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1. Introduction

Reconstructing structural parameters of a system according to a
known limited strain information is a typical mechanical inverse
problem.[1] Among the many applications of the inverse problem,
tactile perception has attracted a lot of attention from researchers
recently.[2,3] Tactile perception plays a key role in physical
interaction between human and the environment, and to ensure
human’s safety and stability.[4,5] Based on the signal of tactile
perception, brain interprets it and then outputs the structural
parameters of the object, such as the size, shape, texture, and

hardness.[6–10] Comparing with other per-
ception methods, the mechanical signal
extracted by tactile perception is limited,
while the sensed structural parameters of
the object is complex.[11] In addition
to the important application related to
human, tactile perception also plays a criti-
cal role in robot interactions.[12–15] As
shown in Figure 1, a conceptual robot of
tactile perception consists of sensing and
processing systems. Tactile sensors includ-
ing strain gauges and data acquisition
board are integrated into the fingers, which
are used to evaluate the features of the tar-
get object, such as shape and structural
parameters. Researches have shown that
the state of the system can be evaluated
by limited strain response.[16,17] However,
when the features of the target object get
more complex, limited strain response will
bring difficulties to prediction. What is
worse, in the long-term use of the tactile
system, possible damage of strain sensors

will lead to further loss of strain information.[18,19] The limited
strain input results in significantly decreasing the accuracy rate
of predicting structural parameters. Therefore, to create robots to
perceive, explore, and manipulate their environments, an algo-
rithm to process the tactile information like human needed to
be developed, which is also the key factor that limits the devel-
opment of robotic tactile perception.

For the tactile perception, it would be much more difficult to
solve the mechanical inverse problem by utilizing the aforesaid
classical methods, such as Tikhonov regularization[20] and TV
regularization.[21] The difficulties originate from two aspects.
On the one hand, the strain field of structure needs to satisfy
the mechanical governing equations and boundary conditions,
which is intricate owing to the complexity of the loading and
structure under real working conditions. Besides, the shape
and pattern of microstructures severely affect the localized spatial
relations of the strain data. Therefore, we need to consider both
the global and local relations of the mechanical field when pre-
dicting structures. On the other hand, the predicted structure
contains numerous randomly distributed microstructures, which
will engender large categories while using the traditional classi-
fication algorithm. Generally, the problem of low prediction accu-
racy arises when the strain data measured are limited and the
categories need to be distinguished are diverse. To overcome
the problems caused by above two aspects, a common process
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Inverse problem method uses the results of observations to infer the model
parameters of a given system, which can be used in the area of tactile perception.
By integrating tactile perception in robotic systems, reconstructing structural
parameters of target object can be achieved. However, with insufficient infor-
mation, how to evaluate complex structural parameters accurately remains a
challenge. A data-driven method is proposed for the structural perception based
on convolutional-generative adversarial network (CGAN), which can precisely
evaluate the structural parameters, notwithstanding missing a large quantity of
sampled strains randomly in space domain. The CGAN model has been verified
on a reconfigurable structure. Both the numerical calculations and experiments
indicate that the structural accuracy rate can reach above 90% in spite of the
strain loss ratio being 50%. Through inpainting the observations and discretizing
the model parameters, a complete process is proposed to deal with the inverse
problem of predicting continuous structure from the incomplete strain, which
provides a new solution for applying machine learning method into intelligence
tactile robot.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2022, 4, 2100187 2100187 (1 of 8) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202100187 by C

ochraneC
hina, W

iley O
nline L

ibrary on [13/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:zhangkai@bit.edu.cn
https://doi.org/10.1002/aisy.202100187
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com


was proposed for solving the mechanical inverse problem in case
of incomplete input. The process could be divided into two steps,
viz., first to design an inpainting mapping which could map
incomplete input to complete input, and then to design a recon-
struction mapping which maps the complete input to the output.
The feasibility of the effective and accurate method to design the
suitable mappings for each step remains a key challenge.

Recently, deep learning increasingly has become an effective
method for mapping the relations between multidimensional
data in diverse areas.[22–25] However, artificial intelligence in tac-
tile research obviously lags behind other perception methods
such as vision and hearing.[26] Here, we proposed a data-driven
method based on convolutional-generative adversarial network
(CGAN) to evaluate the structural parameters from a small
amount of static strain response. The proposed CGAN model
consisted of a well-designed generative adversarial network model
(GAN) to inpaint strain information and a sophisticated convolu-
tional neural network model (CNN) to predict structural parame-
ters. A loss function was proposed to describe the global and local
relations of strain field, and a multilabel classification algorithm
has been integrated into the CNN model to improve the accuracy
of predicting the structural parameters. The experimental results
showed that even for the absence of 50% data points in the strain
field, our proposed method could predict the structure with accu-
racy over 90%, which indicated its excellent generalization ability
and accuracy. Our research not only improves the accuracy of
sensing structure from strain, but also provides a new solution
for applying machine learning method into robotic intelligence
tactile and human–computer interaction devices.

2. Experimental Section

2.1. Inpainting Incomplete Strain Fields by Training a GAN Model

Based on data generated by finite element method (details are in
Supporting Information), we designed a functional GAN model

to precisely inpaint the strain fields, which is shown in Figure 2.
The GANmodel was composed of two parts: one was a generator
G, which could inpaint the incomplete strain field, and the other
was a discriminatorD, which discriminated between the real and
fake input data. MaxAbsScaler normalization technique was first
used here to rescale the complete strain fields x0 to x, and all x
form a training set pdata(x). Subsequently, we randomly removed
some data points (set their strain values as 0) of each x and mark
it as z, for simulating the incomplete strain information. The
percentage of removed data points varied from 0% to 60%.
The set pz(z) was the input of G. The inputs of D consisted of
the output of G and the complete data x.

We proposed a loss function to minimize the difference
between the generated strain field G(z) and the complete
strain field x

min
G

Ez∼pzðzÞ½GlobalðGðzÞ, xÞ� þ λ ⋅ Ez∼pzðzÞ½LocalðGðzÞ, xÞ� (1)

The first part Ez∼pzðzÞ½GlobalðGðzÞ, xÞ� was the original loss
function,[27] where GlobalðGðzÞ, xÞ ¼ logð1� DðGðzÞ, xÞÞ,
which guaranteed that G(z) was restricted by governing
equations and boundary conditions. The second part λ ⋅
Ez∼pzðzÞ½LocalðGðzÞ, xÞ� was the local content loss that we have
designed, where LocalðGðzÞ, xÞ ¼ GðzÞ � x. The second part
guaranteed G(z) to satisfy the strain features in the local region
to the best possible value. λ was a hyperparameter which
governed the similarity between z andG(z). Further details about
GAN model can be found in Supporting Information.

2.2. Sensing Structural Parameters by Training a CNN Model

For a general mechanical inverse problem, the single label
classification algorithm was of low precision while predicting
the structure with a large number of randomly distributed
defects. Alternatively, multilabel classification algorithm can
improve the accuracy under the condition that outputs must

Figure 1. AI brain is the key part for tactile robot to perceive object parameters. Tactile robot obtains tactile information by touching objects, and then
realizes the perception of structural parameters through AI brain. The proposed algorithm helps to improve the perception ability of AI brain, which could
predict structural parameters with high accuracy from incomplete tactile information.
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be discrete variables. To utilize the multilabel classification
algorithm, we first proposed to mesh any structure into the same
square unit cells (ND). Each unit cell could be assigned one of two
states, viz., the 1-state, which consists of homogeneous material,
or the 0-state, which has a defect. Based on this digital method,
the whole structure could be discretized into a binary sequence
with ND elements (0/1), i.e., the structure was described by ND

discrete unit cells. Thus, the number of variables, which was pre-
dicted by the machine learning model, could be reduced from
NCðNC ¼ 2NDÞ to ND. The discrete structure combined with
the multilabel classification method significantly reduced the
computational complexity while predicting the structure, which
is important for improving the accuracy of the solution to this
mechanical inverse problem. Here, a structure, as shown in
Figure S1, Supporting Information, was taken as an example
with 9� 9 same square unit cells. Subsequent to discretizing
the structure by the methodmentioned above, our proposedmul-
tilabel classification algorithm combined with CNN model could
predict each element of the binary matrix independently, which
decreased the number of categories of labels from 281 to 81. As
shown in Figure 2, the CNN model primarily contained five con-
volutional neural layers and two fully connected layers. Sigmoid
was used as an activate function at the output layer. By adding the
discrete structure K(i) to the loss function, we designed a
modified binary cross entropy for CNN model as

LD ¼ � 1
ND

XND

i¼1

½KðiÞ log hθðGðzÞðiÞÞ þ ð1� K ðiÞÞ logð1� hθðGðzÞðiÞÞÞ�
(2)

where ND is the number of discretized structural variables,
GðzÞðiÞand K(i) represent the input of the strain data and its
corresponding structural parameter (0/1 bits), respectively. hθ
is a sigmoid function, where θ represents the parameter set of
the CNN model. More discussions of data-driven method
for the physical inverse problem and the details about the
CNN model could be found in Supporting Information.

3. Results

3.1. Inpainting Strain Information with High Precision

First, the trained GAN model was used to inpaint incomplete
strain fields. We defined a mean relative error (MRE)
PN

i¼1 j GðzÞ�x
x j=N to quantify the precision of the inpainted com-

plete strain fields from the GANmodel, and the MREs of a single
example and the test set were calculated as follows. Figure 3a
shows a specific example, where 10 data points have been ran-
domly removed, i.e., strain loss ratio is 10%. Our method could
inpaint the incomplete strain field with a mean relative error of
3.6% and a maximal relative error of 7.8%. In contrast, the mean
relative error of the strain inpainted by the linear interpolation
method was 11.1%, and maximal relative error was 25.9%.
For the strain field shown in Figure 3b, when the strain loss ratio
was less than 30%, our method could inpaint the strain field with
MRE less than 6.8%. The numerous missing strains made the
linear interpolation method invalid because the remaining
strains were not sufficient for parameters fitting. Therefore,
our proposed method showed an excellent performance with
different values of strain loss ratio. Besides the examples shown

Figure 2. Method to solve mechanical inverse problem of predicting structure from incomplete strains. Generative adversarial networks consisted of a
discriminator and a generator, and the well-trained generator could inpaint the incomplete sampled strains to complete strains. Thereafter, the multilabel
classification algorithm combined with the convolutional neural network was utilized to predict the structure from the inpainted sampled strains.
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in Figure 3a,b, the average performances of the GAN model on
all the samples in the test set have been conducted, as shown in
Figure 3c. We introduced the energy of gray-level co-occurrence
matrix (GLCM) to quantify the distribution of the holes in the
structure, whereas the number of holes was used to describe
the volume fraction of the structure. Scatter plot in Figure 3c
shows the MRE of the inpainting strains from GAN model with
different structures and strain loss ratios. As the strain loss ratio
changed from 10% to 50%, the MRE increased from 3.1% to
7.8%. Even for the case of 50% strains randomly missing, our
method could inpaint the strain fields with MRE less than
8%. These results demonstrated that the distribution of holes
had negligible effect on MRE, whereas the strain loss ratio
was the primary factor affecting MRE.

3.2. Predicting Structure from Strain Information with High
Accuracy

Then, the trained CGAN was used to predict structural param-
eters from incomplete strains. A new index—structural accuracy
rate (SAR), which was defined as the ratio of the number of pre-
cisely predicted cells to the number of all cells in the structure,
has been employed to quantify the ability of predicting structures
of CGAN model. As shown in Figure 4a, CGAN can predict the
distribution of holes in structure when input strain data points
were incomplete. As shown in Figure 4b, when the strain loss
ratio continued to increase from 0% to 20%, the SAR would
decrease gradually from 100% to 96%. Incomplete strain field,
i.e., sparse strain field, has been directly used to predict the

Figure 3. Strain inpainting tests of different strain loss ratio and different structure are conducted by the GAN model. a) The strain loss ratio is 10%, and
the mean relative error of the inpainted strain by GAN is 3.6%, whereas the strain loss ratio of the linear interpolation method is 11.1%. b) For a same
strain field, the strain loss ratio changes from 0% to 100% while the position of the strain loss is random. The relative error of the inpainted strain to the
original strain is plotted. c) The test set contains 10 000 different structures and their corresponding strain fields, and relative error of the inpainted strain
from different incomplete strains under different loss ratios is plotted. The number of holes is used to describe the volume fraction of the structure, and
the GLCM energy is used to describe the distribution of the holes in the structure.
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structural parameters, and the SAR is plummeted from 100% to
66%, as shown in the orange scatter plot in Figure 4b.
Furthermore, when the strain loss rate was in the range of
0–60%, the SAR from inpainted strain was significantly higher
than the incomplete strain. Thus, restoring the missing strain
information plays a critical role in evaluating the structural
parameters with high accuracy. Besides the above examples,
the average SAR on all the samples in the test set is shown in
Figure 4c. Even when the strain loss ratio reached 50%, the
CGAN model could predict the structure with an average SAR
90%. Furthermore, in the test set, each sample took an average
of 7.86� 10�4 s for a process, beginning with the inputting of
incomplete strain fields up to the outputting of the structure
by CGANmodel. The quick response indicated that our proposed
method had a huge potential for the applications in real-time
parameters predicting of a structure with multiple and randomly
distributed microstructures.

3.3. The CGAN Model Was Verified on a Reconfigurable
Structure

Finally, to verify the proposed mechanical inverse method, we
have designed an experimental system, which contained data

acquisition board, controller, and the CGAN algorithm. The data
acquisition board (DH3816N, Donghua Test, China) has been
connected with a strain sensor array (10� 10 strain gauges),
and the strain gauges were pasted on the back area of the red
dotted box, as shown in Figure 5a. CGAN model has been built
into a computer, which was utilized for controlling the whole
experimental system and processing of data. Corresponding
noise reduction algorithms are applied to reduce possible noise
in the above procedure, which could be found in Supporting
Information. As shown in Figure 5a, to verify the practical
generalization ability of the proposed system, a 3D printed recon-
figurable structure has been designed and fabricated with pho-
tosensitive resin (E¼ 2460MPa, ν¼ 0.23), whose size was
544mm� 364mm� 9mm. Inverted trapezoid thread holes
have been regularly arranged in the structure (27� 27). The cell
could be tuned by installing and uninstalling the stud. Based on
the tunable cells, the test specimen could be restructured to
simulate differently distributed holes. Therefore, multiple tensile
tests of the structures with differently distributed holes could be
carried out on a single structure. A uniform loading of 1980 N
has been applied on the structure by using a stretching machine
(WDW-2, Changchun Kexin, China). The strain rate was about
3� 10�5 s�1. By turning off the associated strain data acquisition
board channels, the scenario of losing strain data at specific

Figure 4. Accuracy rate of predicting the corresponding structure from incomplete strain is tested by using CGAN model. a) The strain loss ratio is 15%,
and GANmodel is used to strain inpainting, whereas CNNmodel is used to predict the corresponding structure from the strain inpainted by GAN. b) For
a structure and its strain field, the SAR based on the strain inpainted by GAN and the incomplete strain are tested under different strain loss ratio. c) The
test set contains 10 000 different structures and their corresponding strain fields. The number of holes is used to describe the volume fraction of the
structure, and the GLCM energy is used to describe the distribution of holes in the structure. The mean SARs of different strains by CGAN model under
different strain loss ratio is plotted.
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points can be simulated. The SAR of structure (II in Figure 5a)
changed with the strain loss ratio as shown in Figure 5b, where a
strain field with a loss ratio of 20% was shown in the lower left.
When the strain loss ratio increased from 0% to 50%, the SAR
decreased from 100% to 90.5%. The SAR of further experimental
structures predicted by their corresponding strain fields with loss
ratio of 10% is shown in Figure 5c. The average SAR was 97.8%.
Additional structures are shown in Figure S5, Supporting
Information. Although the 3D printed reconfigurable structure
used in the experiment had errors in assembly, our method gave
a high accuracy in predicting the structures with different
number of randomly distributed holes. Thus, our method was
applicable, stable, and of high precision, which shows potential
application of CGAN model in tactile robot.

4. Discussion

4.1. Data-Driven Method for the Physical Inverse Problem

The process to overcome the two problems for the mechanical
inverse problem with an incomplete input could be divided into
two steps, viz., first to design an inpainting mapping which could

map incomplete input to complete input, and then to design a
reconstruction mapping which maps the input to the output.

The first step could be concluded as a typical mathematical
problem of matrix completion, i.e., recovering a matrix x with
a matrix x

�
having incomplete observable elements. To drive

GAN model to generate the matrices, a special loss function
for generator needed to be designed. When the discriminator
could not determine whether the recovered matrix was real or
from the generator, the GAN model reached global optimality,
which indicated that the global part of the loss function could
drive the model to learn global relations. By minimizing the local
part of the loss function to 0, G(z) would tend to be similar to x.
Therefore, G(z) owned the same local relation as x, which
indicated that the local relation could be learnt by the generator
of GAN model. The loss function that took into account both the
local and global relations could make the GAN model solve the
matrix completion of strains.

For the second step, the common ways to build a neural net-
work from strains to structural parameters include single-label
classification and multilabel classification. The single-label clas-
sification is suitable for problems with few categories.[28]

However, as the position and number of holes in the predicted
structure contain a lot of categories, the single-label classification

Figure 5. Experiments are carried out on a reconfigurable structure to verify CGAN model. a) The 3D printed reconfigurable structure was employed as
the experimental test specimen, and the back area of the red dotted box was pasted with strain gauges. Based on the tunable cell, the tunable structure
was conducted to obtain the strain responses of different structures. b) The accuracy rate of the predicting structure (II) from its strain field under different
loss ratio was plotted. As an example, a strain with a loss ratio of 20% is shown in the lower left. c) The accuracy rate of predicting the corresponding
structures from experiment strains whose loss ratio was 10%.
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algorithm showed weak performance here.[29] Formally, the
multilabel classification was the problem of finding a model that
mapped inputs to the discretized binary vectors (assigning a
value of 0 or 1 for each element in vectors). Here, to compare
the performance of the two algorithms, the corresponding
gradient values of loss functions of both single- and multilabel
classification algorithms have been calculated. The results
showed that in the case of ND > 6, LD still maintained a higher
gradient and lower memory requirements compared with the
single-label classification algorithm. Finally, the proposed multi-
label classification algorithm combined with CNN gives results
of high accuracy, which solve the typical mechanical inverse
problem of continuous structure with multiple categories.

4.2. Potential Application of CGAN in Tactile Robot

The ability of CGAN to predict the structure with high precision
is undoubtedly important for tactile perception. For tactile robots,
sensors are usually placed on the tips of human-like fingers, as
shown in Figure 1. The limited number of fingers leads to a
limited number of sensors, which further leads to less strain
information. Besides, different types of tactile perception such
as pressure and vibration may occur in real haptic applications.
Our method still works well with high accuracy. Corresponding
results could be found in Supporting Information. Generally,
complex 3D structures are typically considered as the primary
source for tactile perception in robotic systems, but some
mechanical problems in 3D structures can be simplified to plane
strain problems.[30,31] The proposed mechanical inverse method
could also be applied to solve 3D structures. Benefit from the
proposed CGAN model, the CGAN model can inpaint strain
information with high precision and output structural parame-
ters with high accuracy, solving the problems faced by intelligent
tactile robots, such as insufficient input information and low
accuracy of predicting structural parameters. The CGAN model
can be well integrated in wireless devices and compact devices
through online deployment or TensorFlow Lite. Furthermore,
the tactile robot could manipulate the structure through recon-
figurable components. As an example shown in Figure 5a, the
robot first interprets the required structural parameters by
CGANmodel. Afterward, the robot self-regulates the tunable cell
by installing or removing the stud. In this way, with the help of
CGAN model, intelligent functions including obtaining struc-
tural strain response, sensing structural parameters, and tuning
structural pattern could be integrated into tactile robots. In addi-
tion, by arranging encrypted and encoded geometric information
inside, a structure can be used as a carrier of information. Tactile
sensing system can act as a receiver to quickly decode the
information carried by the structure. Therefore, the CGAN will
develop the research of tactile perception and promote the
practical application of tactile robots and human–computer
interaction devices.

5. Conclusion

In conclusion, we have proposed a data-driven method for tactile
perception based on CGAN, which could precisely evaluate the
structural parameters even for the absence of a large quantity of

sampled strains. The CGAN consisted of an inpainting mapping
of strain field and a reconstruction mapping of structural param-
eters. The CGAN model considers both the global and local rela-
tions of strain field, possessing high accuracy by utilizing
multilabel classification algorithm. Both numerical and experi-
mental results show excellent performance on sensing structure
from incomplete strains. The SAR could reach above 90% even
for a sampled strain loss ratio of 50%. The proposed method
established a standardized process for inverse problems, which
can be further applied for the structural inverse prediction and
intelligent tactile perception.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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