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a b s t r a c t

The elasticity tensors of extremal materials are rank-deficient, they have inherent easy deformation
modes without spending energy. Kinds of materials are classified by the number of vanishing
eigenvalues of their elastic matrices, namely from unimode, bimode to pentamode. They may exhibit
unprecedented capacity to manipulate waves, as already exemplified by pentamode materials. The
peculiar property of these materials on wave propagation lies in reducing the number of slowness
surfaces as well as the opening of these surfaces along certain directions determined by easy
deformation modes. We demonstrate these wave characteristics according to the classification of
extremal materials by analyzing their acoustic tensors. It is shown that the number of slowness
surfaces is determined by the number of independent characteristic force vectors provided by the
hard modes of the extremal materials on any wave front plane. As a consequence, there is only one
slowness surface for pentamode materials, and two for quadramode materials. Trimode materials may
have two or three depending whether the three force vectors provided by the materials are coplanar
or not. All the other modes definitely have three slowness surfaces. The opening of these surfaces
depends on null of these force vectors along certain directions, controlled by the soft deformation
modes in these materials. Concrete examples are also given to illustrate these findings. A device of
broadband zero-refractive-index for elastic wave is proposed with a trimode material. These works
pave the way to design wave devices by exploiting extremal materials.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The elasticity tensors of stable materials are always required
o be positive definite, so that their Christoffel’s acoustic tensors
re also positive definite [1], i.e., they will produce static and dy-
amic responses to arbitrary type of external excitation. With the
evelopment of elastic metamaterials, some constraints on elas-
icity tensor have been progressively relaxed, for instance, elastic
odulus can turn to negative if resonance is introduced [2–4],
r the constraints on major [5,6] and minor [7,8] symmetry of
lasticity tensor can be released by allowing external energy ex-
hange, or by careful microstructure design [9]. These extensions
quip classical continuum mechanics more power to characterize
omplex phenomena exhibited by architectured materials.
Extremal materials with rank-deficient elasticity tensor are

o longer stable, they are armed with easy deformation modes,
.e., zero energy modes. The mechanisms represented by the
igenvector of the zero eigenvalue of elastic matrix allow de-
ormation without any cost of energy. According to Milton and
herkaev [10,11], these extremal materials were classified by the
umber of zero eigenvalues of their elastic matrices: if there is
ne zero-eigenvalue, called unimode (UM) materials, successively
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352-4316/© 2022 Elsevier Ltd. All rights reserved.
bimode (BM), trimode (TM), quadramode (QM), pentamode (PM)
if there are five. Since the elasticity tensors of these extremal
materials are no longer positive definite, they may exhibit a
powerful platform for manipulating waves.

The required mechanism in extremal materials can be ap-
proximately realized by flexible microstructure, e.g., replacing a
joint by flexible beam in bending [12]. Since the proposition of
extremal materials, major efforts are focused on PM lattices, the
simplest extremal materials with five zero-eigenvalues of their
elastic matrices [10,12–17]. Some studies are conducted to design
2D [10,18–22] or 3D [10,22] UM materials, and more recently QM
lattice [23]. The first approximate 3D isotropic solid PM material
was fabricated by Kadic et al. [24], the large ratio of tensile
modulus over the shear modulus is confirmed experimentally
with macroscopic polymer-based samples by a 3D printing tech-
nique [25]. The study on PM materials has been further fueled
by their potential to realize perfect acoustic cloak [26]. Since
only static mechanical property is used without resonance, the
devices made of solid extremal materials are intrinsically broad-
band and are of great value in underwater acoustic wave control.
For examples, static ‘‘unfeelability’’ mechanical cloak [27], under
water sound cloak [28], polarization tailoring [29,30], seismic
wave alleviation [31], SH-wave polarizer [23], negative refractive
index [21], low frequency sound insulation [32–34], etc.
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http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2022.101789&domain=pdf
mailto:hugeng@bit.edu.cn
https://doi.org/10.1016/j.eml.2022.101789


Y. Wei and G. Hu Extreme Mechanics Letters 55 (2022) 101789

e
s
f
e
t
a
t
t
s
y

b
m
o
t
t
f
r
m
f

2

2

t
e

C

w
S
r
c

S
f

i

d
(
a
u
i
t
e(
N

t

F

Γ

i
a
d
i
a
d
i
c
b

Acronyms

UM Unimode
BM Bimode
TM Trimode
QM Quadramode
PM Pentamode
2D, 3D Two- and three-dimensional
CFV Characteristic force vector
EFC Equifrequency contour
EFS Equifrequency surface
FEA Finite element analysis
PML Perfectly matched layer
PBC Periodic boundary condition
P-wave Longitudinal wave
SV-wave In-plane shear wave (motions are in the

(x, y)-plane)
SH-wave Anti-plane shear wave (motions are

normal to the (x, y)-plane)

The above exciting properties of extremal materials are ben-
fiting from their unique slowness surfaces (or equifrequency
urfaces, EFSs, which possess the same shape as the slowness sur-
aces) and from corresponding polarization characteristics. These
xtremal materials may offer an extraordinary capacity to shape
heir slowness surfaces, and in turn to monitor their wave char-
cteristics. For example, there is only one slowness surface for
he examined PM materials and two for the particular QM lat-
ice. However, to what extent extremal materials can control the
hape and the number of slowness surfaces has not been explored
et, the corresponding mechanisms are still unknown.
In this paper, we will examine in Section 2 the relationship

etween the number of hard modes (complementary to the soft
odes) of the elastic matrix and the number of slowness surfaces
ne by one from PM to UM materials, and the condition whether
he slowness surfaces are open along certain direction. In Sec-
ion 3, several examples are given to illustrate our theoretical
indings in Section 2. In Section 4, a broadband device of zero-
efractive-index for elastic wave will be proposed with a TM
aterial. In the end, conclusions are drawn in Section 5. The

ollowing acronyms will be used.

. Theoretical analyses

.1. Preliminary

According to Milton and Cherkaev [10], the fourth-order elas-
icity tensor of Cauchy elasticity with N zero energy modes is
xpressed in form of Kelvin’s decomposition

=

6−N∑
i=1

KiSi ⊗ Si, (1)

ith Ki being the non-zero eigenvalues of the elasticity tensor,
i being a second order symmetric tensor (characteristic stress
elating to the hard mode). Eq. (1) indicates that such a material
an support any stress in the subspace spanned by the Si. For
convenience, the elasticity tensor can also be rewritten in a
compact form as C =

∑6−N
i=1 Si ⊗ Si, where Ki is absorbed in Si.

i will be written as a 2 × 2 or 3 × 3 symmetric matrix in the
ollowing for 2D or 3D cases, respectively.

In the following, we assume the moduli of the phases are
ndependent of frequency. Then, for a 3D Cauchy elastic medium,
 λ

2

Fig. 1. Illustration of the CFVs of a BM material as an example and coordinate
system in a 3D view.

in absence of body force, a time-harmonic elastic plane wave is
governed by Christoffel’s equation [35], which is given by

Γ · u = ρV 2u, (2)

where Γ = n · C · n is the acoustic tensor with n denoting the
irection cosine of the wave vector k, V denotes phase velocity
V = ω/| k|, ω is the angular frequency), u is displacement vector
nd ρ represents mass density of the elastic material. For a given
nit vector of wave propagation direction n, the phase velocity V
s obtained by solving the eigenvalue λ (λ = ρV2) of the acoustic
ensor matrix Γ from Eq. (2). With the help of Eq. (1), Christoffel’s
quation can be further rewritten as:
6−N∑
i=1

(n · Si) ⊗ (Si · n)

)
· u = ρV 2u. (3)

ow, we define characteristic force vectors (CFVs for short) as:

i = Si · n, (4)

which represents the projection of the characteristic stress Si on
the wave front plane with normal n, with |n| = 1, as shown in
ig. 1. Then, the acoustic tensor can be rewritten as:

=

6−N∑
i=1

ti ⊗ ti. (5)

Generally, for a traditional Cauchy elastic medium with positive
definite elasticity tensor, the number of non-zero eigenvalues λ

of Γ in any direction n is always equal to the rank of Γ, so
there are always two closed slowness contours (or equifrequency
contours, EFCs) for 2D and three closed slowness surfaces (or
EFSs) for 3D, respectively [36,37]. If the eigenvalue λ is zero along
some particular direction n, which means zero phase speed V and
nfinite wave number, we call the slowness surface is opened
long the direction n. The number of openings along a given
irection n is defined as the number of zero eigenvalues of Γ

n this direction. It should be noticed that, if there is an opening
t n, there will also be an opening at –n, but here the opposite
irection is considered as a different direction. If the eigenvalue λ

s not zero for any direction n, the slowness surface is said to be
losed. The characteristic equation of Eq. (2) is given for 3D cases
y:
3
− tr Γ λ2

+ tr
(
ΓA) λ − det Γ = 0, (6)
( ) ( )
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w
here tr(·) and det(·) stand for the trace and determinant of a
square matrix, the superscript A represents the adjugate matrix.

For traditional Cauchy elastic materials, there are six charac-
teristic stresses orthogonal to each other, therefore there are at
most six CFVs on the wave front plane. Here and in the following
the orthogonality means the tensor inner product of any two
characteristic stresses is zero [10] (e.g., S1: S2 = 0). In Euclidean
space, at most three of these six CFVs are linearly independent,
we denote them by ti (i = 1, 2, 3). According to the discussion
will be given in the following, the coefficients in Eq. (6) can be
summarized as
tr (Γ) = f1

({
ti · tj

})
,

tr
(
ΓA)

= f2
({(

ti × tj
)2})

,

det (Γ) = f3
(
[(t1 × t2) · t3]2

)
,

(i, j = 1, 2, 3) ,

(7)

where f1, f2 and f3 are appropriate linear functions of all com-
binations of their own arguments, i.e., the coefficients tr (Γ), tr
(ΓA) and det (Γ) are related to the scalar product, the vector
product and the scalar triple product of the independent CFVs,
respectively. Here and in the following the square of a vector rep-
resents its scalar product with itself (e.g., t2 = t·t). Geometrically,
these three coefficients are respectively related to the length of
the independent CFV ti, the area of the parallelogram spanned by
the

{
ti, tj

}
and the volume of the parallelepiped spanned by the

{t1, t2, t3}.
Eq. (7) shows clearly that the coefficients of the characteristic

equation are sensitive to the geometric relationship of the inde-
pendent CFVs. Extremal materials with rank-deficient elasticity
tensor offer less characteristic stresses, this will affect the number
and the geometric relationship of the independent CFVs on wave
front plane, resulting in rich variation of the number and shape of
slowness surfaces. This will be detailed in the following section.

2.2. Acoustic tensor for extremal materials

Firstly, we will consider PM materials, the simplest extremal
materials of which five eigenvalues of their elasticity tensor are
zero and support only stress proportional to their unique charac-
teristic stress S1. There is only one CFV on any wave front plane
with normal n. According to Eqs. (2) and (4), the acoustic tensor
Γ of PM materials can be expressed as

Γ = t1 ⊗ t1, (8)

which implies that the rank (Γ) ≤ 1 = order (Γ) − 2. It is easy to
derive that both tr(ΓA) and det(Γ) are always equal to zero [38]
and tr (Γ) = t21 for arbitrary wave direction n. As the unique
characteristic stress S1 is not a null matrix, the CFV t1 cannot
be always equal to zero for arbitrary n neither [39]. Therefore,
according to Eq. (6), there is one and only one slowness surface
for PM materials. And since λ = tr (Γ) = t21, the slowness surface
opens along a given direction n∗ if and only if t1 is equal to zero,
i.e., S1 degenerates into a plane state in the plane n∗, defined by
S1·n∗

= 0. See Appendix A for proof.
Then, we will examine QM materials, which have four zero-

eigenvalues of elasticity tensor and support any stress in the
space spanned by two orthogonal characteristic stresses S1 and
S2. The acoustic tensor Γ of QM materials can be expressed as:

Γ = t1 ⊗ t1 + t2 ⊗ t2, (9)

which implies that the rank (Γ) ≤ 2 = order (Γ) − 1. Thus det
(Γ) is always equal to zero for any n [38]. In this case, there are
at most two non-zero eigenvalues in Eq. (6), so two slowness
surfaces at most for QM materials, in agreement with the results

predicted by another method [23].

3

We will analyze whether QM materials can always possess
two slowness surfaces. If so, from Eq. (6), that means tr(ΓA)
cannot be always zero for any n, i.e., the two CFVs t1 and t2 could
not be always parallel to each other for any n. This conclusion is
straightforward since the two characteristic stresses are orthog-
onal, as detailed in Appendix B. Therefore, QM materials always
possess two slowness surfaces (with the same results for 2D UM
materials), and the coefficients of the characteristic equation can
be collected as:

tr (Γ) = t21 + t22,
tr
(
ΓA)

= (t1 × t2)2 ,

det (Γ) = 0.
(10)

According to Eq. (10), for QM materials, the outer slowness sur-
face is opened along a given n if and only if tr(ΓA) = 0, i.e., t1 is
parallel to t2. And the two slowness surfaces are opened at the
same time along a prescribed direction n if and only if tr(Γ) = 0,
i.e., t1 and t2 are both equal to 0. However, different from 3D QM
materials, the inner slowness surface will never be opened for 2D
UM materials (see Appendix C for proof).

Now, we will consider TM materials, which can bear any
stress in the subspace spanned by three mutually orthogonal
characteristic stress tensors S1, S2 and S3, respectively. They will
have three corresponding CFVs t1, t2 and t3 on wave front plane.

If these three CFVs are always linearly independent, the acous-
tic tensor Γ of TM materials can be expressed as:

Γ = t1 ⊗ t1 + t2 ⊗ t2 + t3 ⊗ t3. (11)

The coefficients of the characteristic equation for TM materials
can then be simplified as:

tr (Γ) = t21 + t22 + t23,
tr
(
ΓA)

= (t1 × t2)2 + (t2 × t3)2 + (t3 × t1)2 ,

det (Γ) = [(t1 × t2) · t3]2 .

(12)

Then, in this case, there are three slowness surfaces. The open-
ing of the slowness surfaces depend on geometric relationship
between t1, t2 and t3. The outermost slowness surface is opened
along a given n if and only if det(Γ) = 0, i.e., t1, t2 and t3 are
coplanar. And the middle together with the outermost slowness
surfaces are opened at the same time along a prescribed n if and
only if tr(ΓA) = 0, i.e., t1, t2 and t3 are parallel to each other.
While, in this case, the innermost slowness surface is always
closed, i.e., tr(Γ) cannot be zero for any n (see Appendix D for
proof).

Interestingly, if not so, it will degenerate into the case where
these three CFVs are always linearly dependent, i.e., coplanar for
any n, as also demonstrated in Appendix D. In this case, there
are only two slowness surfaces for such TM materials, with wave
characteristics similar to QM materials.

Fourthly, the BM materials will be examined, which have two
easy deformation modes and its acoustic tensor is expressed as:

Γ = t1 ⊗ t1 + t2 ⊗ t2 + t3 ⊗ t3 + t4 ⊗ t4. (13)

We will analyze whether BM materials always possess three
slowness surfaces. From Eq. (6), that means det(Γ) is not always
zero, or the four CFVs {t1, t2, t3, t4} cannot be always coplanar. As
demonstrated in Appendix E, the {t1, t2, t3, t4} cannot be always
coplanar for any n, indicating that BM materials always have
three slowness surfaces.

In this case, we take {t1, t2, t3} as the three independent CFVs
and express t4 in term of them, we get for BM materials:

tr (Γ) = t21 + t22 + t23 +

(
3∑

αiti

)2

,

i=1
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tr
(
ΓA)

=
1
2

3∑
i,j,k=1
i̸=j̸=k

(
ti × tj

)2
+
(
αi (ti × tk) + αj

(
tj × tk

))2
, (14)

det (Γ) =

(
1 +

3∑
i=1

α2
i

)
[(t1 × t2) · t3]2 ,

where

t4 = α1t1 + α2t2 + α3t3 ⇔

[
α1
α2
α3

]
=
[
t1 t2 t3

]−1 t4. (15)

e also demonstrated in Appendix E that the four CFVs cannot
e all zero along some n, i.e., tr(Γ) ̸= 0, indicating from Eq. (6)
hat BM materials possess at least one non-zero eigenvalue and
he innermost slowness surface is always closed.

As consequence, the outermost slowness surface of BM mate-
ials is opened if and only if det(Γ) is equal to zero. And both the
middle and outermost slowness surfaces are opened together if
and only if tr(ΓA) is equal to 0. While, as a result of fact that tr(Γ)
is always non-zero, the innermost slowness surface will be never
opened.

Finally, we will consider UM materials, which have five char-
acteristic stresses and only one easy deformation mode, their
acoustic tensor is given by:

Γ = t1 ⊗ t1 + t2 ⊗ t2 + t3 ⊗ t3 + t4 ⊗ t4 + t5 ⊗ t5. (16)

hrough the previous analysis of BM materials, there are always
hree independent CFVs in UM materials, implying they always
ossess three slowness surfaces. As for BM materials, we express
4 and t5 with the three independent CFVs, the coefficients of the
characteristic equation of UM materials can be collected as:

tr (Γ) = t21 + t22 + t23 +

(
3∑

i=1

αiti

)2

+

(
3∑

i=1

βiti

)2

,

tr
(
ΓA)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

3∑
i,j=1

[(
1 + η2

i

) (
1 + η2

j

)
−
(
ηiηj

)2] (ti × tj
)2

+

3∑
i,j,k=1
i̸=j̸=k

[(
1 + η2

i

) (
ηjηk

)
−
(
ηiηj

)
(ηiηk)

]
×
(
ti × tj

)
· (ti × tk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

et (Γ) =

⎛⎜⎜⎝
3∏

i=1

(
1 + η2

i

)
−

1
2

3∑
i,j,k=1
i̸=j̸=k

(
1 + η2

i

) (
ηjηk

)2
+2 (η1η2) (η1η3) (η2η3)

⎞⎟⎟⎠
× [(t1 × t2) · t3]2 ,

(17)

where α is the same as Eq. (15), β and (ηiηj) is defined by

t5 = β1t1 + β2t2 + β3t3 ⇔

[
β1
β2
β3

]
=
[
t1 t2 t3

]−1 t5,

ηiηj
)

= αiαj + βiβj.

(18)

or UM materials, the outermost slowness surface is opened if
nd only if the det(Γ) is equal to zero.
In the following sections, we will provide some concrete ex-

mples to illustrate the theoretical results, and some specific
ave function will also be explained with TM elastic metama-
erials.
4

3. Illustrating examples

In this section, several examples from PM to UM materials
will be presented in sequence in order to illustrate our previous
theoretical findings. For convenience, the hard modes of different
classes of extremal materials are carefully selected so that the
following four propagation directions can give more possibilities
for the opening and closing of slowness surfaces:

n1 =
[
1 0 0

]T
,

n2 =
[
0 1 0

]T
,

n3 =
[
0 0 1

]T
,

n4 =

√
2
2

[
1 1 0

]T
.

(19)

Firstly, we consider a PM material with the following charac-
teristic stress:

S1 =

[0 0 0
0 1 0
0 0 1

]
, (20)

which indicates that such PM material can only support a hydro-
static pressure in the (y, z)-plane. Here, without loss of generality,
we set the components Syy and Szz in Eq. (20) to unit. Its slowness
surface is shown in Fig. 2(a), there is only one slowness surface.
Besides, since the CFV t1 is zero along n1, tr(Γ) is zero too in this
case, so the slowness surface is opened along n1. While it is closed
along any other propagation direction (not parallel to n1, such as
n3), because in these directions t1 and tr(Γ) are no longer equal
to zero. The details of tr(Γ), tr(ΓA), det(Γ) and t1 are summarized
n Table 1 for such PM material, as well as QM, TM, BM and UM
aterials for completeness.
Then, we will consider a QM material which is stiff to any

tress in the subspace spanned by the following two orthogonal
haracteristic stress tensors S1 and S2:

1 =

[2 0 0
0 2 0
0 0 0

]
, S2 =

[0 1 0
1 0 0
0 0 0

]
. (21)

The slowness surfaces of such QM material is shown in Fig. 2(b),
indicating that there are only two slowness surfaces there. Since
t1 and t2 are neither parallel to each other nor equal to zero in
the direction n1, both tr(Γ) and tr(ΓA) in Eq. (10) are non-zero,
the innermost and middle slowness surfaces are closed along n1.

hile the outer slowness surface is opened along n4, because t1
nd t2 are parallel but both non-zero, driving tr(ΓA) to zero in this
irection. Besides, in the direction n3, due to the fact that t1 and
2 are both equal to zero, leading to three zero-eigenvalues for
q. (10), the remaining two slowness surfaces are opened at the
ame time. The details of numerical results of the coefficients in
q. (6) are summarized in Table 1.
Thirdly, a TM material with the following characteristic

tresses is considered:

1 =

[1 0 0
0 0 0
0 0 0

]
, S2 =

[0 0 0
0 0 1
0 1 0

]
, S3 =

[0 1 0
1 0 0
0 0 0

]
. (22)

According to the analysis in Section 2, such TM material will
possess three slowness surfaces, as shown in Fig. 2(c). Since the
CFVs {t1, t2, t3} are coplanar in the plane n1, det(Γ) in Eq. (12) is
zero in this case, then the outermost slowness surface is opened.
While, in the direction n3, the middle and the outermost slowness
urfaces are opened at the same time. Because the CFVs {t1, t2, t3}
re parallel to each other, driving both det(Γ) and tr(ΓA) to zero.
oreover, because of linear independence of the CFVs {t1, t2, t3}

n the direction n , all the three slowness surfaces are closed.
4
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Fig. 2. Slowness surfaces for different classes of extremal materials: (a) PM with Eq. (20); (b) QM with Eq. (21); (c) TM with Eq. (22); (d) TM with Eq. (23); (e) BM
with Eq. (24); (f) UM with Eq. (25).
Table 1
The coefficients in Eq. (6) for different extremal material examples.
Type (Num. EFSs) Directions CFVs and coefficients Num. zero-eigenvalues Num. openings

PM
(1)

n1 t = 0;
tr(Γ) = 0; tr(ΓA) = 0; det(Γ) = 0

3 1

n3 t = [0,0,1]T;
tr(Γ) = 1; tr(ΓA) = 0; det(Γ) = 0

2 0

QM
(2)

n1 t1 = [2,0,0]T; t2 = [0,1,0]T;
tr(Γ) = 5; tr(ΓA) = 4; det(Γ) = 0

1 0

n3 t1 = t2 = 0;
tr(Γ) = 0; tr(ΓA) = 0; det(Γ) = 0

3 2

n4 t1 = 2t2 = [
√
2,

√
2, 0]T;

tr(Γ) = 5; tr(ΓA) = 0; det(Γ) = 0
2 1

TM1
(3)

n1 t1 = [1,0,0]T; t2 = 0; t3 = [0,1,0]T;
tr(Γ) = 2; tr(ΓA) = 1; det(Γ) = 0

1 1

n3 t1 = 0; t2 = [0,1,0]T; t3 = 0;
tr(Γ) = 1; tr(ΓA) = 0; det(Γ) = 0

2 2

n4 t1 = [
√
2/2,0,0]T; t2 = [0,0,

√
2/2]T;

t3 = [
√
2/2,

√
2/2,0]T;

tr(Γ) = 2; tr(ΓA) = 1; det(Γ) = 1/8

0 0

TM2
(2)

n1 t1 = t2 = t3 = 0;
tr(Γ) = 0; tr(ΓA) = 0; det(Γ) = 0

3 2

n2 t1 = t2 = [0,1,0]T; t3 = [0,0,1]T;
tr(Γ) = 3; tr(ΓA) = 2; det(Γ) = 0

1 0

BM
(3)

n1 t1 = [
√
2,0,0]T; t2 = t3 = 0;

t4 = [0,1,0]T;
tr(Γ) = 3; tr(ΓA) = 2; det(Γ) = 0

1 1

n2 t1 = 0; t2 = [0,
√
2,0]T; t3 = [0,0,1]T;

t4 = [1,0,0]T;
tr(Γ) = 4; tr(ΓA) = 5; det(Γ) = 2

0 0

n3 t1 = t2 = t4 = 0; t3 = [0,1,0]T;
tr(Γ) = 1; tr(ΓA) = 0; det(Γ) = 0

2 2

UM
(3)

n4 t1 =
√
2t5 = [1,1,0]T;

t3 = t4 = [0,0,
√
2/2]T; t2 = 0;

tr(Γ) = 4; tr(ΓA) = 3; det(Γ) = 0

1 1
5
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The next one we will consider is a TM material, which is stiff
o any stress in the (y, z)-plane:

S1 =

[0 0 0
0 1 0
0 0 1

]
, S2 =

[0 0 0
0 1 0
0 0 −1

]
, S3 =

[0 0 0
0 0 1
0 1 0

]
. (23)

According to the analysis in Section 2, such TM material will
possess only two slowness surfaces instead of three, as shown
in Fig. 2(d). Since the CFVs {t1, t2, t3} are zero along n1, tr(Γ) in
q. (12) is zero and the slowness surfaces are both opened. While,
t is closed along any other propagation direction (not parallel to
1, such as n2). Because there are always two linearly indepen-

dent CFVs in {t1, t2, t3} along these directions, so that tr(Γ) and
r(ΓA) are no longer equal to zero. The details of numerical results
f the coefficients in Eqs. (22) and (23) are summarized in Table 1
s TM1 and TM2, respectively.
Now, let us consider a BM material, which has two easy

eformation modes and its characteristic stresses are designed as:

1 =

⎡⎣√
2 0 0

0 0 0
0 0 0

⎤⎦ , S2 =

⎡⎣0 0 0
0

√
2 0

0 0 0

⎤⎦ , S3 =

[0 0 0
0 0 1
0 1 0

]
,

S4 =

[0 1 0
1 0 0
0 0 0

]
. (24)

Fig. 2(e) shows the slowness surfaces of such BM material, indi-
cating there are three slowness surfaces there. Since {t1, t2, t3,
t4} are parallel to each other in the direction n3, both tr(ΓA) and
et(Γ) in Eq. (14) are zero, then the middle and the outermost
lowness surfaces are opened. However, only the outermost slow-
ess surface is opened along n1, because the CFVs {t1, t2, t3, t4}

are coplanar along n1, leading det(Γ) to zero. Apart from this,
in the direction n2, due to the fact that there are three linearly
independent CFVs in {t1, t2, t3, t4}, all the slowness surfaces are
losed.
Finally, a UM material with the following characteristic

tresses is considered:

1 =

⎡⎣√
2 0 0
0

√
2 0

0 0 0

⎤⎦ , S2 =

[0 0 0
0 0 0
0 0 1

]
, S3 =

[0 0 0
0 0 1
0 1 0

]
,

S4 =

[0 0 1
0 0 0
1 0 0

]
, S5 =

[0 1 0
1 0 0
0 0 0

]
.

(25)

The slowness surfaces for such UM material are shown in Fig. 2(f).
When wave propagates in the direction n4, the CFVs {t1, t2, t3,
t4, t5} are coplanar, so det(Γ) is zero. As a result, the outermost
slowness surface is opened in this direction, as expected.
 a

6

4. Zero-refractive-index device for elastic waves

In the following, we will take TM materials as an example, and
explore their potential in designing broadband zero-refractive-
index device for elastic waves, useful for energy collection. In
particular, for the convenience of subsequent numerical vali-
dation, the characteristic stresses S1, S2, and S3 are multiplied
respectively by

√
5.26× 105,

√
5.26× 105 and

√
2.67× 105, and

the density is ρTM
= 2700 kg/m3. Thus, the elastic matrix of this

M material in Voigt notation reads:

TM
=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 105.2 0 0 0 0
0 0 105.2 0 0 0
0 0 0 26.7 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦GPa. (26)

ig. 3(a) shows the slowness curves of the calculated refraction
nd reflection at an interface in the (001) plane (i.e., the (kx, ky)-
lane with kz = 0) between the semi-infinite homogeneous TM
aterial (top) with the hard modes given by Eq. (23), as well as
n isotropic solid (bottom) with the material constants as follows:
ISO
11 = 105.2 GPa, C ISO

12 = 51.8 GPa, the density ρ ISO
= ρTM (alu-

inum). The orange arrows in Fig. 3(a) represent the polarization
f the first mode of the TM material. We can see that no matter
hat type of elastic wave is incident at whatever angle, the group
elocity (white arrows in Fig. 3(a)) of the transmitted wave is
lways parallel to ky-axis, implying zero-refractive-index for the
lastic waves. It should be noticed that, since in this case one in-
lane mode vanishing in the (001) plane of the TM material, there
ould be a discontinuity in the displacement at the interface.
enefiting from the decoupling between the in-plane and out-
f-plane modes, at the interface between the isotropic material
nd TMmaterial, the continuity conditions for the in-plane modes
an be established by following the method proposed by Zheng
t al. [29].
Numerical simulation was conducted by commercial finite

lement analysis (FEA) software COMSOL Multiphysics 5.6. In the
imulation, as shown in Fig. 3(b), the surroundings of the com-
uted domain are covered by perfectly matched layers (PMLs) to
liminate wave reflection. The total size of the model in Fig. 3(b)
s 300 mm × 600 mm × 15 mm. Since the homogeneous TM
aterial is also a kind of linear Cauchy elastic materials, the PMLs
f Solid Mechanics Module in COMSOL can still work. Periodic
oundary conditions (PBCs) are imposed on the top and bottom
urfaces of the model.
In order to illustrate the property of zero-refractive-index

ith the TM material, we perform calculations on wave prop-

gation for an obliquely incident Gaussian beam initiated from
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he isotropic solid to the TM material, different wave types and
ncident angles are considered, including P-, SV- and SH-waves
s well as incident angles 20◦, 40◦ and 60◦, respectively. The
ave propagations represented by the normalized displacement

ields are shown in Fig. 4. A line source to excite different
ypes of elastic waves (P-, SV- and SH-wave) is located in the
sotropic medium. The P- and SV/SH-Gaussian beams with fre-
uency 300 kHz and 200 kHz are generated respectively. Fig. 4
hows clearly that, whatever the angles and wave types, Poynting
Energy-flux) vectors of the transmitted waves are always parallel
o the normal of the interface, although the transmitted waves
ave different wave vectors. This locking phenomenon for trans-
itting energy orientation may be useful to energy harvesting in
tructures. The asymmetry in the reflected wave to the normal
f the interface is due to particular mode conversion for the
ifferent incident waves. The above mechanism can function with
broad frequency band, since only static material properties are
tilized without resonance.

. Summary

The exotic properties of extremal elastic materials come from
heir extraordinary capacity in shaping slowness surfaces, in-
luding the reduction in number and opening of the slowness
urfaces. We have examined these mechanisms by carefully in-
pecting the CFVs on the wave front plane. It is demonstrated
hat the number of the linearly independent CFVs determines the
umber of slowness surfaces, and the opening of these surfaces
s governed by the vanishing of these vectors along particular
irections. These theoretical findings are also illustrated by con-
rete examples for different classes of extremal elastic materials.
inally, a broadband device of zero-refractive-index for elastic
ave is also proposed with a TM material. This work provides
he first systematic study on the control ability on slowness
urfaces by extremal materials, and offers a new prospective
o design extremal metamaterials and to control low frequency
lastic waves.
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Appendix A

Proposition: for any symmetric non-zero second order tensor S,
he necessary and sufficient condition for any vector defined by t
S·n to be always lying in certain plane with normal m is that
degenerates into a plane state defined by S · m = 0.

emonstration: if a tensor S is of a plane state with a plane m, we
ould have:

· m = 0. (A.1)

enefiting from the symmetry of the tensor S, the scalar product
f t and m gives:

· m = (S · n) · m S=ST
= (S · m) · n = 0 · n = 0, ∀n. (A.2)

e have thus proved that any vector t always lies in such plane
.
Conversely if the vector t always lies in a plane m, we would

ave:

· m = (S · n) · m S=ST
= (S · m) · n = 0, ∀n. (A.3)

ince Eq. (A.3) holds for any n, the coefficient matrix should be a
ero matrix, leading to:

· m = 0. (A.4)

herefore, the proposition holds. The proposition is also true for
D cases. In this case S degenerates into a uniaxial state.

ppendix B

roposition: two symmetric non-zero second order tensors S1 and
mutually orthogonal to each other, any two vectors defined by
2
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i = Si·n (i = 1, 2), cannot be always parallel to each other for
ny n.

emonstration: if the vectors t1 and t2 are always parallel, we
ould have

1 × t2 ≡ 0 ⇔ (S1 · n) × (S2 · n) ≡ 0, ∀n. (B.1)

ny symmetric tensor S has at least one principal frame, i.e., a
ight-handed triplet of orthogonal principal directions [39]. In
rder to facilitate the analysis, a Cartesian coordinate system {ei}

is chosen to coincide with the principal axes of S1. Then, S1 has
only diagonal elements (i.e., the off-diagonal elements of S1 are
all zero) [39], while S2 is expressed in a general form:

S1 = S(1)
11 e1e1 + S(1)

22 e2e2 + S(1)
33 e3e3,

S2 =

3∑
i,j=1

S(2)
ij eiej.

(B.2)

Substituting Eq. (B.2) into Eq. (B.1), and noting that the relation
holds for arbitrary n, the collected coefficients of the components
ninj should all be zero. With the help of Eq. (B.2) and the or-
thogonality between the tensors S1 and S2 (i.e., S1: S2 = 0, the
last constraint condition in Eq. (B.3)), we can get the following
constraint conditions for the two tensors as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(2)
12 I3×3

S(2)
13 I3×3

S(2)
23 I3×3

−S(2)
33 0 S(2)

11

S(2)
22 −S(2)

11 0

0 S(2)
33 −S(2)

22

S(2)
11 S(2)

22 S(2)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣S(1)
11

S(1)
22

S(1)
33

⎤⎥⎦ = 0. (B.3)

According to the definition of the rank of a matrix, since S2 is non-
zero, the coefficient matrix in Eq. (B.3) has 3 linearly independent
columns and hence has full column rank. Thus, S1 should be zero,
which is contradictory to the definition. So, the proposition holds.

Appendix C

Proposition: For two 2D symmetric non-zero second order tensors
S1 and S2 mutually orthogonal to each other, any two 2D vectors
defined by ti = Si·n (i = 1, 2) cannot be zero simultaneously.

Demonstration: if both t1 and t2 are equal to 0 with some n∗, then
we would have:

S1 · n∗
= S2 · n∗

= 0. (C.1)

According to Appendix A, Eq. (C.1) implies both tensors S1 and S2
are of uniaxial states with the plane n∗, then

rank
([
S(1), S(2)])

= 1, (C.2)

where the second order tensor S is written into Voigt notation
{S} =

{
S11 S22

√
2S12

}T
. Therefore, the S1 and S2 are linearly

ependent rather than mutually orthogonal each other, so the
roposition holds.
The acoustic tensor of 2D UM materials reads as:

2
− tr (Γ) λ + det (Γ) = 0, (C.3)

ith
r (Γ) = t21 + t22,
det (Γ) = (t1 × t2)2 .

(C.4)

As demonstrated previously, tr (Γ) ̸= 0 for any n, so the inner
slowness curve will never be opened for 2D UM materials.
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Appendix D

Proposition: Given three non-zero symmetric second order ten-
sors S1, S2 and S3, orthogonal to each other, such that they are of
plane state with a common plane, then any three vectors defined
by ti = Si·n (i = 1, 2, 3) are always coplanar.

Demonstration: according to Appendix A, if the tensors Si (i = 1,
2, 3) all are of plane states with a plane m, the vectors ti (i = 1,
2, 3) will always lie in such plane for any n, i.e.,

Si · m = 0 ⇒ ∀n, ti · m = 0, (i = 1, 2, 3) . (D.1)

Since

rank ([S1, S2, S3]) ≤ 3, (D.2)

where the tensor S is written in a vector form S with Voigt
notation (same as those in Appendix C), the tensors S1, S2 and
S3 mutually orthogonal each other require

rank ([S1, S2, S3]) = 3, (D.3)

which is contained in the case of Eq. (D.2), so the proposition
holds.

Without loss of generality, we can choose the following mu-
tually orthogonal characteristic stresses which meet Eq. (D.3):

S1 =

⎡⎣S(1)
11 0 0
0 0 0
0 0 0

⎤⎦ , S2 =

⎡⎣0 0 0
0 S(2)

22 0
0 0 0

⎤⎦ ,

S3 =

⎡⎣ 0 S(3)
12 0

S(3)
12 0 0
0 0 0

⎤⎦ . (D.4)

So, for the TM material, the three CFVs {t1, t2, t3} can be copla-
nar for any n, so the TM material can have only two slowness
surfaces.

Corollary: when TM materials have three slowness surfaces, the
innermost slowness surface is always closed, i.e., any three vec-
tors defined by ti = Si·n (i = 1, 2, 3) cannot be zero simultane-
ously.

Demonstration: if t1, t2 and t3 are equal to 0 with certain n∗, then:

S1 · n∗
= S2 · n∗

= S3 · n∗
= 0. (D.5)

According to Appendix A, Eq. (D.5) indicates the tensors S1, S2
and S3 are of plane states with the plane n∗. This would lead to
Eq. (D.1), i.e., such TM materials have only two slowness surfaces,
so the corollary holds.

Appendix E

Proposition: any four non-zero symmetric second order tensors
Si (i = 1, . . . , 4), mutually orthogonal to each other, they define
four vectors ti = Si·n (i = 1, . . . , 4). These four vectors cannot be
always be coplanar.

Demonstration: if these four vectors are always coplanar within a
plane m, we would have:

∀n, ti · m ≡ 0, (i = 1, . . . , 4) , (E.1)

According to Appendix A, the following conditions can be ob-
tained:

Si · m = 0, (i = 1, . . . , 4) , (E.2)

which indicates tensors Si (i = 1,..,4) are of plane state with the
plane m, then:

rank [S , S , S , S ] ≤ 3, (E.3)
( 1 2 3 4 )
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here tensor S is written in a vector form S with Voigt notation as
xplained above. The Eq. (E.3) implies that the tensors Si (i = 1,
. . , 4) are no longer mutually orthogonal to each other, so the
roposition holds.

orollary: the innermost slowness surface of BM materials is
lways closed, i.e., any four vectors defined by ti = Si·n (i = 1,
. . , 4) cannot be zero simultaneously.

emonstration: if ti (i = 1, . . . , 4) are equal to 0 with certain n∗,
hen:

1 · n∗
= S2 · n∗

= S3 · n∗
= S4 · n∗

= 0. (E.4)

ccording to Appendix A, Eq. (E.4) implies that the tensors Si
(i = 1,..,4) all are of plane states with the plane n∗. While, this
ill lead to Eq. (E.3), implying that Si (i = 1, . . . , 4) are linearly
ependent, so the corollary holds.
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