

ciously select the values of these Lagrangian multipliers such that
the sensitivity information can be expressed in a much more con-
cise manner. This is exactly the main idea of the adjoint sensitivity
analysis method [34].

Differentiating Eq. (44) gives the sensitivity of U w.r.t. the
design variable fi,

@U
@fi

¼ 1
2 uf g> @ K½ �

@fi
uf g þ uf g> K½ � @ uf g

@fi
þ

lu

	 
> @ K½ �
@fi

uf g þ K½ � @ uf g
@fi

þ A½ �> @ wf g
@fi

h i
þ lw

n o>
A½ � @ uf g

@fi

¼ 1
2 uf g> @ K½ �

@fi
u�f g þ lu

	 
> @ K½ �
@fi

uf g
� �

þ

uf g> K½ � þ lu

	 
> K½ � þ lw

n o>
A½ �

� �
@ uf g
@fi

þ lu

	 
> A½ �> @ wf g
@fi

ð45Þ
According to the idea of adjoint sensitivity analysis method, Eq. (45)
can be simplified if we choose the Lagrange multipliers such that
the contents in the parentheses before @ uf g

@fi
and @ wf g

@fi
are exactly zero,

K½ � lu

	 
þ A½ �> lw

n o
¼ � K½ � uf g;

A½ � lu

	 
 ¼ 0f g:

8<: ð46Þ

In a more compact form, Eq. (46) can be rewritten as,

K½ � A½ �>
½A� ½0�

" #
lu

	 

lw

n o8<:
9=; ¼ � K½ � uf g

0f g

� �
: ð47Þ

Therefore, the Lagrange multiplier lu

	 

can be obtained by solving

the linear equation system Eq. (47), so the expression of the sensi-
tivity Eq. (45) can be expressed as,

@U
@fi

¼ 1
2

uf g> @ K½ �
@fi

uf g þ lu

	 
> @ K½ �
@fi

uf g: ð48Þ

Due to the assembly nature (cf. Eq. (42)) of the finite element anal-
ysis procedure, @ K½ �

@fi
can be given in terms of the elemental stiffness

matrix. Therefore, differentiating Eq. (41) gives the sensitivity,

@ K½ �
@fi

¼ @ K i½ �
@fi

¼ 3f2i ½K0� � 3f2i ½Kmin�: ð49Þ

Thus Eq. (48) can also be given in terms of the elemental stiffness
matrix as,

@U
@fi

¼ 1
2

uif g> @ K i½ �
@fi

uif g þ lui

	 
> @ K i½ �
@fi

uif g: ð50Þ
5.4. Dealing with intersection and overlapping

There are many intersection and overlapping bars in the
ground structure, but in the optimized results we do not want
the intersection and overlapping occurs. Here we propose a sim-
ple but effective strategy to control the occurrence of intersec-
tion and overlapping bars. A logical matrix M½ � 2 0;1f gNbar�Nbar is
defined to show whether there is intersection or overlapping
between any two bars in the ground structure. The size of
matrix M½ � is Nbar � Nbar, and all of its entries have values that
are either 0 or 1. Mij ¼ 1 means that i-th and jth bar intersect
or overlap in the ground structure, and Mij ¼ 0 reveals they do



Fig. 9. The parallel relation between two bars judged by the area of parallelogram
S} > 0.
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not. Obviously, M½ � is a symmetric matrix, and its diagonal ele-
ments are all 0 (since any bar will not intersect or overlap with
itself).

Suppose there are two line segments ab and cd in the plane with
coordinates of endpoints ðxa; yaÞ; ðxb; ybÞ; ðxc; ycÞ; ðxd; ydÞ. Using two
parameters /;u 2 ½0;1�, line segments ab and cd can be repre-
sented as,

x ¼ xa þ / xb � xað Þ;
y ¼ ya þ / yb � yað Þ;

�
for line segment ab; ð51Þ

x ¼ xc þu xd � xcð Þ;
y ¼ yc þu yd � ycð Þ;

�
for line segment cd: ð52Þ

Equating Eqs. (51) and (52), the intersection points of ab and cd can
be found by solving

xb � xa xc � xd
yb � ya yc � yd


 �
/

u

� �
¼ xc � xa

yc � ya

� �
: ð53Þ

The determinant of the coefficient matrix is

D ¼ xb � xa xc � xd
yb � ya yc � yd

���� ����: ð54Þ

If D– 0, the line segments ab and cd would cross over at a certain
point, but not necessarily at the interior of line segments ab and
cd. In detail, 4 cases occur according to the values of / and u when
D– 0,

D– 0 )

case1 : 0 < / < 1; 0 < u < 1;
case2 : / ¼ 0 or 1; 0 < u < 1;
case3 : u ¼ 0 or 1; 0 < / < 1;
otherwise; no intersection occurs

8>>><>>>: ð55Þ

As shown in Fig. 8(a), if 0 < / < 1;0 < u < 1 (i.e., Case 1 as shown
in Eq. (55)), then the intersection point lies at the interior of both
bars. As shown in Fig. 8(b) and (c) (i.e., Case 2 and 3 as shown in
Eq. (55)), if either of the /;u equals to 0 or 1, while the other one
is bounded between ð0;1Þ, the intersection point lies at the end-
point of one bar and the interior of the other bar.

When D ¼ 0, two possibilities exist, i.e., the two bars can be
either parallel or collinear, the former is definitely allowed while
the latter is possibly not. So we need to distinguish between these
two subcases. As shown in Fig. 9, this can be easily done by calcu-

late the cross product of ab
�!

and ac�! (virtually, the area of the par-

allelogram formed by ab
�!

and ac�!) and check if it is larger than 0.
Let

S} ¼ ab
�!� ac�!��� ��� ð56Þ
Fig. 8. Three cases of tw
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denotes the area of the parallelogram. If S} > 0, it means that line

segment ab and cd are parallel. S} ¼ 0 reveals that ab
�!

and cd
�!

are
collinear. For two collinear bars, they can always be sorted accord-
ing to the coordinates in one direction (x or y). As shown in Fig. 10,
in the x direction, i.e. from left to right, L and R represent the left and
right nodes of the bar, respectively. The subscript number repre-
sents the index of the bar. There are four possible situations
between the two bars as shown in Fig. 10. Then it follows that
the vector dot product can be used to distinguish whether the
two bars are overlapped or not, which can be written in the follow-
ing form:

r ¼ L1R1
��! � R1L2

��!
: ð57Þ

As shown in Fig. 10(a), r > 0 reveals that there is no overlapping
between the bars. As shown in Fig. 10(b), r ¼ 0 reveals that the only
overlapping between two bars is the node R1 and L2, and can be
regard as non-overlapping. As shown in Fig. 10(c) and (d), r < 0
reveals that two bars do overlap and the overlapping region is
painted green in Fig. 10.

Following the abovementioned ideas, the workflow of the gen-
eration of the logical matrix M 2 RN�N can be shown as Fig. 11 and
concluded as the follows.

(1) Get the coordinates of the four nodes, ðxa; yaÞ; ðxb; ybÞ; ðxc; ycÞ;
ðxd; ydÞ. Set initial values Mij ¼ 0.

(2) For every two bars calculate the determinant D according to
Eq. (54). If D ¼ 0, set Mij ¼ 1, go to Step 3. Otherwise, go to
Step 5.

(3) Check if the two bars are parallel through Eq. (56). If S} > 0,
then set Mij ¼ 0 and jump to Step 6. Otherwise, go to Step 4.

(4) Since D ¼ 0; S} ¼ 0, then the two bars must be collinear.
Check if the two bars overlap through Eq. (57). If r 
 0, then
set Mij ¼ 0, otherwise set Mij ¼ 1. Go to Step 6.

(5) When D– 0, that is, the two bars are neither collinear nor
parallel. The values of the parameters /;u can be obtained
by Eq. (53). When any one of the 3 cases in Eq. (55) is satis-
fied, intersection occurs, so set Mij ¼ 1 and go to Step 6.

(6) Stop.
o bars intersection.



Fig. 11. Generation of Mij .

Fig. 10. Four cases of two collinear bars when S} ¼ 0.
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5.5. Postprocessing the results from Step 1

By using the optimization models in Step 1, many feasible solu-
tions can be found. But the solutions still contain some flaws inevi-
tably. For example, since the penalty terms of grey elements are
only listed in the objective function, a certain part of results would
still have grey bars. There may also be some useless bars that have
no stresses when subject to overall strain and thus have no contri-
bution to the effective elasticity matrix.

Based on the discussion mentioned above, the postprocessing is
proposed to help us find the meaningful configuration. Firstly, a
13
hyper-parameter b is proposed to determine whether the bar
should be retained or not,

fpi ¼ 0; if fi 6 b;

1; otherwise;

�
ð58Þ

i ¼ 1;2; ::;Nbar. In this paper, we use b ¼ 0:3. After that, the entries
in the projected solution fpf g are either 0 or 1, and the bars whose
fpi equal to 1 will be retained while the rest will be discarded. Np

denotes the number of bars in the projected solution.
Then the useless bars can now be identified and deleted. The

elasticity matrix and its eigenvalues can be obtained from the pro-



3 Time again, we note here that the terms eigenvector and eigenstrain, or simply
strain, have exactly the same meaning in the sense of the eigenvalue decomposition.
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jected solution. For extremal materials, if the number of zero-
energy modes is n, it contains n soft modes and 3� n hard modes
in two-dimension. A useless bar is defined here the bar that has no
contribution to any hard mode. After the elasticity matrix and its
eigenvalues are obtained, the eigenvalues can be sorted in
descending order, and the eigenvectors corresponding to the first
3� n eigenvalues are taken as the applied strains. Assuming that
one of the applied strain is e�, the displacement of all nodes in
the structure can be calculated by Eq. (27). The strain
e#i ði ¼ 0;1; . . . ;NpÞ of each bar can also be available from the FEA

solver. According to the strain e#i of each bar, calculate the average

strain �e#i . Now we can judge whether this bar is redundant or not
by

ffi ¼
0; if e#i < 0:01�e#i ;
1; otherwise;

(
ð59Þ

where i ¼ 1;2; ::;Np. If f
f
i ¼ 1, the i-th bar should be retained and

it has contribution to the elasticity matrix. If ffi ¼ 0, the i-th bar
should be discarded since it has no contribution to any hard
modes.

5.6. Sensitivity of the elasticity matrix in Step 2

Different from the first step, the second optimization step will
change the positions of nodes, inevitably leading to variations of
the length and direction of the elements in the unit cell. The length
of i-th element can be expressed as,

Li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxil � xirÞ2 þ ðyil � yirÞ2

q
; ð60Þ

where Li is the length of i-th bar in the unit cell; ðxil; yilÞ and ðxir; yirÞ
are the coordinates of left and right nodes of the bar. Assume that xil
is the design variable in Step 2, the sensitivity of Li can be calculated
as,

@Li
@xil

¼ ðxil � xirÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxil � xirÞ2 þ ðyil � yirÞ2

q ¼ ðxil � xirÞ
Li

: ð61Þ

Similar expressions can be derived for @Li
@xir

; @Li
@yil

, and @Li
@yir

.

The change of the node positions will also change the direction
of the elements,

cosa ¼ xil � xir
Li

; sina ¼ yil � yir
Li

: ð62Þ

Assume that xil is the design variable, the sensitivity of i-th bar’s
direction can be calculated as,

@ cosað Þ
@xil

¼
Li � xil � xirð Þ @Li

@xil

L2i
;

@ sinað Þ
@xil

¼ �
yil � yirð Þ @Li

@xil

L2i
:

8>>>>><>>>>>:
ð63Þ

Therefore, the sensitivity of the transformation matrix can be writ-
ten as,

@ T i½ �
@xil

¼
@ðcosaÞ

@xil

@ðsinaÞ
@xil

0 0

0 0 @ðcosaÞ
@xil

@ðsinaÞ
@xil

24 35: ð64Þ

It is worth noting that the design variables of the border nodes actu-
ally control the coordinates of two closely-related nodes, so the
length and direction changes caused by the movement of the node
pair needs to be considered.
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The sensitivity of the stiffness matrix of i-th bar in the local
coordinate system �K i

� �
can be written as,

@ �K i
� �
@xil

¼ � @Li
@xil

EiSi
L2i

1 �1
�1 1


 �
: ð65Þ

The sensitivity of stiffness matrix of i-th bar in global coordinate
system K i½ � can now be written as,

@ K i½ �
@xil

¼ T i½ �> @ �K i
� �
@xil

T i½ � þ @ T i½ �>
@xil

�K i
� �

T i½ � þ T i½ �> �K i
� � @ T i½ �

@xil
: ð66Þ
6. Rigid rotation of the unit cell in 2D and its properties

Let the coordinate system xoy rotate angle h clockwise (or
equivalently let the unit cell rotate angle h counterclockwise)
around the z axis to form a new coordinate system x̂oŷ, the stress
and strain expressed in Eq. (4) can be written in the new coordi-
nate system as,

r̂11 r̂12

r̂12 r̂22


 �
¼ cos h � sin h

sin h cos h


 � r11 r12

r12 r22


 �
cos h sin h

� sin h cos h


 �
;

ð67Þ

ê11 ê12
ê12 ê22


 �
¼ cos h � sin h

sin h cos h


 � e11 e12
e12 e22


 �
cos h sin h

� sin h cos h


 �
: ð68Þ

Using the Kelvin notation, the transformation law of the stress and
strain tensor can be rewritten as

r̂f g ¼ N½ � rf g; êf g ¼ N½ � ef g; ð69Þ
where the transformation matrix is,

N½ � ¼
cos2 h sin2 h �

ffiffiffi
2

p
sin h cos h

sin2 h cos2 h
ffiffiffi
2

p
sin h cos hffiffiffi

2
p

sin h cos h �
ffiffiffi
2

p
sin h cos h cos2 h� sin2 h

264
375: ð70Þ

Time again, we emphasize that the vector form of stress and strain
tensor are written in Kelvin form (see Eq. (4)), not the commonly
used Voigt form.

The constitutive equation in the rotated coordinate system x̂oŷ
is

r̂f g ¼ ½Ĉ� êf g ð71Þ
Substitute Eq. (69) into Eq. (71)we have

N½ � rf g ¼ ½Ĉ� N½ � ef g ð72Þ
Noticing that N½ � is an orthogonal matrix (since N½ �> N½ � ¼ I½ �), the
transformation law of the elasticity matrix can be easily derived as

½Ĉ� ¼ N½ � C½ � N½ �>: ð73Þ
Let ðk; ef gÞ denote the eigenpair of C½ � in coordinate system
xoy, cf. Eqs. (1, 2). Then an important property of the transfor-
mation law in Eq. (73) is that the elasticity matrix keeps its
eigenvalue ki unchanged (since the transformation shown in
Eq. (73) is an orthotropic transformation), while the rotated
eigenvector3 is

êf g ¼ N½ � ef g: ð74Þ
It is required that the norm of the strain ef g in Kelvin form is 1
(which is a common practice when calculating the eigenvalue
problem),
Cf. Eqs. (1, 2).



Fig. 12. Rotations of ef g are located at a circle.
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e211 þ e222 þ
ffiffiffi
2

p
e12

� �2
¼ 1: ð75Þ

Hence, both vf g and v̂f g fall on an unit sphere whose three axes
represent e11; e22;

ffiffiffi
2

p
e12, respectively. According to Eq. (74), the

new strain after rotation can be expressed as,be	 
 ¼ N½ � ef g

¼
e11 cos2hþe22 sin2h�2sinhcoshe12
e11 sin2hþe22 cos2hþ2sinhcoshe12ffiffiffi
2

p
sinhcosh e11�e22ð Þþ

ffiffiffi
2

p
cos2h�sin2h

� �
e12

8>><>>:
9>>=>>;

¼
ê11
ê22ffiffiffi
2

p
ê12

8><>:
9>=>;:

ð76Þ

In 2D cases, the first and second principal invariants of the strain
tensor are,

J1 ¼ tr eð Þ ¼ e11 þ e22;
J2 ¼ det eð Þ ¼ e11e22 � e212:

�
ð77Þ

Moreover, due to Eq. (75), J2 is indeed not independent and can be
expressed using J1,

J2 ¼ e11e22 � e212 ¼ �1
2
þ 1
2
ðe11 þ e22Þ2 ¼ 1

2
ðJ21 � 1Þ ð78Þ

From the property of the first principal invariant, we have

e11 þ e22 ¼ ê11 þ ê22 ð79Þ
Let nf g ¼ ½1;1;0�>, it can be easily verified that,

ð ef g � êf gÞ � nf g ¼ 0: ð80Þ
Eq. (80) reveals that the vector n is the normal vector of the plane
containing ef g and its rotation counterparts êf g with arbitrary rota-
tion angle h. Obviously, the intersection curve of the plane (with
normal vector n) and the unit sphere is a circle. The center and
radius of the circle can be given by

O
e11 þ e22

2
;
e11 þ e22

2
;0

� �
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
e211 þ

1
2
e222 � e11e22 þ 2e212

r
; ð81Þ

as shown in Fig. 12. Equivalently, the center and radius of the circle
can also be expressed using the principal invariants,

O
J1
2
;
J1
2
;0

� �
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
J21 � 2J2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
J21

r
ð82Þ

The central angle formed by ef g and êf g is \color{black}2 \theta ;

cos Oef g; Oêf gh i ¼ Oef g � Oêf g
Oef gj j � Oêf gj j ¼ cos 2h ð83Þ

where,

Oef g ¼
e11�e22

2
e11�e22

2ffiffiffi
2

p
e12

8><>:
9>=>;;

O e
^

� �
¼

e11 cos2h� 1
2

� �þ e22 sin2h� 1
2

� �
� 2 sin h cos he12

e11 sin2h� 1
2

� �
þ e22 cos2h� 1

2

� �þ 2 sin h cos he12ffiffiffi
2

p
sin h cos h e11 � e22ð Þ þ

ffiffiffi
2

p
cos2h� sin2h

� �
e12

8>>>><>>>>:

9>>>>=>>>>;:

ð84Þ
From Eq. (82) we know that the center and radius of the circle
formed by the rotations of ê can be fully determined by the first
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invariant of the original strain tensor. Thus, to test the applicability
of our method in finding extremal materials for arbitrary soft modes
(or hard modes), we can simply select different strains with differ-
ent J1 but all with unitary norm. In other words, the unit sphere as
shown in Fig. 12 can be sliced into several pieces with the slicing
planes normal to nf g ¼ ½1;1;0�>. Each slicing plane intersects the
sphere to form a circle and each circle has a unique value of J1.Then
it is convenient to test if the proposed method can find the extremal
materials corresponding to different values of J1.

Now we determine the range of J1 and J2. This can simply be
done by observing again Fig. 12. The range of the radius is
R 2 ½0;1�, thus

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
J21

r
2 ½0;1� ð85Þ

From Eq. (85) the range of J1 can be obtained,

J1 2 �
ffiffiffi
2

p
;

ffiffiffi
2

ph i
: ð86Þ

Then the range of J2 can be determined as well,

J2 ¼ 1
2
ðJ21 � 1Þ 2 �1

2
;
1
2


 �
: ð87Þ

Based on the above discussions, in Kelvin form the rotation trans-
formation does not change the eigenvalue of the elastic matrix,
while the new eigenvector is rotated by the transformation matrix.
This means that the number of zero eigenvalues remains the same
while the soft or hard modes rotate according to the transformation
matrix.
7. Numerical examples and discussions

In this section, we will test the performance of the proposed
design framework in designing extremal materials. Several cases
will be tested. The first one is to find the microstructure of the pla-
nar unimode and bimode materials without further constraints on
soft or hard modes. Afterwards the desired soft mode is taken into
consideration when designing the unimode materials and the
desired hard mode is taken into consideration when designing
the bimode materials. Subsequently, the other two modes are also
considered. For example, when designing the unimode materials
the soft mode is properly considered by using the proposed topol-
ogy optimization step and shape optimization step, then the two
other hard modes can be tuned by modifying the cross-sectional
areas of the bars.
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7.1. Design of planar extremal materials without constraints on soft or
hard modes

In this example we attempt to find various kinds of planar uni-
mode and bimode materials without any constraint on the soft or
hard modes. In case of the optimized unit cell being too complex
and not easy to manufacture, we add constraint on the number

of bars. This constraint can be written as
PNbar

i¼1 fi 6 Npre. We set
maximal number of bars to be Npre ¼ 6, thus the mathematical
model for optimization of unimode and bimode materials can
respectively be given by

find ff g ¼ f1; f2; � � � ; fNbar

� �> 2 ½0;1�Nbar

min f fð Þ ¼ c1
XNbar

i¼1

fið1� fiÞ þ c2 ff g> M½ � ff g � C2
2

s:t:

C2 6 �0:1
C1 P 0
C0 ¼ 0XNbar

i¼1

fi 6 Npre

8>>>>>><>>>>>>:

ð88Þ

and

find ff g ¼ f1; f2; � � � ; fNbar

� �> 2 ½0;1�Nbar

min f fð Þ ¼ c1
XNbar

i¼1

fið1� fiÞ þ c2 ff g> M½ � ff g � C2
2

s:t:

C2 6 �0:1
C1 ¼ 0
C0 ¼ 0XNbar

i¼1

fi 6 Npre

8>>>>>><>>>>>>:

ð89Þ
Fig. 13. Unimode materials obtain
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The size of design domain a ¼ 3, and the unit cell is discretized with
4� 4 nodes. The number of bars in the ground structure is
Nbar ¼ 108. Young’s modulus E ¼ 1, maximum cross-sectional area
of bars S0 ¼ 1. The interior-point algorithm is chosen as the opti-
mization algorithm. For exploring more microstructures of two-
dimensional extremal materials, the initial solution in the algorithm
is randomly generated within the lower and upper bounds. The
maximum iteration equals 2000, and the maximum allowable vio-
lation of constraints is set to 10�6(except the tolerance of second
constraint in unimode materials design is set to 0.001). Termination
tolerance for first-order optimality is set to 10�6.

Numerous planar unimode and bimode materials can be found
by the optimization model and here only a small portion is
showed. The unit cell and super cell of the unimode and bimode
materials results are shown in Fig. 13 and 14, respectively. The cor-
responding effective elasticity matrices and eigenvalues are listed
in Table 1 and 2. The supper cell here is comprised of 3� 3 unit
cells.

The Results 1 and 2 of the unimode materials shown in Fig. 13
can actually be categorized into the same group, because they both
can be regarded as the bimode materials (i.e., the planar honey-
comb) plus one more bar stretching over the unit cell, making
the soft mode number to be only 1. Looking into Table 3, one can
find that the second and third column of the ½C� matrix of Result
1 are proportional, and both columns are not proportional to the
first column (with the proportion to be �0:3535), making the rank
of the ½C� matrix to be 2, which is consistent with the unimode
design target. Similarly, the first and second column of the ½C�
matrix of Result 2 are exactly the same, and both columns are
not proportional to the third column. In view of super cell, the fea-
tures can be seen more clearly, Result 1 can be regarded as a com-
bination of negative honeycomb planar pentamode and
equidistant horizontal bars. Similarly, Result 2 can be decomposed
ed by optimization method.



Fig. 14. Bimode materials obtained by optimization method.

Table 1
Effective properties of the optimized unimode lattices.

Result 1 Result 2 Result 3

C½ � 0.3690 0.0357 �0.1010 0.2324 0.2324 �0.0371 0.4681 0.2311 �0.2261
0.0357 0.0357 �0.1010 0.2324 0.2324 �0.0371 0.2311 0.1672 -0.0117
�0.1010 �0.1010 0.2855 �0.0371 �0.0371 0.3823 �0.2261 �0.0117 0.2977

kf g 0.0 0.2354 0.4548 0.0 0.3569 0.4903 0.0 0.2321 0.7008

Table 2
Effective properties of the optimized bimode lattices.

Result 1 Result 2 Result 3

C½ � 0.1588 0.1588 0.1123 0.0385 �0.0385 �0.0544 0.0114 0.0 0.0324
0.1588 0.1588 0.1123 -0.0385 0.0385 0.0544 0.0 0.0 0.0
0.1123 0.1123 0.0794 �0.0544 0.0544 0.0770 0.0324 0.0 0.0915

kf g 0.0 0.0 0.3970 0.0 0.0 0.1539 0.0 0.0 0.1030

Table 3
Five Selected eigenvectors.

e11 e22
ffiffiffi
2

p
e12 J1

Case 1 0 0 1 0
Case 2

ffiffi
2

p
8

ffiffi
2

p
8

ffiffiffiffi
15

p
4

ffiffi
2

p
4

Case 3
ffiffi
2

p
4

ffiffi
2

p
4

ffiffi
3

p
2

ffiffi
2

p
2

Case 4 3
ffiffi
2

p
8

3
ffiffi
2

p
8

ffiffi
7

p
4

3
ffiffi
2

p
4

Case 5
ffiffi
2

p
2

ffiffi
2

p
2

0
ffiffiffi
2

p
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into a usual honeycomb planar pentamode material and an oblique
bar inclined at angle 45�.

Result 3 is more sophisticated. The super cell is made up of
three kinds of irregular quadrilaterals, without any opposite edges
parallel. Its effective elasticity matrix in the Table 1 also witnesses
the complexity, which only possess the basic symmetry while all
the six entries in the upper triangular part are totally different.
Moreover, such microstructure is still a unimode material even
when the center node of the lower X-shape moves within the rect-
angle formed by the corner nodes of the X-shape. The soft mode
are related to the coordinatesðx; yÞ of the center node in X-shape.
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By using method mentioned in [35] which takes a thorough matrix
analysis of the truss model to find the intrinsic connection between
the soft mode and topological connectivity, the soft mode (without
normalization) of such microstructure can be given by,

vsf g ¼ ffiffiffi
2

p
;

2
ffiffiffi
2

p
xðx� 3Þ

3yð2� yÞ ; 1

 �>

: ð90Þ

It should be noted that the soft mode can be calculated by Eq. (90)
only when 0 < x < 3 and 0 < y < 2.

From the supper cell shown in Fig. 14, it is easy to find that the
Result 1 of the optimized bimode materials indeed corresponds to
the commonly seen honeycomb bimode material but inclined 45�

to the right side. Results 2 and 3 have never been seen in the liter-
ature to the best of our knowledge, and they both contain a triangle
in the unit cell. Conceptually each triangle in the unit cell can be
replaced by one rigid body. Besides, Results 2 and 3 both include
the irregular heptagon feature, which has not been noticed by
our community ever before. According to the effective matrices
shown in Table 2, Result 1 and 2 share many similarities, i.e., the
first two columns are the same and are proportional to the third
column, making the rank of the ½C� matrix to be 1, which is consis-
tent with the bimode design target. Since the entries in the second
row and column of the effective elasticity matrix of the Result 3 are
all zero, one soft mode of the Result 3 can be directly given by
vsf g ¼ ½0;1; 0�>.
From the examples shown in this subsection, it can be found

that by using the optimization framework proposed in this paper
it is easy to discover numerous innovative designs of extremal
materials that have never been found before, which is exactly the
purpose of this paper.

7.2. Planar extremal materials with constraints on soft or hard modes

Now we proceed to design planar extremal materials with des-
ignated soft or hard modes. Planar unimode materials have only
one soft mode while planar bimode materials have only one hard
mode. Therefore, it is a good practice to design the unimode mate-
rial with designated soft mode while the bimode material with
designated hard mode. The mathematical models in step 1 and 2
for unimode and bimode materials design have been list in Sec-
tion 4. The overall optimization process is shown as Fig. 2. The per-
formance control indices are g1 ¼ 0:01;g2 ¼ 10�5 in this
subsection.

As discussed in Section 6, rotation of the unit cell about z axis
does not change the eigenvalue of the elasticity tensor, but does
rotate the eigenvector. What’s more, it has been shown that the
Fig. 15. Eigenvectors under equipartition of the first principal invariant J1.
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trajectory formed by all rotated eigenvectors is actually a standard
planar circle. The normal vector of the plane that the circle is
located on is shown to be nf g ¼ ½1;1;0�>. The center and radius
of the circle have shown to be dependent on the first principal
invariant J1. As shown in Fig. 15, the smaller the value of J1, the lar-
ger the radius. Thus in this example we verify the effectiveness of
the proposed optimization framework by designing unimode
materials with designated soft modes that have different values
of J1. In detail, the unit sphere is sliced using five parallel planes,
then five circles are formed with 5 values of J1. The values of the
strain vector are then determined by choosing the one with largest
value of

ffiffiffi
2

p
e12. The five desired soft mode are listed in Table 3.

When designing unimode materials, the unique soft mode is to
be constrained to be the ones shown in Table 3. Five super cells
comprising 3� 3 unit cells with different values of J1 are shown
in Fig. 16. The unit cell is outlined by the pink dotted box. For Case
1 and Case 5, merely the optimization step 1 is enough to obtain
the unimode materials satisfying all the conditions. The details of
optimized configurations, such as the soft mode, eigenvalues, the
index to judge the accuracy of the soft mode and the rotation angle
are listed in Table 4. Since the results shown in Fig. 16 have not
illustrated the rotation angle, one example of the rotated super lat-
tice and unit cell are given in Fig. 17 for more intuitive understand-
ing of the final optimization results.

When designing bimode materials, the unique hard mode is to
be constrained to be the ones also shown in Table 3. Five super
cells comprising 3� 3 unit cells with different values of J1 are
shown in Fig. 18. Case 5 uses only the first optimization step to
get the optimized microstructures satisfying the conditions. The
details of optimized configurations, such as hard mode, the index
to judge the accuracy of the hard mode and the rotation angle
are listed in Table 5.

7.3. Planar unimode materials with constrains on both soft and hard
modes

In this example, we design the unimode materials with con-
straints on both the soft and hard modes. Since spaces of soft
modes and hard modes are orthogonal, they can be designed inde-
pendently. The soft modes are dealt with by the optimization
framework illustrated in Section 3 while the hard modes are
appropriately constructed by tuning the cross-sectional areas of
the bars.

Hutchinson [35] proved that the soft modes are only relevant to
the location of joints and have nothing to do with the cross-
sectional areas of the bars (as long as the cross-sectional areas
are finite). Thus when tuning the hard mode of the unimode mate-
rial that has already satisfied the constraint on the soft mode, it is
wise to take the cross-sectional areas of the bars to be the design
variables while keeping the node positions fixed. Let C½ � denote
the elasticity matrix of the unit cell (that is obtained from the opti-
mization Step 1 and 2 and satisfies the constraint on soft mode),
vhf g denote the desired hard mode. There are two hard modes
for a unimode material and vhf g here stands for anyone of them,
the other one can simply be obtained by vsf g � vhf g. If the optimal
solution is found, C½ � vhf g will be a vector parallel to vhf g. Hence
the cross product of C½ � vhf g and Vhf g can be taken as the objective
function to be minimized. The only constraint is that the cross-
sectional areas of all the bars should be larger than 0. Therefore,
the optimization model for tuning the hard mode of the unimode
materials can be given by,

find 1f g ¼ 11; 12; 13; 14; 15; 16½ �T
min f 1ð Þ ¼ C½ � vhf gð Þ � vhf gk k2
s:t: 1i > 0

ð91Þ



Fig. 16. Optimization of unimode materials with constraints on soft mode.

Table 4
Effective properties of optimized unimode lattices with desired soft modes.

vopt
s

n o
kf g Errs hð�Þ

Case 1 ½0;0;1�> ½0;0:3333;0:3333�> 7:8399� 10�7 �6:6978� 10�5

Case 2 ½0:1768;0:1768;0:9682�> ½0;0:4010;0:5909�> 4:0085� 10�8 �37:6826

Case 3 ½0:3536;0:3536;0:8660�> ½0;0:1297;0:8314�> 7:0409� 10�6 �44:3135

Case 4 ½0:5303;0:5303;0:6614�> ½0;0:1961;0:8730�> 8:8447� 10�6 �15:8892

Case 5 ½0:7071;0:7071;0�> ½0;0:2304;0:4407�> 1:6109� 10�7 �6:6549

Fig. 17. (a) Super lattice and (b) unit cell of Case 2 unimode materials with rotation angle h.
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Fig. 19. Unit cell of a unimode material. The numbers with and without brackets
denote indices of the nodes and bars, respectively.

Fig. 18. Optimization of bimode materials with constraints on hard mode.

Table 5
Effective properties of bimode materials with desired hard modes.

vopt
h

n o
kf g Errh hð�Þ

Case 1 ½0;0;1�> ½0;0;0:2554�> 3:2838� 10�6 �7:0306

Case 2 ½0:1768;0:1768;0:9682�> ½0;0;0:2148�> 5:1997� 10�6 28:3274

Case 3 ½0:3536;0:3536;0:8660�> ½0;0;0:4289�> 3:1036� 10�6 63:3708

Case 4 ½0:5303;0:5303;0:6614�> ½0;0;0:7170�> 9:9560� 10�8 �16:9512

Case 5 ½0:7071;0:7071;0:0�> ½0;0;0:4142�> 1:8896� 10�7 9:8845� 10�5
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where the design variable 1f g represent the cross-sectional area of
the six bars in the unit cell, and the label of the bars is shown in the
Fig. 19.
20
The third case of unimode material shown in Fig. 13 is taken as
an example here to show the design process of the planar unimode
materials with constraints on both the soft and hard modes. Now it
is sketched in a new style in Fig. 19, where the numbers with and
without parentheses denote labels of node and bar element,
respectively.

The original soft mode of the unimode material can be calcu-
lated by Eq. (90), after normalization it equals
½0:5523;�0:7365;0:3906�>, while the hard modes are
½0:2010;0:5723;0:7950�> and ½�0:8090;�0:3606;0:4641�>. We set
three cases with three different desired hard modes which are list
in the Table 6. The optimization results including the optimized
hard mode, objective function values and optimized design vari-
ables are list in Table 6. The three desired hard modes are preset
0 in the third, second and first dimension, respectively. By size
optimization of the cross-sectional areas of the six bars, the opti-
mized hard modes are very close to the desired ones. The supper
cells and unit cells of optimized unimode materials with 3 kinds
of prescribed hard modes are given in Fig. 20.

For a bimode material, it has two soft modes and one hard
mode. As in the previous section, we have completed the design



Table 6
Effective properties of unimode lattices with desired hard modes.

vhf g C½ � vhf g � vhf gk k2 1f g
Case 1 ½�0:8;�0:6;0�> 3.3657�10�11 1:9237;1:4976;0:2830½ ,

1:8082;1:4116;1:2282�>
Case 2 ½�0:5774;0;0:8165�> 1.1417�10�9 1:4618;1:5950;0:2556½ ,

1:5466;1:4695;1:7457�>
Case 3 ½0;�0:4685;�0:8835�> 3.4204�10�10 ½1:6584;0:8556;0:8314,

1:8408;0:6958;2:0684�>

Fig. 20. Unimode materials with prescribed hard mode.

Fig. 21. Three cases of ground structures.
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of bimode materials based on hard mode constraints. The two soft
modes do not need to be designed deliberately, because the elastic-
ity matrix of the material C½ � is only related to the hard mode vhf g
21
and the corresponding eigenvalue k by C½ � ¼ k � vhf g vhf g>. Hence,
this subsection only focus on the design of hard modes in the uni-
mode materials of which the soft modes have been customized.



Table 7
Computation time with different number of bars.

Case 1 Case 2 Case 3

Number of nodes 9 16 25
Number of bars 30 108 280

Computation time(s) 0.728 2.166 9.256
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7.4. Typical computational time with different number of design
variables

In previous examples we do not list the computational time, so
in this subsection we give the information of the computation time
with different number of design variables so that the readers can
have a basic understanding of the efficiency of the proposed opti-
mization framework.

As shown in Fig. 21, we consider three cases with different
number of bars in the ground structure. Detailed statistics on the
number of nodes, number of bars (which is the same as the number
of design variables), and the corresponding computation time are
all list in Table 7. From Table 7 it is clear that the proposed opti-
mization framework is highly efficient.
8. Conclusion

In this paper, a versatile optimization framework to design the
extremal materials is proposed. The necessary and sufficient condi-
tions for different kinds of extremal materials are carried out. By
using the two-step optimization scheme (topology
optimization + shape optimization) a series of extremal materials
can be found. No prior knowledge of the symmetry of the unit cell
is made use of in the proposed design workflow. Therefore, the
optimized results obtained in this study can in principle be any
general anisotropic material. In topology optimization stage, the
logic matrix which needs to be generated only once before opti-
mization is proposed to avoid the intersection and overlapping
between the bars in the ground structure. The postprocessing pro-
cess can remedy the imperfections (e.g., grey elements and redun-
dant bars) in the results obtained in the first step so that the final
solutions are clear and concise. The shape optimization step is pro-
posed to tune the positions of the nodes in order to better match
with predefined soft or hard modes. By analyzing the rotation pro-
cess, it is found that in two-dimensional case the strain tensor in
Kelvin form can be classified according to the values of the first
principal invariant J1. That is to say, strain tensors with the same
J1 can be regarded as the rigid rotation results of each other, so only
one of them needs to be considered during the optimization. For
two-dimensional unimode materials, both the soft mode and the
hard modes can be tuned successively by the optimization frame-
work, where the soft mode is designed by the topology optimiza-
tion and shape optimization while the hard mode is adjusted by
the size optimization.
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