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A B S T R A C T   

Willis coupling, in context of acoustics or elasticity designating the coupling between the strain and momentum, 
have been garnering significant attentions in recent years. As opposed to various applications demonstrated for 
acoustic wave, elastic media design with Willis coupling on demand is very rare. In this paper, based on a mass- 
spring model, the accessibility of various components of the coupling tensor for elastic Willis media is explored, 
and material design with customized Willis coupling aiming to elastic wave control is demonstrated. Homoge-
nization and designability of the model are at first validated via the free wave analysis, then wave transmission 
properties across a sandwiched Willis layer are analyzed, based on which two illustrative examples for asym-
metric reflection and wave mode conversion are demonstrated by specifically designed lattice model. Though the 
model is conceptual and still far away from practical usage, it may inspire more practical design and further 
explorations on realizing wave rectification by Willis materials.   

1. Introduction 

Metamaterials are artificial composite materials constructed with 
deliberately designed microstructures and possess extraordinary mate-
rial properties usually not found in natural ones. In the realm of 
acoustics or elastodynamics, unconventional properties such as negative 
bulk modulus [1], negative or anisotropic mass density [2,3] have been 
demonstrated. Besides, common constraints on the major or minor 
symmetry of an elastic tensor may also be broken [4,5]. These have 
enabled unprecedented wave phenomena and applications i.e. negative 
refraction [6,7], superlensing [8,9], cloaking [4,10,11] and so on. 

For metamaterials, the relationship between material parameters 
and physical fields has exceeded the coverage of the classical acoustic 
and Cauchy elastic media in many cases, appealing a more compre-
hensive constitutive relationship. In this background, the theory of 
Willis materials, initially proposed by Willis [12] in 1980’s to charac-
terize the overall elastodynamic behavior of composite materials via 
ensemble average, has regained the attention and been revisited by 
many researchers. Willis materials incorporate additional terms in the 
constitutive relation inducing local coupling of potential and kinetic 
energy at a material point, in analogy to the so called bianisotropy for 
electromagnetism. For elasticity, another stimulus for research of Willis 
media is that it conforms with the elastic cloaking theory derived with 
the covariant transformation gauge [13,14]. 

In line with the metamaterials and phononic crystals, recent studies 

on Willis homogenization are more focused on periodic media and 
interpret the ensemble average with volume average of Bloch wave 
amplitude [15–21]. Sieck et al. [22] introduced a homogenization the-
ory for acoustic Willis media based on the point polarization approxi-
mation in analogy with that of electromagnetism [23]. The approach 
also reveals that the imaginary part of acoustic Willis effect is due to the 
coupling of monopole and dipole moment induced by an asymmetric 
scatterer, while the real part originates from the finite phase speed as the 
wave traverse the unit cell [22,23]. It is interesting to note that some 
other methods for dynamic homogenization are also related to the Willis 
theory. Craster et al. [24–27] generalized asymptotic homogenization 
theory to higher frequencies through expansion at the standing wave 
points of Bloch wave bands. Nassar et al. [28] showed that, under 
appropriate approximation assumptions, a series of asymptotic ho-
mogenization approaches can be derived from Willis homogenization 
for periodic media. Sridhar et al. [29–31] developed the micromorphic 
homogenization for metamaterials, in which projection functions 
formulated by Bloch eigenvectors are used to capture the high frequency 
dynamics. The same coupling terms also appear in that approach. 

Since the point polarization approximation theory was developed, a 
number of acoustic meta-atoms exhibiting Willis coupling have been 
proposed based on different mechanisms, such as the membrane unit 
[32,33], folded channel [34], Helmholtz resonators [35,36]. Besides, 
active mechanisms can also be introduced in to enhance the significance 
and flexibility of the coupling effect [37,38]. Due to the extra degree of 
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freedom of design offered by the Willis coupling, various applications 
were explored for enhanced wave functionalities. The most widely 
explored property is the flexible control of transmission and reflection 
coefficients. Several studies [33,39-41] have observed the asymmetric 
reflection phases when waves are incident on the Willis media from 
different directions. If the loss is considered, the reflection amplitude 
and sound absorption will also exhibit asymmetry [42–44], base on 
which the unidirectional perfect absorber maybe realized. In nonrecip-
rocal systems, the Willis coupling may also cause asymmetric trans-
mission. Active units are used to realize unidirectional sound isolation 
[45,46]. In some other studies [47–50], the reciprocity is broken by 
material nonlinearity and structural asymmetry to exhibit asymmetric 
transmission, however, how to characterize the nonlinearity related 
nonreciprocity through the Willis coupling is still to be explored. The 
tunability of transmission and reflection offered by Willis coupling is of 
great importance for the wavefront control, which can lead to higher 
efficiency when used in metasurfaces [32,51-53] or metagratings [34, 
54,55] for anomalous refraction or reflections. Other wave properties in 
Willis acoustic media, such as the sound scattering [56], sound focusing 
[57], the topological phase transition [58], the radiation force and 
torque [59] have also been investigated. 

When it comes to elastic materials, corresponding Willis material 
design with envisaged functionality is rarely demonstrated. As opposed 
to acoustics, monopole and dipole scattering are not enough to express 
the elastic meta-atom in presence of shear, consequently there is not yet 
a full picture for the Willis coupling, especially when anisotropy is taken 
into account. So far, the lack of mechanism and the spatio-temporal 
nonlocality of investigated model makes it difficult to use in a func-
tionality design. Some concrete elastic Willis material design were car-
ried out for bending waves in beams or plates [40,53], while 
corresponding designs aiming at manipulation of bulk elastic waves are 
very few. Besides the usual continuum configuration, Milton [60] con-
structed a theoretical lumped-parameter model consisting of ideal 
springs, rigid bars and mass points. The model is easy to be understood 
while at the same time exhibits significant Willis coupling effect 
together with longwave homogenization. Though the model was not 
validated in a wave environment, it serves as an ideal platform to 

customize the complex pattern of properties of an elastic Willis medium. 
Currently, there is no elastic Willis material design aiming at realizing 
demanded pattern of the coupling tensor. 

In order to provide an Willis material design for targeted elastic wave 
control, and in particular to explore the accessibility of various com-
ponents of the elastic Willis coupling tensor, we extend in this paper the 
model in ref. [60] to cover more components of the effective Willis 
coupling tensor. Further, we show that by appropriate model combi-
nation, desired Willis material properties can be hopefully achieved as 
required by specific wave functionalities. The homogenization and 
coupling effect are verified by dispersion analysis and wave transmission 
across a layer. The paper is organized as follows. In Section 2, the 
effective properties of the proposed elastic Willis model under different 
configurations are discussed. Section 3 presents free wave analysis of the 
model, and specific microstructures are verified. In Section 4, wave 
transmission through a sandwiched Willis material layer is analyzed in 
conjunction with two examples of wave manipulation. Finally, conclu-
sions will be drawn in Section 5. 

2. The mass-spring model with willis coupling in longwave limit 

In this section we will generalize the mass-spring model originally 
devised by Milton [60], and will fully explore its accessibility to various 
components of Willis coupling tensor via configuration variation or 
model combination. Effective material parameters will be explicitly 
connected to the microstructure parameters with appropriate 
homogenization. 

As shown in Fig. 1, the model is composed of concentrated mass 
points and massless springs and rigid rods. The model can be thought of 
as a background spring network with one or several coupling elements 
attached on it. Square spring network with characteristic scale h is used 
here although other lattice types can be also adopted. A single coupling 
element consists of a mass mE joined by two rigid bars with the ends 
selectively sitting at two of the four boundary sites A~D in the unit cell. 
For a certain location of mass mE inside the unit cell, we have six choices 
of bar attachment, i.e. on the AC, AB, AD, BD, CB and CD sites, each 
results in different effect to the effective properties. 

Fig. 1. Unit cell of the lumped-parameter model exhibiting Willis coupling. A coupling element composed of a concentrated mass point and two massless rigid rods 
can be placed on any pairs of lattice sites, and the mass position is parametrized as (c1h, c2h). Cases (a) AC, (b) AD and (c) CD are shown here. 
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Referring Fig. 1(a), placing the coordinate origin at the unit cell 
center, the boundary site positions of the unit cell are 

xA =

(
− h
0

)

, xB =

(
0
− h

)

, xC =

(
h
0

)

, xD =

(
0
h

)

, (1)  

respectively, while two nondimensional parameters c1 and c2 are 
introduced to specify the position of internal mass E, 

xE = h
(

c1
c2

)

. (2) 

In the long wave limit h /λ→0, where λ is the wavelength, the 
displacement of the observable boundary sites can be approximated via 
Taylor’s expansion in consistence with a macroscopic displacement field 
u and its gradient 

un = u0 + (u∇)⋅xn, n ∈ {A,B,C,D}, (3)  

where u0 = u(0). Inside the cell, displacement of internal mass E can be 
derived from the rigid bar constraints. Let for example the coupling 
element attach on the AC sites (Fig. 1(a)), the infinitesimal displace-
ments satisfy 
{ (

uE − uA)⋅
(
xE − xA) = 0,(

uE − uC)⋅
(
xE − xC) = 0, (4)  

from which it can be solved that 

uE = u0 + h

⎛

⎜
⎜
⎜
⎝

− c1
∂u1

∂x1
− c2

∂u2

∂x1

−

(
1 − c2

1

)

c2

∂u1

∂x1
+ c1

∂u2

∂x1

⎞

⎟
⎟
⎟
⎠
. (5) 

For time-harmonic excitation (with e− iωttime convention), forces in 
the two bars fAE and fCE are induced and determined from the Newton’s 
law, 

fEA + fEC = − ω2mEuE. (6) 

Overall, the apparent stress and momentum density of the system can 
be defined by 

σ =
1
V

∑

n=A,B,C,D
fn ⊗ xn, − iω p =

1
V

∑

n=A,B,C,D
fn, (7)  

where fA ~ fD are the forces exerted on boundary sites and V the unit cell 
volume. Since the coupling element and the background spring network 
act on the lattice sites additively, we solely consider the contribution of 
coupling element AC in Eq. (7) at this moment, thus it is simply that fB =

fD = 0, fA = fEA and fC = fEC. Using the above equations and taking the 
Voigt form of macroscopic stress, strain, momentum and velocity vectors 

σ = (σ11, σ22, σ12, σ21)
T
, ε =

(
u1,1, u2,2, u1,2, u2,1

)T
, p = (p1, p2)

T
, v

= − iω
(
u0

1, u0
2

)T
,

(8)  

the constitutive relation in Willis form can be derived for just the 
coupling element AC 
(

σ
p

)

=

(
CAC SAC

DAC ρACI

)(
ε
v

)

=

(
CAC − iωΨ AC

− iω
(
Ψ AC)T ρACI

)(
ε
v

)

, (9)  

where ρAC=mE/(2h2) and 

ψAC =

⎛

⎜
⎜
⎝

ψ111 ψ112
ψ221 ψ222
ψ121 ψ122
ψ211 ψ212

⎞

⎟
⎟
⎠ =

− mE

2h

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1
1 − c2

1

c2

0 0

0 0

c2 − c1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10)  

CAC = −
mEω2

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2c2
1 + c4

1 + c2
1c2

2

c2
2

0 0
− c1 + c3

1 + c1c2
2

c2

0 0 0 0

0 0 0 0
− c1 + c3

1 + c1c2
2

c2
0 0 c2

1 + c2
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11) 

It is seen that in absence of springs, the coupling element alone 
contributes not only to the coupling tensor but also to the stiffness 
tensor. Since no elastic element is included here, the constitutive rela-
tion is dynamically meaningful only and frequency dependent. The 
mechanism is that, under dynamical loading, the inertial force of the 
mass is dispatched through the bars to the lattice sites unevenly, and 
conversely relative motion of the lattice sites can also accelerate the 
internal mass even if their average is zero. In the original proposal, 
Milton [60] considered a pair of coupling elements with positive and 
negative masses respectively, and symmetrically placed on AC sites (i.e. 
c1 = 0, c2 = ± c), with which the effect of coupling element on C tensor 
can be eliminated and only the S tensor is emphasized. This model will 
be revisited in the next section together with the wave propagation. 
However, we are more interested in the coupling tensor S induced by a 
coupling element, and as an idealized model, the effect on C can always 
be compensated by the background spring network. We focus mainly on 
the S (D) tensor for now. 

In general, the Willis coupling tensors are complex, and satisfy D =
¡S† at fixed frequency and wave vector with superscript ‘†’ being the 
Hermitian conjugation, as required by causality and reciprocity [21]. 
Therein, the real part originates from the inter-cell effect, i.e. the finite 
phase speed across a unit cell, while the imaginary part reflects the 
intra-cell effect implying that the cell is locally asymmetric [22,23]. 
Here in this longwave-limit homogenization, the inter-cell effect is 
excluded and the coupling tensors are pure imaginary with S = DT (Sijk 
= Dkij). Moreover, it is noticed that the stress and strain are not sym-
metric because the angular momentum with respect to the cell center 
has to be balanced. Consequently, the current medium does not hold 
minor symmetry and differs with that Willis originally derived, in which 
ensemble average of local stress guarantees the symmetry of macro-
scopic stress [12]. It is possible to cancel the dependence of momentum 
on the local rotation by add another pair of coupling element with 
inversed positive / negative masses, as indicated by Milton [60], 
resulting in a medium with ψijk = ψjikcompatible the elasticity cloaking. 
However, model complexity and constraint on the attainable coupling 
parameters will be greatly increased. 

Using the same procedure of Eqs. (4)-(7), for a coupling element 
attached on AD (Fig. 1(b)) or CD (Fig. 1(c)) sites, the effective coupling 
tensors can be also derived as 

ψAD =
− mE

2h(1 + c1 − c2)

⎛

⎜
⎜
⎝

(1 + c1)(1 − c2) (1 + c1)c1
(1 − c2)c2 − (1 + c1)(1 − c2)

− c1c2 (1 + c1)c1
(1 − c2)c2 c1c2

⎞

⎟
⎟
⎠, (12)  

ψCD =
− mE

2h(1 − c1 − c2)

⎛

⎜
⎜
⎝

− (1 − c1)(1 − c2) − (1 − c1)c1
− (1 − c2)c2 − (1 − c1)(1 − c2)

c1c2 (1 − c1)c1
(1 − c2)c2 c1c2

⎞

⎟
⎟
⎠. (13) 

Corresponding expression of C tensors are quite lengthy and not 
listed here. The rest cases are dual to the previous ones and can be ob-
tained by index and sign change. In particular, CBD and ψBDcan be ob-
tained by switching the indices 1 and 2 from CAC and ψAC, respectively. 
For case BC (AB), CBC(AB) is obtained by replacing (c1, c2) with (-c1, -c2) 
from those of case AD (CD), while ψ should be appended with an extra 
minus after the same operation since its order is odd. For instance, 

H. Qu et al.                                                                                                                                                                                                                                      



International Journal of Mechanical Sciences 224 (2022) 107325

4

ψBC =
− mE

2h(1 − c1 + c2)

⎛

⎜
⎜
⎝

− (1 − c1)(1 + c2) (1 − c1)c1
(1 + c2)c2 (1 − c1)(1 + c2)

c1c2 (1 − c1)c1
(1 + c2)c2 − c1c2

⎞

⎟
⎟
⎠. (14) 

As a whole, the effective elastic matrix Cb of the background spring 
network should be additively included in. Since the spring network, 
coupling units independently contribute to the final constitutive rela-
tion, theoretically it is possible to combine appropriate spring network 
and several coupling elements to achieve the needed effective stiffness 
and Willis coupling characteristics: 

C = Cb +
(
CAC + CBC + ⋅⋅⋅

)
,

S = − iω
(
ψAC + ψBC + ⋅⋅⋅

)
.

(15) 

The effective density ρ is just the volume averaged total mass, 
including the masses on the lattice site for adjusting purpose. 

3. Free wave propagation with particular material design 

In this section, some unusual aspects of elastic wave propagation are 
examined and impacts of different S components are considered with 
particular design of the model. The results of homogenized Willis media 
will be compared with those of discrete models for validation. 

Consider a plane wave travelling along x1 direction ûei(kx1 − ωt)with û 
= (û1, û2)

Tbeing the complex amplitude and k the wave number. Using 
Eqs. (8) and (9) in the equation of momentum conservation ∇⋅σ = ṗ 
yields 

− C1111k2 û1 + S111ωkû1 + S112ωkû2 = D111ωkû1 + D121ωkû2 − ρω2 û1,

− C2121k2 û2 + S211ωkû1 + S212ωkû2 = D211ωkû1 + D221ωkû2 − ρω2 û2.

(16) 

Note that for simplicity components of C tensor related to tension- 

shear coupling, i.e. Cijkk, are excluded, and we will intentionally avoid 
these parameters in the microstructural design. It is seen that there are 
only four ψcomponents involved, while the remaining are irrelevant to 
waves traveling in x1 direction. Eq. (16) gives two dispersion relations 
as, 

k2
L,S =

1
2
ω2

(
ρ

C1111
+

ρ
C2121

+
(ψ112 − ψ211)

2ω2 ∓ R
C1111C2121

)

, (17)  

where 

R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
C2121ρ + C1111ρ + (ψ112 − ψ211)

2ω2
)2

− 4C1111C2121ρ2
√

. (18) 

The expressions of eigenmode are lengthy and not suitable to list 
here. It is seen that for waves in x1- direction, the involved Willis 
coupling parameters enter in the dispersion and eigenmodes only in the 
form of (ψ112 - ψ211). It turns out that the wave is dispersive, meanwhile 
as long as ψ112 ∕= ψ211 the two eigen modes, ûLandûS are elliptical 
polarized with their long axes parallel or perpendicular to the wave 
vector. This wave behavior is essentially different with traditional 
elastic media, and here the subscripts L and S are labelled in analogy to 
the longitudinal and shear waves according to the long axes of the el-
lipse. The other two components, ψ111 and ψ212, do not play a role in the 
dispersion and the eigenmodes, however, they do affect the resulting 
stress and velocity, and hence the elastic wave impedance as well. 

Milton [60] suggested to introduce two coupling elements with mass 
mE and mF symmetrically attached on AC sites with locations respec-
tively (0, c) and (0, -c), as shown in Fig. 2(a). In this situation, Eqs. (10) 
and (11) reduce to 

Fig. 2. (a) Original model of Milton [60] including two coupling elements with positive mass mE and negative mass mF, respectively. (b) Mass-in-mass unit realizing 
effective negative mass mF. (c) Real part and (d) imaginary part of the complex band structure of the model. Grey shades indicate the band gap caused by the negative 
mass. The inset in (c) zooms band details around the low frequency and longwave regime, and the black point marks the frequency at which mE + mF = δh2 holds. 
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CAC = −
(mE + mF)ω2

2

⎛

⎜
⎜
⎝

1
/

c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 c2

⎞

⎟
⎟
⎠, ψ =

⎛

⎜
⎜
⎝

0 ψ112
0 0
0 0

ψ211 0

⎞

⎟
⎟
⎠

=
mF − mE

2h

⎛

⎜
⎜
⎝

0 1/c
0 0
0 0
c 0

⎞

⎟
⎟
⎠. (19) 

Assuming uniform spring constant K for the background spring 
network, the corresponding elastic tensor reads 
⎛

⎜
⎜
⎝

σ11
σ22
σ12
σ21

⎞

⎟
⎟
⎠ = K

⎛

⎜
⎜
⎝

5/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

u1,1
u2,2
u1,2
u2,1

⎞

⎟
⎟
⎠. (20) 

Let the mass pair take a special form as mE = mh and mF = − mh +
δh2with m > 0, so that mE + mF = δh2 is a higher order small quantity and 
Eq. (19) implies that the coupling elements tend to produce exclusively 
the coupling tensorψ. 

Practically, the negative mass can be achieved by a mass-in-mass 
component [2,15] as shown in Fig. 2(b), however, the effectiveness of 
negative mass will be frequency sensitive. In this scenario we have 

mF(ω) = ma +
2Kbmb

2Kb − mbω2, (21)  

where ma, mb and Kb are respectively the outer mass, hidden mass and 
the inner spring constant. Using material parameters of Eqs. (19) ~ (21) 
in Eq. (17), the complex band structure of the homogenized Willis me-
dium is plotted by the dashed curves in Fig. 2(c) and Fig. 2(d), in which 
parameters h = 0.1m, c = 0.2, mE = 0.1kg, K = 170N/m, ma = 0.009kg, 
mb = 1kg, Kb =4N/m are used. The complex bands of the discrete model 
are also solved via Bloch wave analysis and plotted in the figure in solid 
lines for comparison. It is seen from band diagrams for both the real and 
imaginary part of the wavenumber that, the curves of homogenized 
model and discrete model are in good agreement for the wave number 
range |2kh| < 1, within which the homogenization is generally justified. 
At frequency ω = 9.4 rad/s, the effective mass mF = ¡0.09kg and mF =

¡mEh + δh2 holds. In the figure, the gray shade indicates the band gap ω 
∈ [2.8, 7.6] rad/s caused by the negative effective mass where the wave 
number is complex and the wave spatially attenuates in the material. In 
Fig. 2(d), an imaginary band also exists in high frequency since there is 
only one traveling mode at those frequencies. The Bloch wave analysis 
on Milton’s model confirms that the longwave homogenization as well 
as the Willis coupling effect is quantitatively valid even when a feasible 

negative mass component is included in. 
If we do not care the side effect of coupling elements on the stiffness 

tensor C, significant Willis coupling can still be achieved by keeping only 
one element with positive mass in the unit cell as shown in Fig. 3(a), 
since the lattice is asymmetric enough. Let mF = 0, the corresponding 
dispersion curves are plotted in Fig. 3(b) with other parameters in the 
previous example unchanged. Because of the nonzero (ψ112 ¡ ψ211), the 
elliptical polarization of the two wave branches are also illustrated in 
the figure for ω = 9.4rad/s. As anticipated, the comparison of the 
dispersion curves from homogenized medium and the discrete model 
also exhibits enough agreement. The unusual polarization in this model 
will be utilized in mode transfer by a sandwiched Willis material layer in 
Section 4.2. 

On the other hand, if the Willis coupling presents but satisfying ψ112 
= ψ211, the waves propagating in x1 direction are linearly polarized as 
purely longitudinal and shear like in a Cauchy medium. In order to 
construct such material, we can combine two coupling elements with mE 
= mF = m symmetrically attached on CD and BC sites, with their mass 
positions parametrized as (c1, c2) = (b, b) and (c1, c2) = (b, -b), respec-
tively, as shown in Fig. 3(a). Eqs. (13) and (14) then reduce to 

ψCD =
− m

2h(1 − 2b)

⎛

⎜
⎜
⎝

− (1 − b)2
− (1 − b)b

− (1 − b)b − (1 − b)2

b2 (1 − b)b
(1 − b)b b2

⎞

⎟
⎟
⎠, ψBC

=
− m

2h(1 − 2b)

⎛

⎜
⎜
⎝

− (1 − b)2
(1 − b)b

− (1 − b)b (1 − b)2

− b2 (1 − b)b
− (1 − b)b b2

⎞

⎟
⎟
⎠. (22) 

The superposition of ψCDandψBCcancels out the components ψ112and 
ψ211, and yields 

ψ =

⎛

⎜
⎜
⎝

ψ111 0
ψ221 0

0 ψ122
0 ψ212

⎞

⎟
⎟
⎠ =

− m
h(1 − 2b)

⎛

⎜
⎜
⎝

− (1 − b)2 0
− (1 − b)b 0

0 (1 − b)b
0 b2

⎞

⎟
⎟
⎠. (23) 

The dispersion curves of the model in Fig. 4(a) are exemplified in 
Fig. 4(b) with the microstructural parameters h = 0.1m, b = 0.2, K =
170N/m, mE = mF = 0.05kg. Again, curves of the homogenized model 
approximate those of the lattice model very well at longwave range, and 
the polarization is of pure longitudinal and shear wave as expected. The 
model in Fig. 4(a) will be used in section 4.1 in demonstrating the 
asymmetric phase factor of wave reflection. 

Fig. 3. (a) The Willis material model using a single coupling element with positive mass mE. (b) Comparison of dispersion curves obtained from the homogenized and 
the discrete model, elliptically polarized modes of the two branches are exemplified. 
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4. Wave transmission across a sandwiched willis layer 

Having been acquainted and confirmed by free wave properties, we 
consider in this section the wave transmission across a layer of the 
proposed Willis material model. With specifically designed lattice layers 
with appropriate coupling components, wave functionalities of asym-
metric reflection and mode conversion are exemplified to verify the 
design capability as well as the theoretical formulation related to the 
proposed Willis material model. 

As sketched in Fig. 5, the Willis material layer with thickness d is 
sandwiched by two semi-infinite traditional elastic media. The Willis 
layer is characterized by stiffness tensor C, coupling tensor ψ and den-
sity ρ, and the Cauchy domain on both sides are characterized by C0 and 
ρ0. We consider incident waves normal to the layer, and assume that all 
the materials have their principal axes aligned with coordinate direc-
tion, so that the incident, reflected and transmitted waves are purely 
longitudinal or shear. The waves in the layer could be elliptically or 
linearly polarized, depending on the microstructural setup as discussed 
in the previous section. The displacement field inside the Willis layer is 
superposition of four waves 

u = PL
(
AeikLx +Be− ikLx)+ PS

(
CeikSx +De− ikSx), (24)  

where PL = (PL1, PL2)T and PS = (PS1, PS2)T are the polarization vectors, 
which are normalized to be unitary, for the two wave modes with wave 
number kL and kS, respectively. Constants A ~ D are the amplitude co-
efficients to be determined. The envisaged transmission and reflection 
coefficients tL, tS and rL, rS can be determined via the transfer matrix 

method (TMM). Generally, a scattering matrix S can be defined to link 
the involved waves at the two ports of the Willis layer (Fig. 5), 
⎛

⎜
⎜
⎝

tLe− ikLd

0
tSe− ikSd

0

⎞

⎟
⎟
⎠ = S

⎛

⎜
⎜
⎝

iL
rL
iS
rS

⎞

⎟
⎟
⎠, (25)  

by which tL, tS, rL, and rS can be solved for two cases, i.e., (iL, iS) = (1, 0) 
or (0, 1) corresponding to longitudinal or shear wave incidence, 
respectively. The scattering matrix can be expressed as 

S = M− 1
0 TM0, T = MN(d)M− 1, (26)  

where T is the transfer matrix of the Willis layer, M0 and M are 
impedance matrices of the background medium and Willis medium, 
respectively, and N(d) is the spatial phase matrix across the layer. 
Derivation of these matrices are detailed in the Appendix. Base on the 
TMM in this scenario, we demonstrate in the following two examples 
showing the effect of Willis coupling on the wave transmission, in 
conjunction with appropriate design of the lattice model. 

4.1. Asymmetric reflection in phase by the willis layer 

It has been observed in acoustic waves [33,39] and flexural waves 
[40] that passive Willis media could induce asymmetric reflection. The 
similar phenomenon also exists in elastic waves with the proposed Willis 
material model. The transmission and reflection coefficients ruled by 
Eq. (25) is in general difficult to be expressed analytically. Here, we 

Fig. 4. (a) The unit cell with two coupling elements symmetrically attached on CD and BC sites, the model possesses Willis coupling but the polarization remains 
traditional. (b) Comparison of the dispersion curves obtained from the homogenized and discrete model, linearly polarized modes are exemplified. 

Fig. 5. Problem setup for wave transmission through a Willis medium layer of thickness d. The incident, reflected and transmitted waves may contain two different 
modes identified by different colors. 
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concentrate on a simplified case with ψ112 = ψ211 = 0, hence the two 
eigenmodes are polarized like Cauchy medium, i.e. PL = (1, 0)Tand PS =

(0, 1)T, the expression will be greatly simplified. In case of longitudinal 
wave incidence, all wave excited in the three domains are all longitu-
dinal, and the transmission and reflection coefficients are 

tL =
4kL0kLeidkL

2kL0kL(1 + e2idkL ) +
(
k2

L0 + k2
L + ω4ψ2

111
)
(1 − e2idkL )

(27)  

rL =
(1 − e2idkL )

(
k2

L0 − k2
L − ω4ψ2

111 − 2ikL0ω2ψ111
)

2kL0kL(1 + e2idkL ) +
(
k2

L0 + k2
L + ω4ψ2

111
)
(1 − e2idkL )

(28)  

where kL = C1111kL and kL0 = C0
1111kL0 with kL0being the longitudinal 

wave number in Cauchy medium. It is obvious that except the usual 
stiffness and density, coupling parameter ψ111 could be employed to 
tune the transmission and reflection. In particular, from Eq. (28), if we 

do not want reflection happens, the first or the second bracket in the 
numerator should be zero. The former yields 2d = nλL, where λL is the 
wave length. This is the same condition for full transmission as in or-
dinary media. The second bracket is related to the impedance matching. 
However, if ψ111 has a nonzero value, there is always an imaginary part 
preventing the perfect impedance matching. Moreover, if the incident 
wave is from another side or equivalently the Willis layer is reversed, the 
coupling parameter ψ111 has to reverse the sign since it is a third order 
tensor. Upon such reversion, the transmission (Eq. (27)) keeps un-
changed while the reflection coefficient (Eq. (28)) alters, implying 
different phases for the reflected waves. 

The same effects also apply for the case of shear wave incidence, for 
which the coupling coefficient ψ212 takes in charge. Namely, the cor-
responding reflection coefficient is 

Fig. 6. (a) Simulated model of longitudinal wave transmission across a Willis material layer in case of forward or backward incidence. Amplitudes of (b) transmission 
and (c) reflection coefficients; phase of (d) transmission and (e) reflection coefficients as functions of frequency. Curves are graphed via TMM with effective pa-
rameters, while scattered dots are obtained by FEM simulation. 
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rS =
(1 − e2idkS )

(
k2

S0 − k2
S − ω4ψ2

212 − 2ikS0ω2ψ212
)

2kS0kS(1 + e2idkS ) +
(
k2

S0 + k2
S + ω4ψ2

212
)
(1 − e2idkS )

(29)  

wherekS = C2121kSandkS0 = C0
2121kS0withkS0being the shear wave 

number in Cauchy medium. 
On the basis of theoretical analysis, we verified mentioned asym-

metric reflection numerically. For the longitudinal wave incidence, the 
simulation setup is shown in Fig. 6(a). The polymethyl methacrylate 
(PMMA) is used as the isotropic background medium with Young’s 
modulus E0 =5.35GPa, Poisson’s ratio ν0 = 0.35 and density ρ0 =

1180kg/m3. The Willis material layer with d = 0.5m is composed of 10 
unit cells. Conforming with ψ112 = ψ211 = 0 as required by the theory, a 
unit cell similar with that in Fig. 4 is adopted. In order to increase the 
tunability of the effective Willis properties, the constants of the spring 
network are allowed to have different values (Kx and K), in addition, 
extra point masses mN are attached on the lattice sites, as depicted in 

Fig. 6(a). The microstructural parameters used in calculation are h =
0.025m, K = 1 × 109 N/m, Kx= 0.5 × 109 N/m, mE = 0.8kg, mN = 0.1kg. 
Since for longitudinal wave the effective coupling parameter ψ111 is 
crucial, the internal masses are placed near the cell center, i.e. b = 0.1. It 
is evaluated from Eq.(23) that ψ111 = 32.4 kg/m2, and the relevant 
effective modulus and density are C1111 = (1.5 × 109− 0.855ω2) Pa, ρ =
1360 kg/m3 for the Willis layer. Note that modulus C1111 is frequency 
dependent due to the contribution of coupling element. Here and after, 
finite element method (FEM) simulation in frequency domain is carried 
out via COMSOL software. The background continuum is modeled by 
solid element while the springs and rigid rods are modeled by truss el-
ements, and the Young’s modulus of rods is set as very large (equivalent 
to K = 1 × 1012 N/m). Periodic condition is applied in the vertical di-
rection, and the perfect match layers (PMLs) are set on the left and right 
ends. The transmission and reflection coefficients are estimated by 
retrieving displacements at 4 points mimicking standard 4-microphone 
method [52]. 

Fig. 7. (a) Simulated model of shear wave transmission across a Willis layer in case of forward or backward incidence. Amplitudes of (b) transmission and (c) 
reflection coefficients; phase of (d) transmission and (e) reflection coefficients as functions of frequency. Curves are graphed via TMM with effective parameters, 
while scattered dots are obtained by FEM simulation. 
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Consider the forward and backward longitudinal wave incidence, i.e. 
the wave impinging respectively from the left and right side of the layer, 
the transmission and reflection detail are calculated and compared in 
Fig. 6(b)-(e) within the frequency range 0–3000Hz. The sweeping step 
length is 20 Hz. In the figure, curves are graphed from Eqs. (27) and (28) 
using effective parameters, while scattered dots are evaluated from 
direct simulation of the mixed model containing the continuum back-
ground media and the discrete latticed layer shown in Fig. 6(a). 
Compare Fig. 6(b) and 6(d), it is observed that the amplitudes and 
phases of transmitted waves are both the same for forward incidence and 
backward incidence. Conversely for reflected waves, Fig. 6(c) and 6(e) 
show that the amplitudes are the same, but their phases are different for 
the two direction of incidence, confirming the phase asymmetry in the 
reflection. The good agreement of predictions from the effective and 
discrete model further verifies the Willis material design and homoge-
nization in previous sections. 

As for case of shear wave incidence, coupling parameter ψ212 should 
be emphasized, according to Eq. (23) it is reasonable to put the internal 
masses near the cell margin, e.g. b = 0.4, as depicted in Fig. 7(a). Other 
microstructural parameters are chosen as K = 2 × 109 N/m, Kx= 0.5 ×
109 N/m, mE = 0.6kg, mN = 0.2kg, with which the induced relevant 
effective properties of the Willis layer can be evaluated as ψ212 = –19.2 
kg/m2, C2121 = (1 × 109 – 1.298ω2) Pa, ρ = 1120 kg/m3. With these in 
hand, the transmission and reflection behavior for forward and back-
ward shear wave incidence are also calculated and displayed in Fig. 7 
(b)-(e). Again, pronounced asymmetry in phase for the reflected shear 
wave is observed both by the theoretical and FEM simulation. Compared 
with the longitudinal wave, it is seen that the discrepancy between the 
homogenized and real model increases as frequency goes up. This is due 
to the shorter wavelength of the shear wave, for which the homogeni-
zation based on first order expansion deteriorates faster. 

4.2. elastic wave transmodal layer by willis coupling 

As an application of this Willis material model, we illustrate in this 
subsection an example that converts elastic wave efficiently from lon-
gitudinal mode to shear mode. Kweun et al. [61] designed an meta-
material layer with slits to couple and convert two wave modes to each 
other. As hinted by Fig. 3, a Willis material layer supporting elliptical 
wave polarization obviously also couples two wave modes on both sides, 
so it is intuitive that it may achieve the same function. 

The problem is defined as, given the background medium, layer 
thickness and operating frequency, to find an optimal set of Willis ma-
terial parameters achieving the maximum conversion efficiency of wave 
mode. We consider for example the longitudinal-to-shear wave con-
version. The mode converting efficiency to be maximized can be quan-
tified by normalized longitudinal-to-shear mode transmission power 
[61], 

TS =

̅̅̅̅̅̅̅̅̅̅
C0

2121

C0
1111

√

|tS|
2
. (30) 

Similarly, powers of other scattered wave parts are defined as 

TL = |tL|
2
, RS =

̅̅̅̅̅̅̅̅̅̅
C0

2121

C0
1111

√

|rS|
2
, RL = |rL|

2
. (31) 

As an example, we use also the PMMA as the background medium, fix 
the layer thickness d = 1.3m and set the frequency f = 2000Hz. In the 
calculation of tS in x1 direction by Eq. (25), it is noticed that four 

coupling parameters ψ111, ψ112, ψ211 and ψ212 enter the scattering ma-
trix S, other related parameters are C1111, C2121 and ρ. For simplicity, we 
choose five parameters (C1111, C2121, ψ111, ψ112, ρ) for the Willis layer to 
be optimized to maximize the longitudinal-to-shear transmission power 
TS. Employing genetic optimization algorithm, a set of optimized pa-
rameters is figured out and listed in Table 1. With these parameters, 
transmission powers for each reflected and transmitted wave calculated 
from Eqs. (25), (30) and (31) are reported in the first row of Table 2. 
Further inspection reveals that the optimized parameters have the 
following characteristics: (a) the polarization ellipses of the two modes 
overlap and only differ in phase; (b) the induced wavenumber kS and kL 
satisfy d(kS − kL)=π. Ref. [62] derived a theoretical bound for the 
longitudinal-to-shear converting efficiency TSBound = 4ξ/(1+ξ)2 with ξ 
=[(1–2ν0)/(2–2ν0)]1/2. For the current PMMA material TSBound =

87.6%, the optimized parameter gives TS = 86.2% which is very close to 
this bound. 

Since the optimization gives ψ111 = 0, we use the cell configuration 
in Fig. 3(a) to approximate the required effective material properties, 
which has a coupling tensor as Eq. (19). To increase design freedom, the 
model is allowed to have different spring constants (Kx and K) and extra 
point masses mN on the lattice sites, as depicted in Fig. 8(b). Referring to 
Eq. (19), we choose c = –0.2 so that ψ211 = 0.04ψ112 is sufficiently small, 
and set the cell size h = 0.025m thus 2kSh = 0.48 < 1 so that the ho-
mogenization is justified. Other parameters are determined as K =
4.68×109N/m, Kx=0.345×109N/m, mE=0.3512kg, mN=0.9185kg, with 
which the effective properties at the operating frequency are listed in the 
second row of Table 1. 

We carried out FEM simulations to verify the proposed transmodal 
Willis layer. In Fig. 8(a), a long strip composed of PMMA on both sides 
and continuum Willis layer with the effective properties in Table 1 in the 
middle is first simulated. PMLs on both ends and periodic condition on 
the up and bottom edges are enforced to mimic infiniteness of the 
domain. Upon a longitudinal wave incidence, Fig. 8(a) shows the 
simulated fields of displacement components u1 and u2, indicating in this 
case the longitudinal and shear wave contents, respectively. It is seen 
that u1 field and u2 field are dominating respectively in front of and 
behind the layer, which proves high-efficient mode conversion. The 
longitudinal and shear waves can also be recognized by their wave-
length in the fields. Quantitatively, transmission and reflection powers 
are estimated by the standard 4-microphone method [52]. Results are 
listed in the second row of Table 2. In particular, the retrieved TS =

86.1% agrees very well with the TMM prediction, serving also a cali-
bration for the FEM analysis. 

Next, we replace the Willis layer by the designed lattice material with 
26 cells, and the same simulated results are presented in Fig. 8(b). It is 
found that all the fields of displacement components inside the three 
sections of the domain match the results of effective continuum layer 
very well. The trajectories of six lattice nodes are drawn in the inset, 
showing the transfer process from horizontal displacement to vertical 
displacement. The retrieved transmission and reflection powers are 

Table 1 
Desired and approximated material properties of the Willis layer.   

C1111(GPa) C2121(GPa) ψ111(kg/m2) ψ112(kg/m2) ψ211(kg/m2) ρ(kg/m3) 

optimized 2.3 2.3 0 35.1 / 1016 
effective 2.3 2.3 0 35.12 1.4 1015.8  

Table 2 
Transmission and reflection powers via theoretical and FEM calculation.   

TS TL RS RL 

theoretical TMM 86.2% 1.6% 0.8% 11.5% 
homogenized FEM 86.1% 1.6% 0.2% 12% 
lattice model FEM 87% 2% 1.4% 9.5%  
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listed in the third row of Table 2. It is noticed from the table that TS =

87%, which is slightly higher than the theoretical value, is obtained 
using the discrete lattice. This might be attributed to the discrepancy of 
the homogenization and the real lattice at finite wavelength. 

5. Conclusions 

We studied a two-dimensional lumped-parameter model which can 
be homogenized in the longwave limit as elastic media effectively 
exhibiting Willis coupling. The model was originally proposed by Milton 
[60] and is extended here by allowing the coupling elements to traverse 
in the unit cell, and it is proved that different components of the 
coupling coefficient can be generated. By combination of several 
coupling elements in a cell it is possible to achieve a desired pattern of 
Willis coupling tensor. 

The effective Willis coupling and designability of the model are 
validated via free wave analysis, with which the dispersion and tunable 
wave polarization are confirmed via several typical designs of models. In 
particular, the effective parameters can characterize the complex band 
structure in locally resonant band gaps. We further studied the wave 
transmission in a sandwiched Willis material layer, by which two elastic 
wave functionalities, i.e. the asymmetric reflection of elastic wave and 
the longitudinal-to-shear wave conversion, are enlightened and realized 
with appropriate material design. 

Although the Willis material proposed in this work is more of a 
conceptual model, and whether arbitrary effective properties can be 
attained is not pursued in depth, it is enlightening and may shed light on 
more practical material design as well as the elastic wave manipulation 
via Willis media. 
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Appendix 

Define a vector function of field variables relevant to the interface continuity, f(x) = ( v1 v2 σ11 σ21 )
T, consider the assumed wave field Eq. 

(24) and the constitutive relation Eq. (9), inside the Willis layer the f function can be related to the amplitude vector A = (A B C D)T as 

f(x) = MN(x)A, (A1)  

where 

N(x) = diag
[

eikLx e− ikLx eikSx e− ikSx
]
, (A2)  

and components of the M matrix read 

Fig. 8. FEM simulation of the transmodal Willis layer under longitudinal wave incidence from the left. (a) deformation and displacement contour of the model using 
continuum layer with optimized properties; (b) deformation and displacement contour with a latticed layer realizing targeted effective properties. The latticed layer 
is composed of 26 unit cells. Trajectories of six lattice sites are selectively drawn to show the transfer sequence of the polarization. 
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M11 = M12 = − iωPL1, M13 = M14 = − iωPS1,

M21 = M22 = − iωPL2, M23 = M24 = − iωPS2,

M31 = ikLC1111PL1 − ω2ψ111PL1 − ω2ψ112PL2,

M32 = − ikLC1111PL1 − ω2ψ111PL1 − ω2ψ112PL2,

M33 = ikSC1111PS1 − ω2ψ111PS1 − ω2ψ112PS2,

M34 = − ikSC1111PS1 − ω2ψ111PS1 − ω2ψ112PS2,

M41 = ikLC2121PL2 − ω2ψ211PL1 − ω2ψ212PL2,

M42 = − ikLC2121PL2 − ω2ψ211PL1 − ω2ψ212PL2,

M43 = ikSC2121PS2 − ω2ψ211PS1 − ω2ψ212PS2,

M44 = − ikSC2121PS2 − ω2ψ211PS1 − ω2ψ212PS2.

(A3) 

The following relation holds at both ends of the Willis layer 

A = N(0)− 1M− 1f(0+) = N(d)− 1M− 1f(d− ), (A4)  

with which the transfer matrix relating the state vectors across the layer, f(d− )=Tf(0+), can be defined as 

T = MN(d)M− 1. (A5) 

On the Cauchy media side, state vectors are expressed as 

f(0− ) = M0

⎛

⎜
⎜
⎝

uin
rL
vin
rS

⎞

⎟
⎟
⎠, f(d+) = M0

⎛

⎜
⎜
⎝

tLe− ikLd

0
tSe− ikSd

0

⎞

⎟
⎟
⎠, (A6)  

where 

M0 = iω

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 − 1 0 0
0 0 − 1 − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ0C0
1111

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ0C0
1111

√

0 0

0 0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ0C0
2121

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ0C0
2121

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A7) 

Enforce the continuity conditions of the fields at the two interfaces of the layer, f(0-) = f(0+) and f(d-) = f(d+), Eqs. (25) and (26) in the main text 
are obtained. 
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theory and realization with elastic metamaterials. Phys Rev Lett 2017;118(20): 
205901. 

[62] Yang X, Kweun JM, Kim YY. Theory for Perfect Transmodal Fabry-Perot 
interferometer. Sci Rep 2018;8(1):69. 

H. Qu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0035
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0035
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0035
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0036
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0036
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0036
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0037
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0037
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0038
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0038
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0039
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0039
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0040
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0040
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0041
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0041
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0042
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0042
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0042
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0043
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0043
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0044
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0044
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0044
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0045
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0045
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0046
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0046
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0047
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0047
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0048
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0048
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0048
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0049
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0049
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0049
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0050
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0050
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0051
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0051
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0052
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0052
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0052
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0053
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0053
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0054
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0054
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0055
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0055
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0056
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0056
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0056
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0057
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0057
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0057
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0058
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0058
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0059
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0059
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0059
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0060
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0060
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0061
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0061
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0061
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0062
http://refhub.elsevier.com/S0020-7403(22)00237-5/sbref0062

	Mass-spring model of elastic media with customizable willis coupling
	1 Introduction
	2 The mass-spring model with willis coupling in longwave limit
	3 Free wave propagation with particular material design
	4 Wave transmission across a sandwiched willis layer
	4.1 Asymmetric reflection in phase by the willis layer
	4.2 elastic wave transmodal layer by willis coupling

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix
	References


