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A B S T R A C T   

Vibration of liquid conveying piping systems in a closure may cause noising problem and degrade living comfort 
inside, it can even lead to fatigue failure of the system. Therefore, vibration alleviation in such circumstance is 
highly demanded. Traditionally, a piping system is designed to satisfy basic key functions as liquid conveying or 
heat exchange. Once the global arrangement of a piping system is determined for such key functions, local 
modifications with hangers on the piping system are then made to reduce its vibration. Here, we propose a 
method to optimize globally the shape and rigid hanger locations for a 3D piping system in order to achieve 
resonance avoidance. To this end, the wave approach is employed to estimate in a fast and accurate way the 
fundamental frequency of any 3D liquid conveying piping system, assembled from some basic elements. Based on 
genetic algorithm, optimization on shape and rigid hanger locations for a 3D piping system can be obtained with 
a maximal fundamental frequency, which is far away from the external excitation frequency. It shows that the 
shape optimization can be used to increase the fundamental frequency of a piping system if rigid hangers are not 
available, while the fundamental frequency can be increased more effectively with rigid hangers of optimized 
locations. Our work provides a systematic method for global optimization design of 3D piping systems.   

1. Introduction 

Fluid conveying piping systems are widely used in modern trans-
portation equipment such as ships, aircraft, automobile, just to name a 
few [1–3]. A liquid-filled piping system will be subjected to obvious 
vibrations induced by different kinds of external and internal loads 
during its function [4], radiating uncomfortable noise which should be 
largely reduced when designing ship or aircraft cabins [5,6]. The present 
design methodology of a piping system is usually as following: the layout 
of the pipeline is firstly determined by key functions such as liquid 
conveying or heat exchange, then local arrangement of the pipe section 
with high vibration amplitude is improved by imposing constraints [7]. 
Studies on the vibration optimization of an entire pre-designed piping 
system are few. 

There are analytical solutions for calculating vibration response of a 
pipe with simple geometry such as a cantilevered straight pipe, but for a 
complex 3D piping system, finite element method (FEM) [8–10] or wave 
approach [11,12] (also called spectral element method (SEM) [13–15]) 
have to be employed for its vibration analysis. Compared to FEM, the 

wave approach is more efficient. In addition, the computational accu-
racy of FEM is highly affected by its element size; while, wave approach 
as an approximate analytical method, is free from the element size and 
has higher computational efficiency when solving a complex 3D piping 
system. In the recent years, the large-amplitude vibrations of pipes 
conveying fluid were also explored by several researchers, by using, for 
example, geometrically exact model [16,17] and absolute nodal coor-
dinate formulation [18–22]. 

In general, optimization of a piping system includes its layout opti-
mization as well as vibration control (i.e., resonance avoidance). For the 
layout optimization, the ship or aero-engine pipe route design can be 
carried out by using genetic algorithm [7,23,24], cooperative coevolu-
tion [24], concurrent ant colony optimization algorithm [25] and 
modified particle swarm optimization [26,27]. In all above studies, 
when optimizing the route of the piping system, the vibrational char-
acteristics of the piping system is not taken into account, which however 
cannot be neglected in studying 3D piping systems optimization. 

For the vibration control, firstly, the pipe supports (i.e. hoops, rigid 
hangers or clamps) were utilized to reduce vibration of the 3D piping 
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system through optimizing their positions [28]. Tang et al. [29] opti-
mized the hoop positions to reduce the maximal stress and strain of a 3D 
piping system, and Zhang et al. [30,31] used non-probabilistic sensi-
tivity analysis to eliminate insensitive hoops. Kwong and Edge [32] 
carried out an investigation on the location optimization of the pipe 
clamps mounted on a flexible frame, so as to minimize the force exerted 
by the pipe on the flexible frame. Through numerical simulation, Liu 
et al. optimized further the local layout of hoops for reducing vibration 
amplitude as well as for avoiding resonance based on the particle swarm 
algorithm [33] and genetic algorithm [34], respectively. Secondly, the 
periodic support system can be regarded as effective filters to control the 
vibration of piping systems [35]. Mead [36] studied the effect of wave 
propagation constant for a periodically supported infinite beam. In 
detail, wave approach was utilized by Koo and Park [37] to investigate 
wave bandgaps for a 3D piping system, they found that a proper design 
of periodic supports for reducing vibration in a specific frequency range 
is possible. In addition, Yu et al. [38–44] investigated wave bandgaps of 
periodic pipe systems based on phononic crystal theory, and found that 
the low frequency band gaps can provide a new method for vibration 
control. Wu et al. designed periodic dynamic vibration absorbers (DVAs) 
attached on a pipe to reduce its vibration [45], and also proposed a 
periodically supported pipe–plate model to analyse the effect of an 
elastic plate on vibration bandgap [46]. 

Design and optimization of piping systems aim to avoid resonance, 
leading FF to be higher than excitation frequency [34,47]. Thus, in order 
to find a solution in a faster and efficient way for achieving global 
resonance avoidance of a 3D piping system, the following three aspects 
should be further considered: one is to include the effect of fluid flow on 
vibration of piping systems with wave approach; the second is that shape 
(route) optimization for avoiding resonance should be considered; the 
last is to extend the optimization of hanger location from a pipe segment 
to the whole 3D piping system. These are main objectives of this 
manuscript. Consequently, we will carry out a study on the resonance 
avoidance of a 3D piping system through optimizing its pipe shape and 
rigid hanger location using wave approach. The manuscript will be 
organized as follows. In Section 2, we develop a 3D model for vibration 
analysis of a piping system with wave approach, and its efficiency is 
demonstrated. In Section 3, a typical 3D piping system is selected and its 
dynamic characteristics with/without fluid flow are discussed. In Sec-
tion 4, the numerical examples of shape and rigid hanger location 
optimization of a 3D piping system are provided to illustrate the 
developed optimization method. Finally, a brief summary of the con-
clusions is outlined in Section 5. 

2. Methods 

2.1. Wave approach for vibration analysis 

2.1.1. Vibration governing equations 
Generally, a 3D liquid-conveying piping system can be divided into 

straight pipe segments and curved ones. The dynamic stiffness matrices 
of the straight and curved pipe elements will be calculated separately, 
and then assembled to form the global dynamic stiffness matrix of the 
entire 3D piping system. As illustrated in Fig. 1, the straight pipe element 
has 2 nodes, and there are 6◦ of freedom at each node, in which yL, yR, zL, 
zR, uL and uR represent the nodal displacements and θyL, θyR, θzL, θzR, φL, 
φR the nodal rotations of left and right ends, respectively, and C repre-
sents the fluid velocity. The governing equations of a straight pipe 
element have been derived by Koo and Park [11], in which the vibration 
motion of a differential element of the pipe can be expressed by four 
parts: 

E(1+ jα)I ∂4

∂x4 y(x, t)+ pAf
∂2

∂x2 y(x, t)+ ρpAp
∂2

∂t2 y(x, t)=Fye(x, t) + Fyf(x, t),

(1)  

flexural vibration in (x, z)-plane: 

E(1+ jα)I ∂4

∂x4 z(x, t)+ pAf
∂2

∂x2 z(x, t) + ρpAp
∂2

∂t2 z(x, t)=Fze(x, t) + Fzf(x, t),

(2)  

torsional vibration: 

J
∂2

∂t2 φ(x, t) − G(1+ jβ)Ip
∂2

∂x2 φ(x, t)=Mte(x, t), (3)  

axial vibration: 

ρpAp
∂2

∂t2 u(x, t) − E(1+ jα)Ap
∂2

∂x2 u(x, t)=Pe(x, t) + Pf(x, t), (4)  

where E and G are Young’s elastic modulus and elastic shear modulus, α 
and β are internal loss factors of the pipe material, I and Ip are moment 
and polar moment of inertia of pipe cross section, J is polar moment of 
inertia of pipe per unit length, p is internal pressure, ρp is the mass 
density and Ap is cross-sectional area of pipe. Fye and Fyf are external 
mechanical force and fluid-dynamic force in y direction, Fze and Fzf are 
those in z direction, Mte, Pe and Pf are the torque, axial external me-
chanical force and axial fluid-dynamic force. The subscripts e and f 
represent externally applied mechanical forces and inviscid fluid- 
dynamic forces, respectively. 

In addition, one key factor influencing vibration motion of pipe is the 
speed of water flow, which can be idealized as inviscid flow. In steady 
condition, based on the theory of plug flow model, the inviscid fluid- 
dynamic forces acting on the pipe can be expressed as [3,48] flexural 
vibration in (x, y)-plane:  

Fyf(x, t)= − ρfAf

[
∂2

∂t2 + 2C
∂2

∂x∂t
+C2 ∂2

∂x2

]

y(x, t), (5)  

flexural vibration in (x, z)-plane: 

Fzf(x, t)= − ρfAf

[
∂2

∂t2 + 2C
∂2

∂x∂t
+C2 ∂2

∂x2

]

z(x, t), (6)  

axial vibration: 

Pf(x, t) = − ρfAf
∂2

∂t2 u(x, t), (7)  

where ρf is fluid density and Af is cross-sectional area of fluid. The 
negative value means the reaction force applying on the pipe. The three 
terms in Equation (5) and Equation (6) represent inertial force, Coriolis 
force, and centrifugal force, respectively. Equation (7) represents the 
inertial force in axial direction. 

For a harmonic excitation, the responses should have a harmonic 
part eiωt. For examples, the flexural, torsional and axial vibration re-
sponses should be expressed as Yeiωt and Zeiωt, Фeiωt, and Ueiωt, where Y, 

Fig. 1. Straight pipe element. Flexural vibration in (x, y)-plane.  
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Z, Ф and U are the corresponding amplitudes, and ω, i and t are circular 
frequency, imaginary unit and time, respectively. For a steady state vi-
bration, harmonic part eiωt can be omitted. 

After substituting Equations (5)–(7) into equations (1)–(4) and 
setting external forces on differential element of the pipe as zero, we can 
get in frequency domain the vibration Equations 8–11 as flexural vi-
bration in (x, y)-plane:  

flexural vibration in (x, z)-plane: 

torsional vibration: 

G(1+ jβ)Ip
∂2

∂x2 Φ(x,ω)+ Jω2Φ(x,ω)= 0, (10)  

axial vibration: 

E(1+ jα)Ap
∂2

∂x2 U(x,ω)+
(
ρpAp + ρfAf

)
ω2U(x,ω)= 0. (11)  

2.1.2. Dynamic stiffness matrix of straight and curved pipe segments 
The general solutions of Equations 8–11 should have the following 

forms: 

Y(x) =
∑4

n=1
A1nekanx,Θz = Y ′

(x) =
∑4

n=1
A1nkanekanx

Z(x) =
∑4

n=1
A2nekanx,Θy = − Z ′

(x) = −
∑4

n=1
A2nkanekanx

U(x) =
∑2

n=1
Cnekcnx,Φ(x) =

∑2

n=1
Bnekbnx

, (12)  

where ka, kb, kc are wave numbers, and A, B, C are coefficients to be 
determined. For a straight pipe element, the displacements of its two 
ends can be expressed by Equation (13) as flexural vibration in (x, y)- 
plane:  
⎧
⎪⎪⎨

⎪⎪⎩

YL
ΘzL
YR
ΘzR

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

1 1 1 1
ka1 ka2 ka3 ka4

eka1L eka2L eka3L eka4L

ka1eka1L ka2eka2L ka3eka3L ka4eka4L

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

A11
A12
A13
A14

⎫
⎪⎪⎬

⎪⎪⎭

, (13a)  

flexural vibration in (x, z)-plane: 
⎧
⎪⎪⎨

⎪⎪⎩

ZL
ΘyL
ZR
ΘyR

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

1 1 1 1
− ka1 − ka2 − ka3 − ka4
eka1L eka2L eka3L eka4L

− ka1eka1L − ka2eka2L − ka3eka3L − ka4eka4L

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

A21
A22
A23
A24

⎫
⎪⎪⎬

⎪⎪⎭

, (13b)  

torsional vibration: 
{

ΦL
ΦR

}

=

[
1 1

ekb1L ekb2L

]{
B1
B2

}

, (13c)  

axial vibration: 

{
UL
UR

}

=

[
1 1

ekc1L ekc2L

]{
C1
C2

}

. (13d) 

Equation (13) can be further expressed in a compact form as flexural 
vibration in (x, y)-plane:  

[We]a = [D1]aAa, (14a) 

flexural vibration in (x, z)-plane: 

[We]b = [D1]bAb, (14b) 

torsional vibration: 

[We]c = [D1]cAc, (14c)  

axial vibration: 

[We]d = [D1]dAd, (14d)  

where A and We represent the coefficient vector and displacement 
vector of a straight pipe element ends, and the subscripts (a, b, c, d) 
represent 4 vibration motions. According to Euler beam theory, when 
the length of the straight pipe element is larger than its diameter, the 
elastic restoring shear force, bending moments, torsional moment and 
axial force can be obtained respectively by flexural vibration in (x, y)- 
plane:  
{

Sy(x) = − E(1 + jα)IY
′′′

(x)
Mz(x) = E(1 + jα)IY ′′(x)

, (15a)  

flexural vibration in (x, z)-plane: 
{

Sz(x) = − E(1 + jα)IZ ′′′

(x)
My(x) = − E(1 + jα)IZ′′(x)

, (15b)  

torsional vibration: 

Mt(x)=G(1+ jβ)IpΦ′

(x), (15c)  

axial vibration: 

P(x)=E(1+ jα)ApU′

(x), (15d)  

where Sy and Mz are shear force and bending moment of the (x, y)-plane, 
Sz and My are shear force and bending moment of the (x, z)-plane, Mt is 
torsional moment, and P is tensile force. 

The forces applied at both ends of the straight pipe element can be 
expressed as flexural vibration in (x, y)-plane:  

E(1+ jα)I ∂4

∂x4 Y(x,ω)+
(
ρfAfC2 + pAf

) ∂2

∂x2 Y(x,ω)+ j2ρfAfωC
∂
∂x

Y(x,ω) −
(
ρpAp + ρfAf

)
ω2Y(x,ω)

= 0,
(8)   

E(1+ jα)I ∂4

∂x4 Z(x,ω)+
(
ρfAfC2 + pAf

) ∂2

∂x2 Z(x,ω)+ j2ρfAfωC
∂
∂x

Z(x,ω) −
(
ρpAp + ρfAf

)
ω2Z(x,ω)

= 0,
(9)   
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⎧
⎪⎪⎨

⎪⎪⎩

− SyL
− MzL

SyR
MzR

⎫
⎪⎪⎬

⎪⎪⎭

=E(1+ jα)I

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k3
a1 k3

a2 k3
a3 k3

a4

− k2
a1 − k2

a2 − k2
a3 − k2

a4

− k3
a1eka1L − k3

a2eka2L − k3
a3eka3L − k3

a4eka4L

k2
a1eka1L k2

a2eka2L k2
a3eka3L k2

a4eka4L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

A11
A12
A13
A14

⎫
⎪⎪⎬

⎪⎪⎭

,

(16a)  

flexural vibration in (x, z)-plane: 

⎧
⎪⎪⎨

⎪⎪⎩

− SzL
− MyL

SzR
MyR

⎫
⎪⎪⎬

⎪⎪⎭

=E(1+ jα)I

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k3
a1 k3

a2 k3
a3 k3

a4

k2
a1 k2

a2 k2
a3 k2

a4

− k3
a1eka1L − k3

a2eka2L − k3
a3eka3L − k3

a4eka4L

− k2
a1eka1L − k2

a2eka2L − k2
a3eka3L − k2

a4eka4L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

A21
A22
A23
A24

⎫
⎪⎪⎬

⎪⎪⎭

,

(16b)  

torsional vibration: 
{
− MtL
MtR

}

=G(1+ jβ)Ip

[
− kb1 − kb2

kb1ekb1L kb2ekb2L

]{
B1
B2

}

, (16c)  

axial vibration: 
{
− PL
PR

}

=E(1+ jα)Ap

[
− kc1 − kc2

kc1ekc1L kc2ekc2L

]{
C1
C2

}

. (16d) 

Equation (16) can be expressed compactly as flexural vibration in (x, 
y)-plane:  

[Fe]a = [D2]aAa, (17a) 

flexural vibration in (x, z)-plane: 

[Fe]b = [D2]bAb, (17b)  

torsional vibration: 

[Fe]c = [D2]cAc, (17c)  

axial vibration: 

[Fe]d = [D2]dAd, (17d)  

where Fe represents the force vector of straight pipe element ends. 
[D2]a, [D2]b, [D2]c and [D2]d are the matrices in Equations (16ã(16d), 
respectively. 

Substituting Equations (14a), (14b) and (14c), 14d) into Equations 
(17a), (17b) and (17c), 17d), we can obtain the following equation as 

[Fe]i = [D2]i[D1]
− 1
i [We]i = [De]i [We]i, (i= a, b, c, d). (18)  

where [Fe]i and [We]i represent the force vector and displacement 
vector corresponding to 4 vibration motions. In the local coordinate 
system, [De]i can be assembled as shown in appendix A, then we can 
obtain the following relation 

Fe =DeWe, (19)  

where De is the 12 × 12 non-symmetric dynamic stiffness matrix as a 
function with frequency in local coordinate system. In a global coordi-
nate system, the dynamic stiffness matrix of a straight pipe element can 
be expressed as 

Dsg = λTDeλ, (20)  

where λ is the coordinate transformation matrix. 
A curved pipe element can be divided into many straight pipe seg-

ments, so its dynamic stiffness matrix can be assembled from the straight 
ones in Equation (20), which is explained in Appendix B. With help of 
this method, usually referred as transfer matrix method (TMM), we can 
obtain the global dynamic stiffness matrix Dcg of the entire curved pipe. 

2.1.3. Assembly dynamic stiffness matrix for a 3D piping system 
Following the assembly rule as in finite-element method, a global 

dynamic stiffness matrix Dg can be obtained by assembling the element 
dynamic stiffness matrices. 

Dg =
∑Nele

i=1

[
Dsg

]

i +
∑Mele

j=1

[
Dcg

]

j, (21)  

where Nele and Mele are the number of straight and curved pipe elements, 
respectively. 

The dynamic stiffness assembling process of 3D piping systems with/ 
without branch pipe is illustrated in Fig. 2, and it can be expressed as 

Dg =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

D1
11 D1

12

D1
21 D1

22 + D2
22 D2

23

D2
32 D2

33 + D3
33 D3

34

D3
43 D3

44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (22a)  

Dg =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

D1
11 D1

12

D1
21 D1

22 + D2
22 + D3

22 D2
23 D3

24

D2
32 D2

33

D3
42 D3

44

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (22b)  

where D represents the dynamic stiffness matrix, the superscript of D 
represents the numbering of pipe element, and the two subscripts of D 
represents the nodal numberings at both ends of the pipe element. 

2.1.4. Boundary conditions for dynamic stiffness matrix of a 3D piping 
system 

Boundary conditions are very important for resonance avoidance. 
Here, we will demonstrate the influence of some types of supports 
including elastic hangers, rigid hangers, and locally resonant (LR) 
structures, on the dynamic stiffness matrix Dg. The constrained dynamic 
stiffness matrix is represented by Dbc. According to different constraint 
types, Dbc can be obtained by the following procedure described in (1)- 

Fig. 2. The relation between elements and nodes in a 3D piping system. (a) 
Without branch pipe. (b) With branch pipe. 

Fig. 3. Typical constraints in a 3D piping system. (a) Rigid hanger. (b) 
Elastic hanger. 
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(3).  

(1) When applying a rigid hanger in a 3D piping system, as shown in 
Fig. 3(a), the rows and columns in the dynamic stiffness matrix Dg 
can be eliminated at the location where the displacements are 
constrained.  

(2) The influence of a spring constraint can be considered by adding 
spring coefficient k to the corresponding degrees of freedom in 
Dg, as illustrated in Fig. 3(b). 

Based on the above explained model, we developed a computational 
program for vibration analysis of any 3D piping system using MATLAB. 

This developed framework will be named as modal analysis for short in 
the following sections. 

2.2. Model validation 

A cantilevered straight pipe without fluid as shown in Fig. 4(a) is 
adopted for validating the above model, since it has analytical solutions 

(flection vibration: fr = β2
r

̅̅̅̅
EI
ρA

√
/2π, β1 = 1.875/L, β2 = 4.694/L, β3 =

7.855/L; torsion vibration: fr =
(2r− 1)π

2L

̅̅̅̅̅̅̅̅̅
G/ρ

√
/2π; tension vibration: fr =

(2r− 1)π
2L

̅̅̅̅̅̅̅̅
E/ρ

√
/2π; where r is the order number.) for its natural fre-

quencies. The first three natural frequencies (under flection, torsion, and 
tension, respectively) of the straight pipe calculated via wave approach, 
and analytical solutions are shown in Fig. 4(b). There is good agreement 
between the results. 

To illustrate the computational efficiency of wave approach, the 
frequency responses (frequencies from 1 Hz to 1000 Hz with 1 Hz in-
tervals) were calculated using wave approach and FEM (COMSOL with 4 
and 40 elements, respectively), as shown in Fig. 4(c–e). In COMSOL, 
using Beam Interface (Euler-Bernoulli formulation being adopted), fre-
quency domain solver is used to plot the frequency response curve 
excited by the driving point as shown in Fig. 4(a), and the comparison of 
computing time is shown in Table 1. In detail, our model has following 
parameters: the outer diameter Do is 0.1 m, inter diameter Di is 0.09 m, 

Fig. 4. (a) A cantilevered straight pipe. (b) Comparison of calculated natural frequency (NF). (c) Comparison of flexural vibration frequency response. (d) Com-
parison of torsional vibration frequency response. (e) Comparison of tensile vibration frequency response. Frequency response calculated by the wave approach and 
FEM (COMSOL with 4 and 40 elements, respectively). 

Table 1 
Comparison of computing times calculated by wave approach and FEM (COM-
SOL with 4 and 40 elements, respectively).   

Wave 
approach 

FEM (COMSOL) (4 
elements) 

FEM (COMSOL) (40 
elements) 

Computing time 
(flection) 

0.18s 13s 18s 

Computing time 
(torsion) 

0.18s 13s 18s 

Computing time 
(tension) 

0.18s 13s 18s  
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Young’s modulus E is 208 GPa, pipe mass density ρp is 8000 kg/m3, 
length L is 2 m, α is 0, β is 0, and the Poisson’s ratio ν is 0.3. 

From the frequency response curves shown in Fig. 4(c–e), FEM can 

achieve the accuracy of the wave approach only if enough elements are 
meshed. As shown in Table 1, the wave approach uses far less computing 
time than FEM. From the analysis, it is also found that the fundamental 
frequency (FF) for flexural mode is much smaller than other modes. 

In order to validate the accuracy of constant fluid velocity effect 
based on wave approach, a hinged-hinged straight pipe conveying fluid 
as shown in Fig. 5(a) is employed. Comparison is shown in Fig. 5(b) with 
the results obtained by Ref. [49]. There is good agreement between the 
results. 

It should be noted that wave approach is convenient to calculate the 
displacement response of the node, but wave approach used to solve the 
vibration mode and stress response of the 3D piping system still remains 
to be studied. In addition, all vibration governing equations are based on 
linear theories, which are not applicable to large amplitude vibration. 

3. Dynamic characteristics of a 3D piping system 

To illustrate the proposed method, we select a general 3D piping 
system shown in Fig. 6(a) as a basic optimization structure for increasing 
its FF. The structural parameters of this model include: outer diameter 
Do = 0.1 m, inter diameter Di = 0.09 m, Young’s modulus E = 208 GPa, 
pipe density ρp = 8000 kg/m3, and Poisson’s ratio ν = 0.3. To verify the 
accuracy of 3D piping system without fluid based on wave approach, the 
frequency responses (frequencies from 0.1 Hz to 10 Hz with 0.001 Hz 
intervals) were calculated using wave approach and FEM (COMSOL with 
25 and 479 elements, respectively), as shown in Fig. 6(b). The accuracy 

Fig. 5. (a) Nodal displacements in flection vibrations of a straight hinged- 
hinged pipe conveying fluid. (b) FF of vibrations of a straight hinged-hinged 
pipe conveying fluid. *: FEM [49]; O: wave approach. In Ref. [49]: Do =

9.54 mm, Di = 7.54 mm, E = 208 GPa, ρp = 8000 kg/m3, ρf = 1000 kg/m3, L =
0.5 m, α = 0, β = 0, ν = 0.3 and fluid pressure p = 0 MPa. 

Fig. 6. (a) The analytical model of a 3D piping system with/without fluid. (b) Vibration analysis and verification of 3D piping system without fluid based on wave 
approach and FEM (COMSOL). 

Table 2 
Calculated natural frequencies (Hz) without fluid for different orders and modes.  

Force (F) on 6 freedom degrees of node 1 

Order Flection (xoy-plane) Flection (xoz-plane) Tension Torsion 

Y θz z θy u φ 

1 0.468 0.468 0.468 0.468 0.468 0.468 
2 0.523 0.523 0.523 0.523 0.523 0.523 
3 1.331 1.331 1.331 1.331 1.331 1.331  
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of this calculation program based on wave approach is consistent with 
the FEM with sufficient number of elements. But, when there is fluid, so 
far, there is no software can study the frequency response characteris-
tics, which is an advantage of wave approach. 

The first three-order natural frequencies of the 3D piping system 
without fluid calculated by wave approach are shown in Table 2. Due to 
the coupling of flection, torsion, and tension in the 3D piping system, the 
same natural frequency can be excited by a force at any degree of 
freedom at node 1. In our model, the excitation force F is along the Y- 
direction. 

Since the 3D piping system has two branch pipes, the fluid velocity 
ratio at the junction of the main pipe and branch pipes must satisfy the 
continuity condition, namely C2 = 2C1 (D1

2/D2
2) where C1, D1 are the 

fluid velocity and inner diameter of the main pipe, and C2, D2 are the 
fluid velocity and inner diameter of the branch pipe. The fluid param-
eters include internal fluid density ρf = 1000 kg/m3, and internal fluid 
pressure p = 0.35 MPa. The relation between the fluid velocity and FF 
calculated by the wave approach is shown in Fig. 7 [12]. We can find 
that the FF hardly changes when the fluid velocity C1 is below 10 m/s, 
while the FF decreases sharply as the fluid velocity C1 increases from 10 
m/s to 40 m/s. Furthermore, the critical fluid velocity is close to 38 m/s. 
The presence of fluid (even when C1 = 0 m/s) can also reduce the FF due 
to mass effect when optimizing a 3D piping system, therefore fluid must 
be considered. 

4. Optimization examples of a 3D piping system to avoid 
resonance 

4.1. Shape optimization of a 3D piping system 

4.1.1. Example description 
The 3D piping system (shown in Fig. 6) contains 4 curved pipes with 

90◦ and 7 straight pipes, and the locations of the start (node 1) and end 
points (nodes 9 and 12) of the 3D piping system are fixed. The lengths of 
the 7 straight pipes (L1, L2, L3, L4, L5, L6, L7) and the radii of the 4 curved 
pipes (R1, R2, R3, R4) are chosen as optimization variables. The relation 
between nodal coordinates and pipe sizes are given in Appendix C. 

The original sizes of this 3D piping system are assumed to be (unit: 
m) 

(L1,R1,L2,R2,L3,L4,R3,L5,L6,R4, L7)= (8, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1). (23) 

In this optimization example, we expect to optimize the 11 variables 
(L1, R1, L2, R2, L3, L4, R3, L5, L6, R4, L7) of the 3D piping system to 
improve the FF, which in fact characterize the shape of the 3D piping 
system. The detail of the dynamic stiffness is given in Appendix B. 
Briefly, the dynamic stiffness matrices Dsg of the straight pipe elements 
and Dcg of the curved pipe element are expressed with two end or center 
coordinates, the global dynamic stiffness matrix Dg of the whole 3D 
piping system can then be obtained. 

Furthermore, the 11 variables should satisfy some certain constraints 
in the manufacturing process [47]. For example, the curved pipe is 
machined by bending instrument, the bending radius R should be 1.5 
times large than the diameter, and the length L of the straight pipe must 
be 2.5 times larger than the diameter. Assuming that the design space for 
the 3D piping system is [12 m, 4 m, 5 m], the 11 variables (X=(L1, L2, L3, 
L4, L5, L6, L7, R1, R2, R3, R4)) must satisfy the following relations: Lmin ≤

L1 ≤ 12 m, Lmin ≤ L2 ≤ 4 m, Lmin ≤ L3 ≤ 5 m, Lmin ≤ L4 ≤ 6 m, Lmin ≤ L5 ≤

5 m, Lmin ≤ L6 ≤ 6 m, Lmin ≤ L7 ≤ 5 m, Rmin ≤ R1 ≤ 4 m, Rmin ≤ R2 ≤ 4 m, 
Rmin ≤ R3 ≤ 5 m and Rmin ≤ R4 ≤ 5 m where Lmin represents 2.5Do, and 
Rmin represents 1.5Do. 

Since the task of a 3D piping system is to deliver fluid from one 
starting point to both ending points, the both ending points are fixed, 
which are (unit: m) 

P1
end = node 9= [12, 4, − 5], (24a)  

P2
end = node 12= [6, 4, − 5]. (24b) 

Therefore, the constraint conditions on the 11 variables are 
expressed as (unit: m) 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1 + R1 + L4 + R3 = 12
R1 + L2 + R2 = 4

− R2 − L3 − R3 − L5 = − 5
L1 + R1 − L6 − R4 = 6

− R2 − L3 − R4 − L7 = − 5

. (25) 

For the vibration of the piping system, resonance must be avoided, 
particularly, the natural frequency of the engine cannot coincide with 
that of the pipe. Therefore, we take maximizing the FF of the 3D piping 
system as the optimization target. The natural frequency of a 3D pipeline 
system can be obtained from the condition that determinant of Dg(ω) 
should vanish at the natural frequency: 
⃒
⃒ Dg(ω)

⃒
⃒= 0. (26) 

To compute the natural frequencies from Equation (26), we can use a 
proper root-finding algorithm [13–15]. Here, we select to sweep the 
parameter ω. To avoid resonance, the first natural frequency f1 of the 3D 
piping system should be far away from external excitation frequency fe 
(e.g. 0.5Hz), Finding the max (f1− fe) means to find the min − (f1− fe), 
where f1 is the FF of the 3D piping system. This shape optimization 
model for avoiding resonance of a 3D piping system can be expressed as 

min : − [f1(X) − fe]

s.t.
constraints

(27) 

The optimization is performed based on the well-known genetic al-
gorithm (GA). During the optimization process, the f1 (i.e. FF) is calcu-
lated by using the program based on wave approach. The general 
optimization solution flowchart of the 3D piping system based on shape 
optimization is shown in Figure D1. 

4.1.2. Numerical results of shape optimization 
Following the above optimization process, in the case of the maximal 

FF, which is derived from the minimum objective function value, we can 
obtain a shape shown in Fig. 8(b) with the 11 shape variables (unit: m): 

Fig. 7. Dynamic instability of the 3D piping system.  
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In the case of minimal FF, for comparing, we can obtain a shape 
shown in Fig. 8(c) with the 11 shape variables (unit: m):  

The results show that maximal and minimal FF without fluid are 
0.80 Hz and 0.30 Hz, respectively, as illustrated in Fig. 8(d). In order to 
reveal the effect of fluid velocity on the vibration of the piping system, 
we set the fluid velocity C1 as 10 m/s, and the optimized shapes of the 
piping system with maximal and minimal FF are similar to the shapes 
without fluid, as shown in Fig. 8(b) and (c). Nevertheless, the maximal 
and minimal FF with fluid (C1 = 10 m/s) are 0.65 Hz and 0.22 Hz, 
respectively, as illustrated in Fig. 8(e). Compared to the case without 
fluid, it seems that the fluid velocity has less effect on the optimized 
shape of the piping system, but has significant effect on the FF. 

Fig. 8(d) shows the frequency response curves of three models with 
the maximal, minimal, and original FF, illustrating the effect of shape 

optimization on the vibration of a 3D piping system. Moreover, the 
frequency response curves of the piping system with flowing fluid (C1 =

10 m/s) are illustrated in Fig. 8(e), showing that fluid velocity can 

reduce the FF as well as the vibration magnitude. In this optimized 
model, the maximal FF (Fig. 8(b)) is nearly 3 times higher than the 
minimal FF (Fig. 8(c)). 

4.2. Rigid hanger location optimization of a 3D piping system 

Another method to avoid resonance is to mount hangers on the 
piping system, such as rigid hangers and elastic hangers. Firstly, we 
optimize the location of a rigid hanger, and then, for better optimization 
effect, we optimize the location of four rigid hangers. 

Fig. 8. (a) The model with original FF. (b) The model with maximal FF. (c) The model with minimal FF. (d) Frequency response comparison of models in (a), (b) and 
(c) without fluid. (e) Frequency response comparison of models in (a), (b) and (c) with flowing fluid (C1 = 10 m/s). 

(L1,R1,L2,R2,L3,L4,R3,L5,L6,R4, L7)= (2.80, 3.60, 0.25, 0.15, 0.25, 1.25, 4.35, 0.25, 0.25, 0.15, 4.45). (28)   

(L1,R1,L2,R2,L3,L4,R3,L5,L6,R4, L7)= (11.45, 0.15, 3.70, 0.15, 4.45, 0.25, 0.15, 0.25, 5.45, 0.15, 0.25). (29)   
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4.2.1. Example of one rigid hanger location optimization 
When mounting one rigid hanger on the pipe, it would be beneficial 

to tell which straight pipe and where this rigid hanger should be 
mounted. An illustrated scheme of installation is shown in Fig. 9. 

When rigid hanger is mounted on a straight pipe, it will restrain the 
flexural vibration displacement at the mounted location (node 2 in 
Fig. 9). The direction of the constrained displacement depends on the 
numbering of the straight pipes. When rigid hangers are mounted on the 
pipes (L1, L4, L6), the hangers can restrain the displacement in the (Y, Z) 
direction. When rigid hangers are mounted on the pipes (L3, L5, L7), the 
hangers can restrain the displacements in (X, Y) directions. When rigid 

hangers are mounted on the pipe L2, the hangers can restrain the 
displacement in the (X, Z) direction. Consequently, the mounted loca-
tion Wrh (node 2 in Fig. 9) of the rigid hanger on the straight pipe can be 
coded as 

Wrh =Wn1 + en⋅xn (n= 1, 2, 3, 4, 5, 6, 7), (30)  

where Wn1 and en are the first nodal location and the axial unit vector of 
the numbering n straight pipe, respectively. This rigid hanger optimi-
zation model for avoiding resonance of a 3D piping system can be 
expressed as 

min : − [f1(n, xn) − fe]

s.t. n ∈ {1, 2, 3, 4, 5, 6, 7}
Lmin ≤ xn ≤ Ln − Lmin

, (31) 

The corresponding optimization solution flowchart of a 3D piping 
system based on one rigid hanger location optimization is shown in 
Figure D2. 

As shown in Table 3, following the above optimization procedure, in 
the case of the maximal FF (i.e. f1), which derived from the minimum 
objective function value, we obtained the straight pipe numbering (n) 
and the mounted location (xn) of the piping system. For comparing the 
optimization effect, we also obtained the result in the case of the mini-
mal FF. When the 3D piping system conveys fluid (C = 10 m/s), the 
optimization result with the maximal FF is shown in Table 3, and the 
result with minimal FF is obtained for comparing. 

Meanwhile, from Table 3, it can be found that the fluid flow hardly 
affects the optimization results of numbering (n) and mounted location 
(xn), but reduces the FF. The optimization results shows that when the 
location of rigid hanger is closed to fixed end, it can hardly influence the 
FF, and the optimized rigid hanger location is near 3.6 m away from the 
first node of No.1 straight pipe. 

In addition, we still investigate the influence of elastic hanger on the 
fundamental frequency, as shown in Fig. 10. For this 3D piping system, 
When the stiffness of elastic hanger is greater than 10 ^ 6 N/m, the 
fundamental frequency tends to be stable and consistent with that of 
rigid hanger, thus the elastic hanger can be regarded as a rigid one. As 
Fig. 10 shows, the rigid hanger changes the fundamental frequency more 
obviously than the elastic hanger, and the optimization effect is better. 
Therefore, in order to optimize the target, we choose rigid hangers 
instead of elastic hangers. 

It should be noted that the present study only investigated the role of 
one rigid hanger on the fundamental frequency of a 3D piping system. In 
order to further improve the FF, more rigid hangers should be mounted 
on the piping system. The optimal locations of these rigid hangers can 
also be found by genetic algorithm. 

4.2.2. Example of more rigid hangers’ location optimization 
To illustrate the effect of more rigid hangers on increasing the FF of a 

3D piping system, four rigid hangers are adopted: two are mounted on 
the pipe section (L1), one is mounted on the pipe section (L2), and one is 
mounted on the pipe section (L3), as shown in Fig. 11. The model for 
location optimization of four rigid hangers can be expressed as 

Fig. 10. (a) Analytical model of a 3D piping system with one elastic hanger, the 
location is 3.6291 m away from node 1. (b) The relationship between FF and 
four elastic hangers (10^3 N/m, 10^4 N/m, 10^5 N/m, 10^6 N/m, respectively) 
with the model shown in (a). 

Fig. 11. Analytical model of a 3D piping system with 4 rigid hangers.  Fig. 9. Analytical model of a 3D piping system with one rigid hanger.  

Table 3 
Comparison of calculated results.   

no fluid fluid velocity C1 = 10 m/s 

numbering and 
location 

FF 
(Hz) 

numbering and 
location 

FF 
(Hz) 

maximal 
FF 

No.1, 3.6291 m 1.30 No.1, 3.3238 m 1.03 

minimal FF No.5, 0.6790 m 0.47 No.5, 0.3931 m 0.39  
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min : − [f1(x1, x2, x3, x4) − fe]

s.t.
Lmin ≤ x1 ≤ L1 − 2⋅Lmin
Lmin ≤ x2 ≤ L1 − 2⋅Lmin
Lmin ≤ x3 ≤ L2 − Lmin
Lmin ≤ x4 ≤ L3 − Lmin

. (32) 

The corresponding optimization solution flowchart based on four 
rigid hanger locations optimization is shown in Figure D3. 

Results of four rigid hangers’ location optimization are shown in 
Table 4, and we can find that the maximal FF (i.e. f1) (no fluid, 8.50 Hz; 
C1 = 10 m/s, 7.57 Hz) with optimized positions is much greater than the 
minimal, indicating that the FF of 3D piping system can be more far 
away from excitation frequency. Nevertheless, from an economic 
perspective, we will focus on the trade-off between the maximal reso-
nance avoidance and minimal hanger number in our future work. 

In our work, compared with the shape optimization (0.30 Hz ~ 0.80 
Hz), the effect of rigid hanger location optimization (one rigid hanger: 
0.47 Hz ~ 1.30 Hz, Table 3; four rigid hangers: 1.70 Hz ~ 8.50 Hz, 
Table 4) dominates on improving the fundamental frequency of the 3D 
piping system. The effect of adjusting the fundamental frequency to 
avoid vibration by shape optimization is relatively low, and the signif-
icance of shape optimization is that it can provide a solution when 
additional hangers cannot be installed in a confined space. By rigid 
hangers’ location optimization, the effect of changing the fundamental 
frequency is more obvious, and the effect of vibration avoidance is 
better. 

5. Conclusion 

In this paper, a systematic method for global optimization design of a 
3D piping system is proposed and numerically validated. Based on wave 
approach initially given by Koo and Park [11], we extended this 

approach to 3D liquid conveying piping systems to estimate the funda-
mental frequency in a fast and efficient way. Combining with genetic 
algorithm, shape optimization can be used to increase fundamental 
frequency of a piping system if rigid hangers are not available; in 
contrast, the fundamental frequency can be improved more efficiently 
with rigid hangers of optimized locations. Our proposed method can 
provide an efficient and accurate vibration analysis for a general 3D 
liquid conveying pipe system in its pre-designed stage. 
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Appendix A 

These 4 vibration motions can be assembled into the 12 × 12 dynamic stiffness matrix Dsg of straight pipe element as shown in Figure A1, and the 
corresponding relation between the numberings and 12 nodal degrees of freedom of straight pipe element ends is shown in table A1.  

Table A1 
Corresponding relation between the numberings and 12 nodal degrees of freedom.  

1 2 3 4 5 6 7 8 9 10 11 12 

uL yL zL φL θyL θzL uR yR zR φR θyR θzR   

Table 4 
Comparison of calculated results.   

no fluid fluid velocity C1 = 10 m/s 

Location (m) FF(Hz) Location (m) FF(Hz) 

maximal FF 2.0156,2.7295,0.3119,0.2602 8.50 2.1405,3.8607,0.5915,0.2542 7.57 
minimal FF 7.3933,0.3566,0.4742,0.5235 1.70 7.1974,0.5526,0.3750,0.7500 1.43  
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Fig. A1. Assembled dynamic stiffness matrix of straight pipe element  

Fig. B1. (a) Segments of a curved pipe. (b). Single segment.  

Appendix B 

When calculating the dynamic stiffness of the curved pipe, it is necessary to find the coordinates of the both ends (W1, W2) and the center-point 
(Wc) of the curved pipe in the global coordinate system (X, Y, Z). As shown in Figure B1(a), we divide the curved pipe into N equal segments, and each 
segment is considered as a straight pipe. The parameters of the curved pipe can be expressed as 

R = |Wc − W1|,

L = |W2 − W1|,

Wo = (W2 + W1)/2,
θ = 2 × sin− 1(L/(2R)),
dθ = θ/N,

(B1)  

where R and θ are the radius and radian of the curved pipe, respectively, L and Wo are the Length and midpoint of the line connecting the both ends 
(W1, W2), respectively, and dθ is the radian of one part of the curved pipe. 

In the local coordinate system (xo, yo, zo), the center-point location of the curved pipe can be expressed as 

xc = 0,

yc =
[
R2 − (L/2)2

]1/2
,

zc = 0.
(B2) 

and the locations of each segment end can be expressed as 

xn = xc − R sin(θ/2 − ndθ)
yn = yc − R cos(θ/2 − ndθ)

zn = zc

⎫
⎬

⎭
(n= 0, 1, 2⋯N). (B3) 

The locations of each segment end in the local coordinate system (xo, yo, zo) can be transformed into the global coordinate system (X, Y, Z) as 

Wn =T3
T • wn + Wo (B4)  
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where wn is the locations of each segment end in the local coordinate system (xo, yo, zo), and T3 is the coordinate transformation matrix from the global 
coordinate system (X, Y, Z) into the local coordinate system (xo, yo, zo). 

As shown in Figure B1(b), according to the coordinates of the both ends (Wn1, Wn2) of the segment and the center-point (Wc) of the curved pipe, the 
dynamic stiffness transformation matrix λ from the global coordinate system (X, Y, Z) into the local coordinate system (x, y, z) can be confirmed. The 
dynamic stiffness matrix of a segment in the global coordinate system (X, Y, Z) can be expressed as 

Dcn = λTDeλ=

[
K1 K2
K3 K4

]

(B5)  

where Ki (i = 1,2,3,4) is the partitioned dynamic stiffness matrix from De. Using the TMM theory, 
[
− FL
FR

]

n
=

[
K1 K2
K3 K4

][
WL
WR

]

n
(B6) 

can be expressed as 
[

WR
FR

]

n
=

[
− K− 1

2 K1 − K− 1
2

K3 − K4K− 1
2 K1 − K4K− 1

2

][
WL
FL

]

n
(n= 1, 2,⋯N), (B7)  

where WR and WL are displacements of both ends of the segment, and FR and FL are forces of both ends of the segment. Transfer matrix Tn of the 
segment can be expressed as 

Tn =

[
− K− 1

2 K1 − K− 1
2(

K3 − K4K− 1
2 K1

)
− K4K− 1

2

]

n

. (B8) 

Using the chain rule, transfer matrix Tc for both ends of the curved pipe is expressed as 
[

WR
FR

]

N
= [T]N[T]N− 1⋯[T]1

[
WL
FL

]

1
=Tc

[
WL
FL

]

1
=

[
T1 T2
T3 T4

][
WL
FL

]

1
. (B9) 

From Equation (B9), the dynamic stiffness matrix Dcg for the curved pipe can be expressed as 
[
− FL
FR

]

=

[
T− 1

2 T1 − T− 1
2(

T3 − T4T− 1
2 T1

)
T4T− 1

2

][
WL
WR

]

=Dcg

[
WL
WR

]

. (B10)  

Appendix C  

Table C1 
Coordinates of nodes.  

Nodes Coordinates (unit: m) 

node1 [0, 0, 0] 
node2 [L1, 0, 0] 
node3 [L1+R1, R1, 0] 
node4 [L1+R1, R1+L2, 0] 
node5 [L1+R1, R1+L2+R2, − R2] 
node6 [L1+R1, R1+L2+R2, − R2− L3] 
node7 [L1+R1+L4, R1+L2+R2, − R2− L3] 
node8 [L1+R1+L4+R3, R1+L2+R2, − R2− L3− R3] 
node9 [L1+R1+L4+R3, R1+L2+R2, − R2− L3− R3− L5] 
node10 [L1+R1− L6, R1+L2+R2, − R2− L3] 
node11 [L1+R1− L6− R4, R1+L2+R2, − R2− L3− R4] 
node12 [L1+R1− L6− R4, R1+L2+R2, − R2− L3− R4− L7]  

Appendix D 
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Fig. D1. Shape optimization flowchart of a 3D piping system.   
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Fig. D2. One rigid hanger location optimization flowchart of a 3D piping system.   
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Fig. D3. 4 rigid hanger locations optimization flowchart of a 3D piping system.  
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