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Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broad-
band efficiency, however its realization is only limited to simple cylindrical shape. In this work, we estab-
lished a set of techniques for the microstructure design of elliptical pentamode acoustic cloak based on
truss lattice model, including the inverse design of unit cell and algorithms for latticed cloak assembly.
The designed cloak was numerically validated by the well wave concealing performance. The work proves
that more general pentamode acoustic wave devices beyond simple cylindrical geometry are theoretically
feasible, and sheds light on more practical design for waterborne sound manipulation.
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Invisible cloaks and other devices aiming to freely manipulate
physical fields have been fascinating subjects these years. Pendry
et al. [1] and Leonhardt [2] first came up with the concept of trans-
formation electromagnetics (EM), based on the pioneering work of
Dolin [3], and the EM cloak was soon demonstrated with meta-
material techniques [4]. Transformation acoustics based on meta-
fluid of anisotropic density was first proposed by observing the
analogy between acoustic equation and Maxwell’s equation [5,6]. A
variety of meta-fluids realizing anisotropic density have been sug-
gested, such as alternating fluid layers, perforated plates immersed
in fluid, etc., however the working media are basically fluidic in
nature [7-9].

Besides the meta-fluids with anisotropic mass density, there
is however an alternative route for acoustic cloak making use of
solid-based pentamode material (PM) with anisotropic modulus.
PM is degenerated elastic material with elastic tensor having a sin-
gle nonzero eigenvalue [10]. By microstructure design, PM can sup-
port a more general stress state other than the hydrostatic of con-
ventional fluids [11-13]. The milestone for transformation acoustics
based on PM is due to Norris, he proved that, under curvilinear co-
ordinate transformation, conventional acoustic equation possesses
the same form as that of PM wave equation [14]. Acoustic cloak
using PM has advantages of broadband efficiency and solid na-
ture, thus is more promising for practical applications. These mer-
its stimulated intense researches on PM transformation acoustics
and a number of wave manipulation functions have been designed

* Corresponding author.
E-mail address: liuxn@bit.edu.cn (X. Liu).

https://doi.org/10.1016/j.tam1.2022.100346

and experimentally demonstrated for underwater sound [15-19]. It
is worth mentioning that some active schemes have been success-
fully used in elastic waves steering and wideband cloaking [20,21],
whether these active techniques could be employed in tuning solid
materials towards desired PM behavior for waterborne acoustic
control is also an interesting problem.

At present, design of PM acoustic devices was mostly limited to
regular configurations. The origin is that, in accordance with the
divergence-free characteristic stress of the graded PM, the coordi-
nate mapping must be curl-free in order to produce a symmet-
ric deformation gradient tensor [22]. This requirement is only easy
to achieve with axisymmetric shape such as the cylindrical and
the spherical cloak. By interpreting the mapping as displacement
field of a special elastostatic problem, Chen et al. [22] proposed a
solution to construct quasi-curl-free mapping for arbitrary shaped
PM cloak, with which PM properties for irregular cloak can be ob-
tained. Recently, Quadrelli et al. [23] derived quasi-curl-free map-
ping as well as the necessary PM properties for a double-elliptical
cloak making use of the elliptic coordinates. However, microstruc-
ture design of cloak other than cylindrical shape is not reported
so far. In comparison with the asymmetric cloak, an essential dif-
ference is that the PM unit cell must be designed and assembled
cell by cell and no preferred orientation can be presupposed, thus
necessitating substantial updating of design techniques. PM based
acoustic wave control, though possessing much advantages over
other metafluids, their engineering applications would be quite
limited if the device configuration can only be cylindrical or spher-
ical. The techniques devised in this work will be very meaning-
ful for extending PM based wave functionality to applications with
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Fig. 1. Illustration of transformation acoustics based on PM material: a Virtual space; b Physical space.

general geometry, e.g. cloaking of irregular underwater vehicles, ar-
bitrary wave bender, carpet cloak, etc.

In this letter, we will present a systematic microstructure de-
sign scheme for an elliptical PM cloak based on ideal truss lattice
model [24]. The algorithm proposed in Ref. [22] is adopted at first
to determine the required gradient PM distribution for a typical el-
liptical cloak. Then analytical homogenization of PM for a general
unit cell is given in closed form, with which efficient inverse de-
sign of PM cell can be implemented. Finally, algorithms are estab-
lished to segment the cloak domain and to assemble the PM cells
up to an integral latticed cloak. The performance of the designed
cloak will be numerically validated via finite element simulation.

Gradient PM properties for an elliptical cloak

PMs are characterized by elastic tensor with only one nonzero
eigenvalue, hence the elastic tensor can be expressed as C = KS® S
[10,14], where the second order symmetric tensor S is called char-
acteristic stress. The constitutive relation then reads:

o=C:e=KS(S:e¢). (M

The material can only withstand stress o proportional to S, i.e.,
o = -pS, and p is called pseudo pressure in analogy to the acous-
tic pressure in ordinary fluids. Expressed in pseudo pressure, wave
equations of PMs are

iop=KS: Vv,iwv=p1.S.Vp, (@)

where v is the particle velocity, p the density, and time harmonic
convention exp(—iwt) is adopted. Note that the S tensor has to be
divergence free, i.e.,, V-S =0, in order that the material has to be
at equilibrium [14]. For the trivial isotropic case of S =1, Eq. (2) re-
duces to the traditional acoustic wave equation.

Basic ingredients of transformation acoustics via PM are out-
lined here in brief with an example of elliptical cloak, as depicted
in Fig. 1. Consider a virtual space X occupied by homogeneous
acoustic fluid with density pg and bulk modulus Ky, pressure p’ (X)
and velocity v/ (X) are governed by

iwp =Ko : VxV', iwV = py ' Vxp', (3)

where Vymeans gradient with respect to the virtual space coor-
dinates. Two adjacent domains I' and I'oy sharing an elliptical
boundary are identified. A tiny circular void with radius § is in-
troduced at the center to avoid cloak material singularity. Consider
a coordinate transformation x = x (X) which deforms the virtual
space to physical space as shown by Fig. 1b. The mapping keeps
[our unchanged (Y out = Four) and squeezes T to an elliptical cloak
shell y with a large circular void with radius b. It has been proved
that [22], besides the geometry, the physical fields are also mapped

to the physical space asv(x) =J~1S~1.F.v/(X) and p(x) = p’(X),
provided that the symmetric S(x) is divergence free. The mapped
fields in physical space satisfy wave equations in exactly the same
form with those of PMs, i.e. Eq. (2). However, material properties
inside the cloak are distributed as

p ' =pyJTISTIFFTS T K = Ko, (4)

where F = 0x | 0X is the deformation gradient tensor, and | =
det F.

There is an additional condition for S at the outer boundary of
the cloak required by fields continuity and S = I in y oy At 0y T,
principal directions of S(x) must be in parallel with the normal
and tangent directions (e, e, see Fig. 1b) of the boundary and its
normal components must be unity, i.e., S = epe,+Si ece. So far,
there is no general method for constructing divergence free S(x)
under these stringent constraints. One solution is to find a curl-
free coordinate mapping such that F ~ FT and let S = J-'F, then
S is nearly symmetric and naturally divergence free because of
the identityV - (J~'F) = 0, and the boundary constraint is automat-
ically satisfied. An extra benefit of this choice is that, c.f. Eq. (4),
the tensorial density reduces to isotropic one, p = pl. In this case,
the graded PM properties in the cloak shell can be summarized as,

Ko
] F. (5)

Note that here and henceforth, the scalar coefficient is absorbed
into S in the expression of C. If such material pattern could be im-
plemented, the cloak will conceal objects in the cavity and result-
ing scattering would in theory be the same with that in the virtual
space.

Curl-free coordinate mapping can only be constructed intu-
itively for the cylindrical and spherical cloak. Here for the ellip-
tical cloak, a numerical scheme proposed in Ref. [22] for finding
quasi-curl-free mapping for irregular geometry is employed. De-
fine inverse mapping X(x)=x+u(x) where u represents displace-
ment taken a point x back to its corresponding point X in the vir-
tual space. Thus, u is prescribed at the inner and outer boundaries
of the cloak:

on dyt;u=(5§/b—1)x on JIy~. (6)

Once u is determined F can be calculated as (30X / 0x)~!, and
it is obvious that F is symmetric if V x u = 0. Though strictly curl-
free u is hardly to get, it has been proved that quasi-curl-free u
field can be obtained by solving

Vx(Vxu)=EV(V.u), (7)

where |&| « 1, in conjunction with the boundary conditions
Eq. (6). Actually, Eq. (7) is equivalent to the elastostatic equation of

P(X)=J"po.C(X) =S®S,S =

u=20
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Fig. 2. Contour plots of cloak properties: a Symmetry deviation of F (Fj; - F»1); b Normalized density p/po; ¢ Principal orientation angle of S; d Anisotropy degree S;/Sy.

isotropic elastic material with special chosen Lamé constants sat-
isfying A = (£ — 2), which can be solved easily using standard fi-
nite element method (FEM) software. Once u(x) is determined, the
distribution of cloak material properties can be obtained through
Eq. (5).

For illustration, we consider an elliptical PM cloak immersed
in the background water characterized by p, = 1000 kg/m3 and
Ky = 2.25 GPa [13]. The half-long and half-short axes of the cloak
shell are 2m and 1.6m, respectively. The radius of the inner cav-
ity is b = 1 m, and the radius of tiny void in the virtual space is
8 = 103 m. In solving the quasi-curl-free u via Eq. (7), § = 104 is
used and Lamé constants are chosen as A = -1.9999 Pa and u = 1
Pa [22]. Firstly, the symmetry deviation of F tensor derived from
u field, which is quantified by F;; - F», is checked and shown in
Fig. 2a. It is seen the F tensor is overall very symmetric, the asym-
metric part is lower than 10~3 in the most region and becomes a
little bit larger only near the inner boundary. Safely, S tensor is de-
fined using the symmetric part of F, i.e., S=(Ky/J)!/2 sym(F). Fig. 2b
shows normalized density p/pq of the cloak shell, and it follows
that 0<p/pg<2.

The symmetric S tensor can be diagonalized in its principal
frame (e, e¢) as

S=Se,@e,+5e e, (8)

1
St = 5(511 +SnFh), h=,/(n- Sx)? +453,, 9)

and the angle ¢ between the principal axis e, and x axis (see
Fig. 2c) is determined as

tan ¢ = 2515/(S11 — Sa2 — h). (10)

The anisotropy of the PM modulus, i.e. the ratio of principal
moduli S¢/Sp, and the principal orientation angle ¢ are the most
important properties of the cloak for guiding wave around an ob-
stacle, and they are contoured in Fig. 2c and 2d, respectively. It is
seen that unlike the cylindrical case, the principal orientation is
not axisymmetrically distributed and possesses a complex pattern.
Fig. 2d shows the S;/S, contour, from which it is seen that the PM

Fig. 3. Distorted honeycomb truss lattice model of PM.

anisotropy is high and varies sharply near the inner boundary, and
actually the anisotropy is also not distributed regularly. Since there
is no symmetry in the PM pattern can be utilized, the microstruc-
ture design and assembly of non-circular cloak have to be done cell
by cell, calling for a smarter and more automatic design scheme.

Truss based PMs with honeycomb lattice

The required PM properties of the cloak can be realized with
distorted honeycomb truss lattices as shown in Fig. 3, in which
all bars are ideally hinged. A unit cell defined by lattice vectors
a = (a1, a)" and b = (by, by)" is indicated by the dashed paral-
lelogram. The unit cell includes three bars characterized by ten-
sion stiffness E;A; and density p;, where E; and A; are the Young’s
modulus and the section area of the bar i, respectively. Bar geom-
etry is defined by nodes (1~3) on the lattice sites and one internal
node 4. Without loss of generality, place the coordinate origin at
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the node 1, the node positions are then

r,=a, r;=h, r4:p=<p1>. (11)

r =0,
! D2
In microstructure design and assembling stage, suppose that the
cloak domain is divided into many quadrilateral cells, three bars
should be embedded into each cell and the internal node will be
precisely adjusted to meet the conditions for S¢/Sy and the princi-
pal orientation angle ¢ corresponding to the cell location.
As shown in Fig. 3, we define three unit vectors along each bar
a p—
e = —B, € = P
h L
where Iy = |p|, I, = |a - p|, I3 = |a - p| are the bar lengths. Under
any loading, tension forces t = (t, t, t3)T in the three bars cannot
be arbitrary and their relative ratios have to balance at node 4 in
absence of external load [10], i.e., t;eq + tye, +t3e3 = 0, or equiva-
lently
&)

—a+5b:(i+£3+5>p (13)
lz 13 l] lz l3

Therefore, the final bar tensions can be expressed as

_b-p

L (12)

, €3

t=oas=0o(s1, Sy, S3)T, (14)
where coefficient « is to be determined and s can be solved via
Eq. (13):

p2b1 — p1b; D1Gx — p2ay ( S2 53)
Sy =h—~=———=% =h—" =L(1-=-=
> > axby —arhy’ } ayby —arby’ 51 ! I I3

The s vector is called self-stress state of the truss lattice sub-
jected to periodic boundary. It represents also the non-compatible
bar elongations which cannot be generated by nodal displacements
[25]. The macroscopic stress is defined by integrating equilibrated
microscopic stress o over the cell domain 2. Using the identity
V. (r® o) = o in absence of body forces, the macroscopic stress is
defined via tractions on the cell boundary 9€2, which in this case
of truss lattice is just a sum including the forces t;e;, t,e, and
tzes:

1 1 18
E:—/adr: / reo (o-n)dA=— r, ® (they).
Vcell Q Vcell Q2 ( ) Vcell ; " (n n)

(16)

where V. is the area of unit cell. Substituting Eqs. (11), (12) and

(14) in to Eq. (16), it can be shown that X depends only on the

internal node position (pq, p,) and the undetermined coefficient c,
o =

X(p1, P2, @) = 7 S(p1. P2). (17)

cell

where:
S(p1. p2) = Fa®a+$beb-pep

I,

(18)
= 511161 ®Xe + Szlzez Qe+ 531293 ® es.

To determine the unknown o under macroscopic strain E,
suppose the bars undergo firstly an affine elongation eff =

(e3ff, eafl eaMT where

b=1~3. (19)
Bar tension induced by affine elongations are not balanced,

therefore e must be relaxed by an extra Ae to reach the true
elongations, i.e.

aff o s1ly solp s3l3 T
e +Ae=e=a(py 22 22). (20)

e;ff — lb(eb -E. eb) = lb(eb ® eb) : E’
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Since Ae is compatible, it must not overlap with the non-
compatible elongation s, that is, s'(e - ef) = 0, with which it can
be solved that

o = E(s1 Lei®e; +s:hbe; ®e; +5s3e30e3):

E = k(S:E). (21)

where

_ 2] 2] 2[ -1

ko (S Sb + 552 ) (22)
EiA1  E;A;  E3As

Combining Eqs. (17) and (21) gives
k(S :E)
B Vcell

where

[k -
S(p17 pZ) = vV ”S7 (24)

is just the characteristic stress tensor of PM as required by Eq. (5).
In the inverse design, given a unit cell specified by vectors (a, b)
as well as desired St/S, and angle ¢, the internal node location (pq,
p2) can be conveniently solved out using Eqs. (9), (10), (15) and
(18). Then the density p = (X p;liA;)/Veen and the absolute magni-
tude of S will be matched by p; and E;A; of bars. In the following,
for the three bars in the same cell indexed by c, bar properties are
set as the same E;A; = EcAc and p; = pe.

) §$=(S®S):E. (23)

Design and validation of integral latticed cloak

In order to build the cloak with an assemblage of graded PM
lattices, the cloak region needs to be reasonably meshed into a
set of cells which is inevitably non-uniform, then for each cell a
three-bar PM model can be appropriately designed and housed ac-
cording to the previous section. Due to the mirror symmetry, the
procedure is illustrated by a quarter of the cloak shown in Fig. 4.
At first, a quasi-conformal mesh lines are generated using an algo-
rithm described in the following, so as the cloak region is divided
into an almost rectangle mesh with reasonable mesh density, as
shown in Fig. 4a. Second, the midpoints of rectangular edges are
used as vertices to general whole set of rhombic cells which will
be as regular as possible (Fig. 4b), then the PM design procedure
given in the previous section can be executed repeatedly for each
rhombic PM cell. Third, for each PM cell c, corresponding vectors
(ac, be) and S(x¢) are then obtained with x. being the cell center,
thus the internal node location as well as the bar properties (E:Ac,
pc) can be solved. This design procedure for the integral latticed
cloak has been automated by appropriate programming.

The algorithm for producing meshes in Fig. 4a is borrowed
from Ref. [26], which is originally developed for building quasi-
conformal coordinate mapping for arbitrary geometry. In accor-
dance with the elliptical shell, suppose that the mesh are specified
by a set of circumferential grid lines r(x, y) = rm, (m = 1~m¢), and
a set of radial grid lines 6(x, y) = 0, (n = 1~n¢), as selectively
exemplified in red and blue in Fig. 4a. The functions r and 6 can
be obtained by solving Laplace equations V2r =0 and V26 =0 on
the quarter cloak domain, with appropriate applied boundary con-
straints. In particular, for r(x, y):

Dirichlet condition r = 0 on dD, r = 1 on 9B,
Neumann condition n-Vr =0 on 9A and dC;

while for 6(x, y):

Dirichlet condition & = 0 on 9dA, 8 = 1/2 on dC
Neumann condition n-V@ = 0 on 9B and aD.
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Fig. 5. Configuration and parameters of latticed cloak: a Color plot of bar stiffness EA; b Color plot of line density pA of bars.

Here n is the unit normal vector on domain boundary. The
physical meaning of this boundary conditions is that: bounded by
re[0,1], i.e. 0B and 0D, r = ry, grid lines are equipotential lines
ruled by the Laplace equation, but the ends of grid line are al-
lowed to slide along dA and dC in order to be orthogonal to them.
Similar explanation applies to the 6 lines. The Laplace equation to-
gether with the proposed boundary condition is actually equiva-
lent to minimization of the Winslow functional which keeps the
grid lines as mutually orthogonal as possible [26]. The scheme is
quite general can be used to automatically generate for irregular
domain a regular mesh division, so as to ease the PM design stage.
In Fig. 4a, m¢ = 29 circumferential grid lines and n. = 84 radial
grid lines are used to mesh the cloak, and lines of r = 0.83 and
0=0.0967 are highlighted. The discrete r,;, and 6, values can be
adjusted to control the mesh density, e.g. that, denser division is
desired where material properties possess high gradient.

Finally, the design of cloak lattice realizing the previously de-
termined material distribution in Fig. 2 is completed and displayed
in Fig. 5. The colors in Fig. 5a and 5b indicate tension stiffness EA
and line density pA of bars, respectively. There are totally 4358 PM
cells in a quarter of the cloak. The zoomed view of Fig. 5a details
the gradually changed irregular honeycomb lattice, which is irreg-
ularly distorted and very different with an axisymmetric circular
cloak.

In order to check the wave concealing performance of the de-
signed cloak, full wave simulation is performed using commer-

cial FEM software ANSYS, and the results are presented in Fig. 6.
Figure 6a shows the pressure field in the background water when
the immersed cloak lattice is illuminated by sound wave excited
by a monopole acoustic point source placed upper left, and the op-
eration frequency is 2.25 kHz. In the calculation, a fluid-structure
interface is used to deal with bridging of the lattice bars and the
acoustic fluid, while non-reflecting condition is set at the exter-
nal boundary of background water. For comparison, Fig. 6b and
6¢ display the pressure fields of an un-cloaked void obstacle and
a void protected by continuum cloak (with the material distribu-
tion described by Fig. 2), respectively, under the same wave load-
ing. Inside the cloak shell of Fig. 6¢, pseudo pressure p = -Jo 11 /Fy1
is displayed instead. It is observed that, though the discretization
of continuously varied material property and the approximation of
PM by truss lattice bring a certain amount of error, the pressure
fields of Fig. 6a and 6c¢ exhibit high similarity. The scattering in
case of the lattice cloak is significantly reduced, and the wave front
passed through the target remains almost unperturbed as shown
in Fig. 6a. Conversely in Fig. 6b, obvious reverberation and shadow
are observed in case of a bare obstable. An advantage of PM cloak
is its broadband effectivity since the metamaterial mechanism is
not resonance based. As long as quasi-static homogenization is jus-
tified under the wavelength of the operating frequency, the cloak
will work well. We conducted a supplementary simulation at a
higher frequency 3.25 kHz, and the corresponding results are plot-
ted in Fig. 6d, 6e and 6f for case of latticed cloak, bare obstacle
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MAX

MIN

Fig. 6. Simulated pressure fields for different cases at frequency 2.25 kHz: a Latticed cloak; b Bare void; ¢ Continuum cloak, and at frequency 3.25 kHz; d Latticed cloak; e

Bare void; f Continuum cloak.

and continuum cloak, respectively, and as expected good cloaking
performance is observed as well.

In summary, in this work, we have developed a complete set
of techniques necessary for design of truss-based PM acoustic de-
vices with irregular shape, including the analytical homogeniza-
tion of PM for a general unit cell, its inverse design scheme, and
algorithms for assembling the PM cells into a graded lattice rep-
resenting a domain induced by PM transformation acoustics. The
developed methods were gone through by the design of latticed
elliptical PM cloak for the first time, and effectiveness was nu-
merically validated by the well wave concealing performance. The
work proves that, together with the algorithm of numerical quasi-
curl-free coordinate mapping [22], more general PM underwater
acoustic wave devices beyond the simple geometry can be ex-
pected to be brought into reality. Of course, the ideal truss model
used here is still very theoretical, and it is noticed that the bar
parameters and lattice discretization here is very stringent. More
future works, including optimization and compromise between the
cloaking performance and material sharpness as well as the feasi-
ble continuum-based PM design are in order to put them forward
to experimental demonstration.
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